
Formal Verification of Relational Model Transformations using an
Intermediate Verification Language

Zheng Cheng
Computer Science Department, Maynooth University, Ireland

Supervised by: Dr. Rosemary Monahan and Dr. James F. Power

1 OUTLINE OF OBJECTIVES

Model-driven engineering (MDE) has been recog-
nised as an effective way to manage the complexity
of software development. Model transformation is
widely acknowledged as one of the central ingredi-
ents of MDE.

Three main paradigms for developing model
transformations are the operational, relational and
graph-based approaches. Operational model trans-
formations are imperative in style, and focus on im-
peratively specifying how a model transformation
should progress. Relational model transformations
(MTr) have a “mapping” style, and aim at producing
a declarative transformation specification that docu-
ments what the model transformation intends to do.
Typically, a declarative specification is compiled into
a low level transformation implementation and is ex-
ecuted by the underlying virtual machine. Graph-
based transformations use a rewriting style, which ap-
plies transformation rules recursively until no more
matches can be found.

Because of its mapping-style nature, a MTr is gen-
erally easier to write and understand than an opera-
tional transformation. Both graph-based transforma-
tions and relational transformations can be declara-
tive. However, they are essentially different in their
rule matching and execution semantics (Czarnecki
and Helsen, 2006). In addition, deciding the conflu-
ence and termination of graph-based transformations
has been proven undecidable (Plump, 2005; Plump,
1998). This extra layer of complexity hinders the ap-
plicability of graph-based transformations compared
to relational approaches.

Proving the correctness of MTr is my major con-
cern in this work. Here “correctness” means im-
plicit assumptions about the MTr. These assump-
tions can be made explicitly by MTr developers via
annotations, so-called contracts. Next, I will bor-
row ER2REL MTr as an example to give a concrete
idea about what is meant by the correctness of MTr
(Büttner et al., 2012).

Figure 1: ER and REL metamodels.

The ER2REL MTr transforms from the Entity-
Relationship (ER) metamodel (Figure 1(a)) into the
RELational (REL) metamodel (Figure 1(b)). Both the
ER schema and the REL schema have well-defined
semantics. Thus, it is easy to understand their meta-
models. The ER2REL MTr is shown in Listing 1. It is
written in one of the most widely used MTr languages
in industry and academia, namely the ATL transfor-
mation language (ATL) (Jouault et al., 2008). The
ER2REL MTr is defined via a list of ATL rules in a
mapping style. Each rule defines how to map from
the source model element(s) to the target model ele-
ment(s). A rule is applicable when the source model
element(s) fulfils the rule guard. Each rule initialises
the attribute/association of the generated target model
element via the binding operator (). This binding
operator performs an implicit resolution algorithm to
resolve the right hand side of the operator, and assigns
the resolution result to its left hand side (Jouault et al.,
2008).

In this work, I am specifically interested in four
types of MTr correctness:
1. Syntactic Correctness. This concerns whether

every well-formed source model is able to gen-
erate a well-formed target model. The ER2REL
transformation fails this correctness criterion, be-
cause the EA2A rule (Listing 1) will generate a
dangling RelAttribute that is not attached to any
Relation in the target model.

2. Semantic Correctness. This concerns, when the
source models satisfy the preconditions, whether
the postconditions will always hold on the corre-
sponding target models after executing the MTr.
For example, if a semantic correctness contract

3

Cheng Z..
Formal Verification of Relational Model Transformations using an Intermediate Verification Language.
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

1 module ER2REL; create OUT : REL from IN : ER;

2

3 rule S2S {

4 from s: ER!ERSchema

5 to t: REL!RELSchema (relations <- s.entities, relations

<- s.relships)}

6

7 rule E2R {

8 from s: ER!Entity

9 to t: REL!Relation (name<-s.name) }

10

11 rule R2R {

12 from s: ER!Relship

13 to t: REL!Relation (name<-s.name) }

14

15 rule EA2A {

16 from att: ER!ERAttribute, ent: ER!Entity (att.entity =

ent)

17 to t: REL!RELAttribute (name<-att.name,

isKey<-att.isKey) }

18

19 rule RA2A {

20 from att: ER!ERAttribute, rs: ER!Relship (

att.relship=rs)

21 to t: REL!RELAttribute (name<-att.name,

isKey<-att.isKey, relation<-rs) }

22

23 rule RA2AK {

24 from att: ER!ERAttribute, rse: ER!RelshipEnd (

att.entity=rse.entity and att.isKey=true)

25 to t: REL!RELAttribute (name<-att.name,

isKey<-att.isKey, relation<-rse.relship)}

Listing 1: ER2REL Transformation Specification in
ATL.

of ER2REL is given as follows: the precondition
specifies that “the relships of ERSchema have dif-
ferent names”, then would the postcondition of
“all the relations of RELSchema have different
names” be established by executing the ER2REL
MTr shown in Listing 1?
The answer to this question depends on how the
execution semantics of the ATL transformation
specification is interpreted. More specifically, it
depends on how the two bindings to the relations
associations on line 5 are interpreted. (i) If we
interpret that the second binding overwrites the
effect of first binding, then the postcondition will
hold. (ii) However, if we interpret that the sec-
ond binding composites the effect of first bind-
ing, then the postcondition will not hold. Unfortu-
nately, which one to choose is not explicitly spec-
ified by the existing documentation of ATL.

3. Semantic Consistency. This concerns whether
the execution semantics of the transformation
specification is consistent with the execution se-
mantics of its transformation implementation. For

example, by studying the transformation imple-
mentation of ATL, binding an association multiple
times is a composition process, i.e. interpretation
(ii) is consistent with the execution semantics of
the transformation implementation. Thus, the pre-
vious postcondition does not hold on the ER2REL
transformation. If we choose interpretation (i) in-
stead, it will be semantically inconsistent with the
underlying transformation implementation. As a
result, the semantic correctness of ER2REL is un-
reliable, i.e. it will erroneously conclude that the
postcondition always holds when it might not af-
ter MTr execution.

4. Termination. This concerns whether executing
the transformation specification will terminate.
The ER2REL transformation terminates since it
does not uses any ATL constructs that can lead to
non-termination (Jouault et al., 2008).

For the rest of the paper, I refer to the first two cor-
rectness types as the partial correctness of MTr, and
the last two as the total correctness of MTr.

Thus, the main objective of this work is to design
a static verifier for the target MTr language by ap-
plying formal methods, which allows the designed
verifier to analyse annotated MTr and check that the
given correctness contracts are never violated. Con-
sequently, the users of the verifier are able to verify
the correctness of MTr without actually running it,
thereby reducing the time for quality assurance and
enhancing productivity. Moreover, there is no need to
test the MTr against a particular source model after
verification, since its correctness is guaranteed for all
the possible source models.

On top of the main objective, I expect to achieve
two sub-objectives in this work:

� Systematically and modularly design the static
verifier to ensure the verifier design can be reused
for other MTr languages.

� Soundly design the static verifier to ensure the re-
liability of its verification result.

2 RESEARCH PROBLEM

From the objectives of my work, I identify two re-
search problems.

Research Problem One: My quest is to investi-
gate whether using an intermediate verification lan-
guage (IVL) is the most suitable approach to system-
atically designing modular and reusable verifiers for
a target MTr language.

Research Problem Two: I want to investigate
whether the translation validation approach from

MODELSWARD�2015�-�Doctoral�Consortium

4

compiler verification can be automated to ensure the
reliability of the verification result, i.e. to be able to
check consistency between the execution semantics of
each transformation specification and its correspond-
ing transformation implementation.

3 STATE OF THE ART

In this section I primarily focus on the literature that
falls within the scope of formal verification of MTr. I
categorise them by the formal method applied.

Simulation. Simulation approaches require that
a mathematical model be developed. This mathe-
matical model represents the key characteristics of
the MTr (e.g. source and target metamodels, the be-
haviour of the MTr specification). Next, a simula-
tion tool is used to simulate the mathematical model
against a particular input (which is developed from a
given source model). Depending on the chosen tool,
certain kinds of correctness can be expressed as con-
tracts, and can then be verified for the input. For
example, colored Petri nets have been used to simu-
late Query/View/Transform (QVT) MTr. Thus, a col-
ored Petri nets engine can be used to check various
contracts such as termination (Wimmer et al., 2009;
Guerra and de Lara, 2014). Similarly, Troya and Val-
lecillo use rewriting logic to simulate ATL MTr in the
Maude system (Troya and Vallecillo, 2011). Their
product allows a reachability analysis of the ATL.

Model Checking and Model Finding. Similar
to simulation approaches, model checking and model
finding approaches also require that a mathematical
model be developed (from the metamodels and the
MTr specification). However, no particular input is
needed when the model checking/finding is running.

A subtle difference between the model checking
and model finding approaches is in the way that they
use the developed mathematical model (Huth and
Ryan, 2004). The former one starts with a mathe-
matical model described by the user, and it discovers
whether the contracts asserted by the user are valid on
the mathematical model. The later one finds mathe-
matical models which form counter-examples to the
contracts made by the user.

Lúcio et al. develop an off-the-shelf model
checker for the DSLTrans language. Their model
checker allows the user to check the syntactic correct-
ness (encoded in algebra) of the generated target mod-
els (Lúcio et al., 2010; Lúcio and Vangheluwe, 2013).
The key to developing the model checker is the ex-
pressiveness reduction of the DSLTrans language, i.e.
any constructs that might imply unbounded recursion
or non-determinism are avoided. Thus, the state space

of DSLTrans model transformations is always finite.
Anastasakis et al. have designed the UML2Alloy

tool to perform model finding (Anastasakis et al.,
2007). The novelty of their work is the use of Alloy,
which is a verification language for SAT-based model
finding (Jackson, 2006). Anastasakis et al. use Alloy
as an intermediate verification language to ease (i) the
encoding of MOF metamodels (enriched with syntac-
tic correctness contracts expressed in OCL) and MTr
to Alloy; (ii) the generation of SAT formulas from Al-
loy. Jackson et al. have designed the Formula frame-
work (Jackson et al., 2011), which is based on the Z3
SMT solver (de Moura and Bjørner, 2008). The main
contribution is that they systematically encode MOF
metamodels and MTr specifications using algebraic
data types. The contracts are given by First-Order-
Logic (FOL). Consequently, they can use their frame-
work to find models that witness violations of syntac-
tic correctness in the given MTr specification.

Theorem Proving. Theorem proving approaches
formalise both the MTr specification and its contracts
into formulas. Verification consists of applying de-
duction rules (of an appropriate logic) to incremen-
tally build the proof.

Combemale et al. present a pen and paper bisim-
ulation proof to show that the ATL MTr generates a
Petri nets model that preserves the observational op-
erational semantics of an xSPEM model (Combemale
et al., 2009). Calegari et al. encode the ATL MTr and
its metamodels into inductive types (Calegari et al.,
2011). The contracts for semantic correctness are
given by OCL expressions, and are translated into log-
ical predicates. As a result, they can use the Coq proof
assistant to interactively verify that the MTr is able to
produce target models that satisfy the given contracts.

Inspired by the proof-as-program methodology,
there is a line of research which develops the con-
cept of proof-as-model-transformation methodology
(Chan, 2006; Poernomo, 2008; Poernomo and Ter-
rell, 2010; Lano et al., 2014). This is the opposite of
traditional theorem proving approaches. At its sim-
plest, the idea is to represent the metamodels as terms.
Then, each MTr specification and its contracts are en-
coded together as an 89 type. Next, type theory (for
the lambda-calculus) can be regarded as a proof sys-
tem to verify the encoded 89 type. Finally, a program
can be extracted from the proof.

Similar to the proof-as-model-transformation
methodology, the UML-RSDS (Reactive System De-
velopment Support of UML) is a tool-set for devel-
oping correct model transformations by construction
(Lano et al., 2014). It uses a combination of UML and
OCL to create a model transformation design, instead
of using types. UML use case diagrams and activity

Formal�Verification�of�Relational�Model�Transformations�using�an�Intermediate�Verification�Language

5

diagrams are used to graphically create a MTr spec-
ification. The specification is optionally constrained
by OCL contracts on source and target metamodels.
Then, the MTr specification is verified against its con-
tracts by translating both into B AMN (B Abstract
Machine Notation) or as input for the Z3 SMT solver
for theorem proving. Finally, the verified model trans-
formation design can be synthesised to an executable
transformation implementation (such as a Java pro-
gram or an ATL transformation).

Büttner et al. automate the process of theorem
proving by a novel use of SMT solvers (Büttner et al.,
2012). The built-in background theories of SMT
solvers give enhanced expressiveness to handle con-
straints over an infinite domain. Specifically, Büttner
et al. translate a declarative subset of the ATL and
OCL contracts (for semantic correctness) directly into
FOL formulas. The formulas represent the execution
semantics of the ATL transformation specification,
and are sent to the Z3 SMT solver to be discharged.
The result implies the partial correctness of an ATL
transformation in terms of the given OCL contracts.

Summary. Essentially, simulation, model check-
ing and model finding approaches are bounded. This
means the MTr specification will be verified against
its contracts within a given search space (i.e. using fi-
nite ranges for the number of models, associations and
attribute values). Bounded approaches are usually au-
tomatic, but no conclusion can be drawn outside the
search space.

Theorem proving approaches are unbounded.
Therefore, this is preferable when the user requires
that contracts hold for the MTr specification over an
infinite domain. However, most of the theorem prov-
ing approaches require guidance and expertise from
the user (Combemale et al., 2009; Calegari et al.,
2011; Chan, 2006; Poernomo, 2008; Poernomo and
Terrell, 2010; Lano et al., 2014). This can be amelio-
rated by a novel use of SMT-solvers such as that pre-
sented by Büttner et al (Büttner et al., 2012). How-
ever, current usage of SMT-solvers lacks an inter-
mediate form to bridge between the MTr language
and the back-end SMT-solver. This compromises the
reusability and modularity of the verifier. Alloy has
been used as an intermediate verification language for
SAT-based model finding (Anastasakis et al., 2007).
However, the intermediate verification language has
not yet been adopted in theorem proving approaches
for MTr.

All the theorem proving approaches I found rely
on deriving a formula to represent the execution se-
mantics of MTr specifications. However, the reliabil-
ity of the derived formulas has not been considered
(Ab. Rahim and Whittle, 2014). If the derived for-

mulas incorrectly represent the execution semantics
of the MTr specification, then the soundness of the
verifier is greatly compromised.

Finally, OCL is one of the most popular language
to express the transformation contracts (Anastasakis
et al., 2007; Lano et al., 2014; Calegari et al., 2011;
Büttner et al., 2012). However, OCL sometimes can
be verbose, and difficult to read/write (Vaziri and
Jackson, 2000).

4 METHODOLOGY

To allow automatic theorem proving for MTr, I have
designed the VeriMTLr development framework to
provide rapid verifier construction for MTr languages.
In particular, the VeriMTLr framework enables de-
signing verifiers that perform static verification of par-
tial (i.e. semantic correctness and syntactic correct-
ness) and total (i.e. semantic consistency and termi-
nation) correctness. The architecture of my VeriMTLr
framework is shown in Figure 2. Next, I will briefly
explain the core components that reduce coding costs,
time and errors during verifier construction.

Figure 2: The Architecture of my VeriMTLr Development
Framework.

4.1 The Boogie Intermediate
Verification Language

The essential idea of the VeriMTLr framework is
to formalise the metamodels, the execution seman-
tics of the transformation specification, and the trans-
formation contracts into an IVL, such as Boogie
(Barnett et al., 2006) or WHY3 (Filliâtre, 2013).
Then, the IVL can interact with its underlying the-
orem prover(s) for verification. The result from the

MODELSWARD�2015�-�Doctoral�Consortium

6

prover(s) will verify the correctness of the transfor-
mation specification with respect to its contracts.

Using an IVL in verifier design has two advan-
tages. First, the formalisation for metamodels, trans-
formation contracts, and even the execution seman-
tics of the transformation specification can be encap-
sulated in an IVL as libraries. These formalisations
are then reusable for design verifiers for different MTr
languages. Second, an IVL can bridge between the
front-end MTr language and the back-end theorem
prover. The benefit here is to focus on generating ver-
ification tasks for the front-end language in a struc-
tural way, and to delegate the task of interacting with
theorem provers to the IVL.

I use the Boogie IVL (Boogie) in the VeriMTLr
framework. Boogie is procedure-oriented, and is a
barebones implementation of Hoare-logic. It provides
imperative statements (such as assignment, goto, if,
while and call statements) to implement procedures,
and supports FOL contracts (i.e. pre/postconditions)
to specify procedures. In addition, Boogie allows the
declaration of types, constants, functions and axioms,
which are mainly used to encode libraries that define
background theories and language properties. A Boo-
gie procedure is verified if its implementation satisfies
its contracts. The verification of Boogie procedures is
performed by the Boogie verifier, which uses the Z3
SMT solver as its underlying theorem prover.

4.2 A Memory Model for Metamodel
Formalisation

Each MTr is defined via mappings from the source
metamodel to the target metamodel. Thus, one es-
sential requirement of MTr verification is to decide
how to formalise the metamodels. The concepts
of metamodelling share many similarities with ob-
ject oriented (OO) programming language constructs.
Thus, I decided to reuse the formalisation of OO pro-
grams (specifically its memory model) to formalise
metamodels. I provide a metamodel compiler in
the VeriMTLr framework, which compiles from the
Ecore metamodels directly to the Boogie formalisa-
tion based on a particular OO memory model.

The OO memory model I chose uses an updatable
array to represent the run-time heap. The array maps
memory locations (identified by an object reference
and an object field) to values. Memory operations are
given by the array operations store and select. The
data type of an object reference is accessed through
the datatype operation. A class can inherit from an-
other class, but multiple-inheritance is not supported.
The major advantage of the chosen memory model is
that we are able to quantify over all the memory loca-

tions. Thus, it is easier to specify what is not changed
in the memory model.

The implications of my formalisation for meta-
models are twofold. First, because of the shared sim-
ilarities with OO constructs, the metamodel formali-
sation will be easy to comprehend and reuse. Second,
this OO memory model has been used by several pro-
gram verifiers (e.g. Spec# (Barnett et al., 2004), KIV
(Stenzel, 2004)). Therefore, it will enhance the inter-
operability between OO program verifiers and MTr
verifiers.

4.3 Contract Libraries

I provide three contract libraries encoded in Boogie,
i.e. the OCL library, the SET-theory library and the
FOL library. I also provide three compilers to com-
pile OCL, SET and FOL expressions into the corre-
sponding Boogie expressions that are defined in the
contract libraries. The goal is to provide flexibility
while specifying the transformation contracts.

The development of contract libraries benefits
from choosing an IVL in verifier design. For exam-
ple, my OCL library is built on top of an existing
Boogie library from the Dafny verification language
(Leino, 2010), and is also made available to others
for reuse. The existing one provides the mathemati-
cal theories for sets, sequences, bags and maps, which
have an intuitive mapping to the OCL collections. On
top of these, I further introduce the ordered-set collec-
tion data type (with 3 OCL operations), and 6 OCL
iterators on the sequence and ordered-set data types
(i.e. exists, forall, isUnique, select, collect and re-
ject iterators)1. I draw on previous work of Leino and
Monahan to guide my axiomatisation for the iterators
(Leino and Monahan, 2009).

4.4 EMFTVM Bytecode Formalisation

Generally, when designing the verifier for a MTr
language, the verifier architects face two kinds of
dilemma. First, if the MTr language does not have a
transformation implementation yet, can the architects
ensure that the derived execution semantics of the
transformation specification is implementable? Sec-
ond, if the MTr language already has a transformation
implementation, can the architects ensure that the de-
rived semantics correctly represent the execution se-
mantics of the underlying transformation implemen-
tation? If the answers to these questions are no, the
semantic consistency of MTr is in doubt. Therefore, I

1The reason that the iterators are not defined on all col-
lection data types is because my Boogie encoding for the
set and bag data types is not enumerable.

Formal�Verification�of�Relational�Model�Transformations�using�an�Intermediate�Verification�Language

7

provide a translational semantics for the bytecode of
the EMF transformation virtual machine (EMFTVM)
in Boogie, to provide a solution for answering these
questions.

EMFTVM is a stack-based VM, which aims at
providing a common execution semantics for the
transformation implementation of rule-based MTr
languages (Wagelaar et al., 2011). It is based on EMF
(which represents a de facto standard for modelling
today), and uses a low-level bytecode language to im-
plement model transformations. The bytecode lan-
guage supports 47 different instructions. Apart from
the general-purpose instructions for control flow and
stack handling, several EMF-specific instructions ex-
ist (e.g. SET, GET, DELETE). Existing model trans-
formation languages that target the EMFTVM include
ATL and SimpleGT (Wagelaar et al., 2011).

My formalisation of the EMFTVM bytecode
serves two purposes. First, it provides a formal doc-
umentation of the EMFTVM bytecode. For exam-
ple, if an MTr language has no transformation im-
plementation yet, my EMFTVM bytecode formali-
sation assists the verifier architects in designing the
transformation implementation correctly. Second, my
EMFTVM bytecode formalisation is an interface to
Boogie. It allows the verifier architect to map the ex-
ecution semantics of each transformation implemen-
tation (if there is one) into Boogie. After the exe-
cution semantics of the corresponding transformation
specification has also been mapped to Boogie, seman-
tic consistency between the two can be verified in the
same verification language. This verification is based
on each pair of transformation specification and im-
plementation. The idea is borrowed from the transla-
tion validation technique used in compiler verification
(Leroy, 2006). The benefit is that instead of verifying
that the transformation specification is always consis-
tent with its transformation implementation (which is
difficult to automate), I can automatically verify the
consistency of each pair.

My formalisation of the EMFTVM bytecode is
based on giving its translational semantics in Boo-
gie, i.e. translating the operational semantics of the
EMFTVM bytecode into Boogie. The operational se-
mantics of the EMFTVM bytecode is derived by re-
engineering the implementation of the EMFTVM. I
have not given any formal proof for my derivation.
To my knowledge, I am the first one to introduce the
EMFTVM bytecode formalisation. Thus, there is no
alternative and commonly-accepted formal semantics
for it that allows me to reason against. However, when
there is one, I can adapt existing techniques to prove
their equivalence (Combemale et al., 2009; Lehner
and Müller, 2007; Apt et al., 2009).

5 EXPECTED OUTCOME

I identify three use cases for the VeriMTLr frame-
work.

Verifying an ATL Transformation. VeriATL is
the first verifier I designed using the VeriMTLr frame-
work. It is designed for partial (i.e. syntactic correct-
ness and semantic correctness) and total correctness
(i.e. termination and semantic consistency) verifica-
tion of an essential subset of ATL (i.e. match rules).
VeriATL is encapsulated in the VeriMTLr framework,
and made available for public use.

To perform verification of partial correctness, a
user of VeriATL sends the relevent metamodels, an
ATL transformation specification and the transforma-
tion contracts to VeriATL. These inputs are compiled
by VeriATL into Boogie, and then verified for con-
tract violations. The verification result is reported as
traces which point to the potential error location in the
ATL transformation specification.

To perform verification of semantic correctness,
the user of VeriATL will send an ATL transforma-
tion specification and its corresponding transforma-
tion implementation (i.e. the ATL stack machine im-
plementation) into VeriATL. The result determines
whether the transformation implementation is consis-
tent with the ATL transformation specification.

I have successfully applied VeriATL to verify the
partial and total correctness of ER2REL transforma-
tion shown in Listing 1. Its full description can be
found on my on-line repository (Cheng et al., 2013).

Developing a Verifier for a New MTr Language.
In order to build a verifier for a new MTr language and
to verify partial correctness, the verifier architects can
reuse the metamodel formalisations and contract li-
braries in VeriMTLr. However, they are responsible
for deriving the execution semantics of the transfor-
mation specification for the new MTr language, and
then formalising it into Boogie. They will find that
the VeriATL case study is useful in specifying the ex-
ecution semantics of the ATL transformation specifi-
cation.

Verifying Termination and Compilation of a
MTr Language. In order to verify the termination
and the correct compilation of a MTr Language, a
verifier that verifies total correctness needs to be built
for the MTr language. The architects of such a veri-
fier should build on top of the verifier for partial cor-
rectness verification (of the MTr language). Thus,
they can reuse the Boogie formalisation for the ex-
ecution semantics of the transformation specification
when building the verifier for total correctness. Next,
the architects will map the execution semantics of the
transformation implementation (of the MTr language)

MODELSWARD�2015�-�Doctoral�Consortium

8

to my formalisation of the EMFTVM bytecode in the
VeriMTLr framework.

6 STAGE OF THE RESEARCH

I have spent three years developing the VeriMTLr
framework. The goal is to provide rapid verifier con-
struction for MTr languages. In particular, the Ver-
iMTLr framework assists in designing verifiers that
allow automatic theorem proving of partial and total
correctness of MTr. It encapsulates four core com-
ponents to reduce coding costs, time and errors of
verifier construction, i.e. the Boogie IVL, the mem-
ory model (for formalizing metamodels), the con-
tract libraries (which formalises OCL, SET theory
and FOL), and the EMFTVM bytecode formalisation.

Next, I illustrate three identified limitations of the
VeriMTLr framework. First, my framework relies on
Boogie, which sits on top of the Z3 SMT solver. Z3
is based on first order predicate logic with equality,
which restricts the expressiveness of my framework.
For example, it is not possible to express transitive
closure properties.

Second, the soundness of the VeriMTLr frame-
work depends on the correctness of my formalisations
for metamodels, contract libraries and EMF bytecode.
The correctness of these formalisations are challeng-
ing theoretical problems that require well-defined and
commonly accepted formal semantics of each. How-
ever, to my knowledge, none of them are currently
available. However, my formalisations are encoded
in Boogie, which yields intuitive formalisations for
inspection.

Third, the completeness of the VeriMTLr frame-
work remains one of my major concerns. The veri-
fier constructed by the VeriMTLr might not be able
to verify a model transformation specification against
its contracts, even if the two are verifiable. The in-
completeness of the VeriMTLr framework might be
due to the underlying SMT solver (i.e. the undecid-
ability of first-order-logic). It might also be due to
my formalisations. For example, the formalisation
of the sequence data type in my OCL library only
contains the essential definition for append opera-
tion. The auxiliary axioms such as “any sequence
appended with an empty sequence is the original se-
quence” are not in my formalisation. The decision is
made deliberately. Essentially, I reduce each MTr ver-
ification problem into a SMT formula solving prob-
lem. Extra axioms will generate longer SMT formu-
lae, and might be more difficult to solve. Therefore,
I think it is better to present the missing auxiliary ax-
ioms as lemmas, which will be introduced on demand.

Moreover, presenting only the essential axioms is a
strategy that helps manual inspection and reduces the
possibility of inconsistent axioms.

In the last year of my research, I plan to work with
more MTr scenarios (preferably with transformation
contracts) to ensure first order predicate logic with
equality is expressive enough for MTr verification in
practice.

I have not shown the reusability of the VeriMTLr
framework. Therefore, it would be interesting to work
with the VeriMTLr to design a verifier for another tar-
get MTr language. I expect the core components in
my framework can be reused to systematically design
a modular and sound verifier for this target MTr lan-
guage.

REFERENCES

Ab. Rahim, L. and Whittle, J. (2014). A survey of ap-
proaches for verifying model transformations. Soft-
ware & Systems Modeling, Pre-Printing.

Anastasakis, K., Bordbar, B., and Küster., J. M. (2007).
Analysis of model transformations via Alloy. MOD-
EVVA’07, Workshop on Model-Driven Engineering,
Verification and Validation.

Apt, K. R., de Boer, F. S., and Olderog, E.-R. (2009).
Verification of Sequential and Concurrent Programs.
Springer, 3rd edition.

Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and
Leino, K. R. M. (2006). Boogie: A modular reusable
verifier for object-oriented programs. In FMCO’06,
4th International Conference on Formal Methods for
Components and Objects. Springer.

Barnett, M., DeLine, R., Fähndrich, M., Leino, K. R. M.,
and Schulte, W. (2004). Verification of object-oriented
programs with invariants. Journal of Object Technol-
ogy, 3.

Büttner, F., Egea, M., Cabot, J., and Gogolla, M. (2012). On
verifying ATL transformations using ‘off-the-shelf’
SMT solvers. In MoDELS’12, 15th International
Conference on Model Driven Engineering Languages
and Systems. Springer.

Calegari, D., Luna, C., Szasz, N., and Tasistro, Â. (2011).
A type-theoretic framework for certified model trans-
formations. In SBMF’11, 14th Brazilian Symposium
on Formal Methods. Springer.

Chan, K. (2006). Formal proofs for QoS-oriented trans-
formations. In EDOCW ’06, 10th IEEE International
Conference Workshops on Enterprise Distributed Ob-
ject Computing. IEEE.

Cheng, Z., Monahan, R., and Power, J. F. (2013).
Online repository for VeriATL system.
https://github.com/veriatl/veriatl.

Combemale, B., Crégut, X., Garoche, P., and Thirioux, X.
(2009). Essay on semantics definition in MDE - an
instrumented approach for model verification. Journal
of Software, 4(9).

Formal�Verification�of�Relational�Model�Transformations�using�an�Intermediate�Verification�Language

9

Czarnecki, K. and Helsen, S. (2006). Feature-based survey
of model transformation approaches. IBM Systems
Journal - Model-driven software development, 45(3).

de Moura, L. and Bjørner, N. (2008). Z3: An efficient
SMT solver. In TACAS’08, 14th International Con-
ference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer.

Filliâtre, J.-C. (2013). One logic to use them all. In
CADE’13, 24th International Conference on Auto-
mated Deduction. Springer.

Guerra, E. and de Lara, J. (2014). Colouring: execution,
debug and analysis of QVT-relations transformations
through coloured Petri nets. Software & Systems Mod-
eling, 13(4).

Huth, M. and Ryan, M. (2004). Logic in Computer Science.
Cambridge University Press, 2nd edition.

Jackson, D. (2006). Software Abstractions: Logic, Lan-
guage, and Analysis. The MIT Press.

Jackson, E. K., Levendovszky, T., and Balasubramanian, D.
(2011). Reasoning about metamodeling with formal
specifications and automatic proofs. In MODELS’11,
14th International Conference on Model Driven Engi-
neering Languages and Systems. Springer.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008).
ATL: A model transformation tool. Science of Com-
puter Programming, 72(1-2).

Lano, K., Clark, T., and Kolahdouz-Rahimi, S. (2014). A
framework for model transformation verification. For-
mal Aspects of Computing, Pre-Printing.

Lehner, H. and Müller, P. (2007). Formal translation of
bytecode into BoogiePL. Electronic Notes in Theo-
retical Computer Science, 190(1).

Leino, K. R. M. (2010). Dafny: An automatic program
verifier for functional correctness. In LPAR’10, 16th
International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning. Springer.

Leino, K. R. M. and Monahan, R. (2009). Reasoning about
comprehensions with first-order SMT solvers. In SAC
’09, ACM Symposium on Applied Computing. ACM.

Leroy, X. (2006). Formal certification of a compiler back-
end or: Programming a compiler with a proof assis-
tant. SIGPLAN Notices, 41(1).

Lúcio, L., Barroca, B., and Amaral, V. (2010). A tech-
nique for automatic validation of model transforma-
tions. In MoDELS’10, 13th International Conference
on Model Driven Engineering Languages and Sys-
tems. Springer.

Lúcio, L. and Vangheluwe, H. (2013). Model transfor-
mations to verify model transformations. VOLT’13,
Workshop on Verification And Validation Of Model
Transformations.

Plump, D. (1998). Termination of graph rewriting is unde-
cidable. Fundamenta Informaticae, 33(2).

Plump, D. (2005). Confluence of graph transformation re-
visited. In Processes, Terms and Cycles. Springer.

Poernomo, I. (2008). Proofs-as-model-transformations.
In ICMT’08, 1st International Conference on Model
Transformation. Springer.

Poernomo, I. and Terrell, J. (2010). Correct-by-construction
model transformations from partially ordered specifi-
cations in Coq. In ICFEM’10, 12th International Con-
ference on Formal Engineering Methods. Springer.

Stenzel, K. (2004). A formally verified calculus for full
Java card. In Algebraic Methodology and Software
Technology, volume 3116. Springer.

Troya, J. and Vallecillo, A. (2011). A rewriting logic se-
mantics for ATL. Journal of Object Technology, 10.

Vaziri, M. and Jackson, D. (2000). Some shortcomings
of OCL, the object constraint language of UML. In
TOOLS ’00, 34th Technology of Object-Oriented Lan-
guages and Systems. IEEE.

Wagelaar, D., Tisi, M., Cabot, J., and Jouault, F. (2011). To-
wards a general composition semantics for rule-based
model transformation. In MoDELS’11, 14th Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems. Springer.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schoenboeck, J., and Schwinger, W. (2009). Right or
wrong? – verification of model transformations using
colored Petri nets. DSM’09, 9th OOPSLA Workshop
on Domain-Specific Modeling.

MODELSWARD�2015�-�Doctoral�Consortium

10

