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Abstract: Several motion estimation algorithms, such as n-point and perspective n-point (PnP) have been introduced 
over the last few decades to solve relative and absolute pose estimation problems. Since the n-point algorithms 
cannot decide the real scale of robot motion, the PnP algorithms are often addressed to find the absolute scale 
of motion. This paper introduces a new PnP algorithm which uses only two 3D-2D correspondences by 
considering only planar motion. Experiment results prove that the proposed algorithm solves the absolute 
motion in real scale with high accuracy and less computational time compared to previous algorithms.

1 INTRODUCTION 

Pose estimation using visual features is one of the 
interesting problems in computer vision research. The 
motion information of a moving robot can be 
determined using feature correspondences between 
two camera images. Using 2D-2D feature 
correspondences, the relative pose can be estimated 
with an unknown translation scale. Using 3D-2D or 
3D-3D feature correspondences, the absolute pose 
can be estimated with a known scale. Depending on 
the number of correspondences, many different n-
point algorithms which range from 1-point to 8-point 
are introduced. The 8-point or 7-point algorithm 
(Hartley et al., 2003) can estimate the fundamental 
matrix of the two-view geometry to solve the 6DoF 
(Degree of Freedom) relative pose of an un-calibrated 
camera. If the camera is fully calibrated, 6-point 
(Stewenius et al., 2008) or 5-point (Nister, 2004) 
algorithms can be used to estimate the essential 
matrix. Most feature based techniques use iterative 
methods such as RANdom SAmple Consensus 
(RANSAC) (Fischler et al., 1981) to obtain the best 
solution from a set of correspondences which contain 
both inliers and outliers. The performance and 
accuracy of an n-point algorithm largely depends on 
the number of feature correspondences, feature 
quality, and number of iterations. Due to this reason, 
some algorithms such as 8-point or 5-point require 
long computational time to get an optimal solution. In 

 

 

Figure 1: A geometrical model of the proposed method. 

visual odometry, fast pose estimation is an important 
issue because the performance of localization and 
map building largely depends on estimation speed. In 
this regard, some pose estimation algorithms use less 
number of feature correspondences to reduce the 
number of iterations. Currently the 5-point algorithm 
is known as the minimal solution to solve the 6DoF 
problem using calibrated cameras. 

To reduce the number of correspondences, some 
investigations employ extra motion sensors (E.g. 
IMU, Odometer and GPS/INS) to obtain the angle 
information of rotational motion. For example, 4-
point and 3-point algorithms introduced in (Li et al., 
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2013) and (Fraundorfer et al., 2010) use extra sensors 
to obtain one or more rotational motion information. 
The 1-point algorithm in (Scaramuzza, 2011) and 2-
point algorithm in (Ortin et al., 2001) solve the 
relative pose with an assumption of only 3DoF planar 
motion. Due to the low computational complexity, 
many 1-point and 2-point algorithms are especially 
applied for the visual odometry of mobile robots 
which are equipped with low computing resources. 

The relative pose estimation algorithm cannot 
obtain the scale of motion because of the inherent 
Epipolar geometry of two-view motion. This fact is 
considered as the main drawback of the 2D-2D 
feature based motion estimation approaches. To 
overcome this issue, 3D-2D correspondences are 
often employed in some n-point algorithms, which 
are known as the perspective from n points (PnP) 
algorithms. The PnP algorithm mostly needs less 
number of features than the relative n-point 
algorithm. In addition, the metric scale of robot 
motion can be obtained without using extra motion 
sensors. In conventional PnP algorithms, at least three 
3D-2D correspondences are needed for the 6DoF 
pose estimation. However, the number of 
correspondences can be reduced in visual odometry 
with a planar motion constraint.  

In this paper, we assume a mobile robot is 
restricted in 3DoF planar motion. With this 
assumption, we introduce a new 2-point PnP 
algorithm to reduce computation complexity and fast 
visual odometry. Using only two 3D-2D 
correspondences obtained from a RGB-D camera, we 
derive a linear equation to solve the 3DoF motion 
problem. Figure 1 shows a basic geometrical 
constraint of the proposed approach. 

2 A NEW 2-POINT ALGORITHM 

The main goal of this proposed approach is to find the 
rigid-body transformation matrix ܶ  by employing 
perspective projection model. Let us assume that a 3D 
point ܳ ൌ ሾܺ, ܻ, ܼሿ⊺in a world coordinate system and 
its corresponding 2D point  ൌ ሾݔ,  ሿ⊺ in the camera’sݕ
image plane are given. Then the matrix ܶ can be found 
by minimizing (1): 

ܶ ← argmin
்

∑ ‖ െ ‖ܳܶܭ

ୀଵ , (1)

where ݊  represents the number of 3D-2D feature 
correspondences. 

In 3D Euclidean space, the rigid-body 
transformation matrix ܶ	has 6 degrees of freedom; 3 
for rotation and 3 for translation. If the motion of the 

camera is restricted in a planar space, then the degrees 
of freedom of ܶ	can be reduced to 3; 1 for rotation 
and 2 for translation. When the camera is moving on 
the X-Z plane, the perspective projection matrix ܯ 
can be defined as: 

ܯ ൌ 
௫݂ cos ߠ െ ܿ௫ sin ߠ 0 ௫݂ sin ߠ  ܿ௫ cos ߠ 	 ௫݂ݐ௫  ܿ௫ݐ௭

െܿ௬ sin ߠ ௬݂ ܿ௬ cos ߠ ܿ௬ݐ௭
െ sin ߠ 0 cos ߠ ௭ݐ

, (2)

where ൣ ௫݂, 	 ௬݂൧
⊺
 represents the focal lengths of the 

camera in x and y directions, and ൣܿ௫, 	ܿ௬൧
⊺
	represents 

the principal point (position of the optical center of 
the image). Based on the definition of the perspective 
projection matrix of planar motion; the relation 
between ܳ and  can be represented with projection 
matrix ܯ as follows: 

ቈ
ݑ
ݒ
ݓ
 ≅ 

௫݂ cos ߠ െ ܿ௫ sin ߠ 0 ௫݂ sin ߠ  ܿ௫ cos ߠ ௫݂ݐ௫  ܿ௫ݐ௭
െܿ௬ sin ߠ ௬݂ ܿ௬ cos ߠ ܿ௬ݐ௭
െ sin ߠ 0 cos ߠ ௭ݐ

 ൦

ܺ
ܻ
ܼ
1

൪. (3)

In (3), ሾݑ, ,ݒ ⊺ሿݓ  is represented in homogeneous 
coordinate system and it satisfies  ൌ ሾݔ, ,ݕ 1ሿ⊺ ≅
ሾݓ/ݑ, ,ݓ/ݒ 1ሿ⊺ . To calculate the rigid-body 
transformation between the two camera coordinate 
systems using least square minimization, (3) is 
converted to a linear system ܹܣ ൌ  and the result ܤ
is as follows: 
ܹܣ ൌ ܤ → 

ቈ
௫݂ܼ  ሺݔ െ ܿ௫ሻ ܺ ௫݂ ܺ  ሺܿ௫ െ ሻܼݔ ௫݂ ܿ௫ െ ݔ
൫ݕ െ ܿ௬൯ ܺ ൫ܿ௬ െ ൯ܼݕ 0 ܿ௬ െ ݕ

 ൦

sin ߠ
cos ߠ
௫ݐ
௭ݐ

൪ ൌ 
0

െ ௬݂ ܻ
൨, 

ሺ݅ ൌ 1,… , ݊ሻ 

(4)

where ݊  represents the number of 3D-2D 
correspondences, ܣ  and ܤ  represent 2݊ ൈ 4  and 
2݊ ൈ 1   matrices respectively. Since ܹ  has 4 
unknowns, at least two 3D-2D corrspondences (݊ 
2) are required to calculate ܹ. 

The rotation of the planar motion is represented 
by two variables; sin ߠ , cos  in (4). The calculated ߠ
values for these two variables using (4) generally do 
not satisfy the Pythagorean Theorem: sinଶ ߠ 
cosଶ ߠ ൌ 1. Consequently the rotation matrix ܴ does 
not satisfy the orthonormality. Moreover, 
sin ߠ 	and	 cos  are different representations of theߠ
single rotational angle ߠ. Therefore it is preferred to 
reduce the unknowns of ܹ  by either removing 
sin ߠ 	or	 cos or combining sin ,ߠ ߠ 	and	 cos  using ߠ
the linear equation. 

Let us convert ܹܣ ൌ ܤ  in (4) to ܣ′ܹ′ ൌ ′ܤ  by 
using the following trigonometric functions. 

ቊ
ߪ sin ߠ  ߚ cos ߠ ൌ ඥߪଶ  ଶߚ sinሺߠ  ߮ሻ

ߪ cos ߠ  ߚ sin ߠ ൌ ඥߪଶ  ଶߚ cosሺߠ െ ߮ሻ
 ,       (5) 
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where 	߮ is: 

߮ ൌ tanିଵ
ఉ

ఈ
 ൜

ߙ	݂݅				,0	  0
ߙ	݂݅				,ߨ	 ൏ 0

                  (6) 

Throughout this paper, we only consider the sinሺߠ 
߮ሻ  function because cosሺߠ  ߮ሻ  function generates 
an ambiguity within ሾെߨ,  angle range due to its	ሿߨ
symmetry. Let ܽ ∈ ,ܣ ߚ ∈ ሺୀଵ,…,ଶ,ୀଵ,..,ଶሻ	ܤ  and 
ܽ ് 0, ܾ ് 0	 are satisfied, then (4) can be 
rewritten as follows when ݊ ൌ 2. 

ܷ ෩ܹ ൌ ܸ → ൦

ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶ
ܽଷଵ ܽଷଶ
ܽସଵ ܽସଶ

൪ ቂ
sin ߠ
cos ߠ

ቃ ൌ ൦

ܾଵ െ ܽଵଷݐ௫ െ ܽଵସݐ௭
ܾଶ െ ܽଶସݐ௭

ܾଷ െ ܽଷଷݐ௫ െ ܽଷସݐ௭
ܾସ െ ܽସସݐ௭

൪ (7)

In order to apply the trigonometric function in (5), a 
rank constraint of ܷ  matrix has to satisfy the 
following: 

ሺܷሻ݇݊ܽݎ ൌ 1 (8)

For this purpose, (7) is rearranged with a proportional 
relation such that ሺܿଵݓ ଶ݂ െ ܿଶ ଵ݂ሻ ൌ ሺܿଶݓ ଵ݃ െ
ܿଵ݃ଶሻ. Rearranged function is as follows: 

			ܷ′ ෩ܹ ൌ ܸ′ → 
 
 
 
 

൦

ܽଵଵ ܽଵଶ
ଵଷܽଶଵߛ െ ଵଶܽଷଵߛ ଵଷܽଶଶߛ െ ଵଶܽଷଶߛ
ଵସܽଶଵߛ െ ଵଶܽସଵߛ ଵସܽଶଶߛ െ ଵଶܽସଶߛ
ଵସܽଷଵߛ െ ଵଷܽସଵߛ ଵସܽଷଶߛ െ ଵଷܽସଶߛ

൪ ቂ
sin ߠ
cos ߠ

ቃ ൌ ൦

ଵݒ
ଶݒଵଷߛ െ ଷݒଵଶߛ
ଶݒଵସߛ െ ସݒଵଶߛ
ଷݒଵସߛ െ ସݒଵଷߛ

൪ (9)

where ߛ ൌ ܽଶ ܽଵ െ ܽଵ ܽଶ  and ݒ  represents the ith 
row vector of the matrix V. 

The linear equation in (9) now satisfies the 
ሺܷ′ሻ݇݊ܽݎ ൌ 1 . When  ݑ′  is set to be the ith row 
vector of ܷ′ , a matrix ܵ  which satisfies ߜݑ′ ൌ
ሺ݅	ଵ′ݑ ൌ 1, … , 4ሻ can be defined as (10): 

ܵ ൌ ሾߜଵ, ,ଶߜ ,ଷߜ                                                                                                       ସሿߜ

ൌ ቂ
ఈభభ

ఈభభ
,

ఈభభ

ఊభయఈమభିఊభమఈయభ
,

ఈభభ

ఊభరఈమభିఊభమఈరభ
,

ఈభభ

ఊభరఈయభିఊభయఈరభ
ቃ     

ൌ ቂ
ఈభమ

ఈభమ
,

ఈభమ

ఊభయఈమమିఊభమఈయమ
,

ఈభమ

ఊభరఈమమିఊభమఈరమ
,

ఈభమ

ఊభరఈయమିఊభయఈరమ
ቃ         

				ൌ 1,
1

ଶଷߛ
,
1

ଶସߛ
,
1

ଷସߛ
൨ 

(10)

A trigonometric function combining sin ߠ , cos  ߠ
can be finally derived when left and right sides  of  the 

linear equation ܷ′ ෩ܹ ൌ ܸ′in (9) are multiplied with ܵ 
in (10). The resultant equation is derived as:  

ൣඥܽ11
2  ܽ12

2 sinሺߠ  ߮ሻ൧ ൌ ൦

ଵݒ
ሺߛଵଷݒଶ െ ଶଷߛ/ଷሻݒଵଶߛ
ሺߛଵସݒଶ െ ଶସߛ/ସሻݒଵଶߛ
ሺߛଵସݒଷ െ ଷସߛ/ସሻݒଵଷߛ

൪ (11)

Finally a linear equation ܣ′ܹ′ ൌ ܤ ' can be derived 
from (11) and the result is shown in (12).  

The inverse matrix of ܣᇱ does not exist as ܣᇱ is not 
a square matrix. Assuming ܣᇱ  always satisfies the 
condition ݀݁ݐሺܣ′ܣ′⊺ሻ ് 0 , ܹᇱ  can be easily 
calculated by the pseudo-inverse matrix ᇱାܣ ൌ

൫ܣᇱ⊺ܣᇱ൯
ିଵ
  .ᇱܣ of ′ܣ

When  ܽ ∈ ܣ
′
ሺ݅ ൌ 1, … , 3,				݆ ൌ 1, … ,3ሻ and ݓ

ᇱ ∈ ܹᇱ ሺ݅ ൌ
1, … , 3ሻ are derived, the translation vector of motion is 
defined as ݐ ൌ ሾݓଶ

ᇱ , 0, ଷݓ
ᇱሿ⊺ and the rotation angle ߠ	is 

calculated as follows:  

߮ ൌ tanିଵ
ܽଵଶ
ܽଵଵ

 ൜
0,				݂݅	ܽଵଵ  0
ଵଵܽ	݂݅				,ߨ ൏ 0

 (13)

and 

ߠ ൌ sinିଵ 1ݔ
′ െ ߮ (14)

3 EXPERIMENTS 

The performance is compared with three different 
PnP methods which are considered as current state-
of-arts in visual odometry. Table 1 shows the list of 
algorithms used for the performance comparison. 
Each data set consists of a sequence of RGB-D image 
frames. All RGB images and depth frames are 
captured by a RGB-D camera - ASUS XTionPro Live 
- with a 640×480 resolution. In every frame the 
proposed algorithm determines the motion of a 
mobile robot with a moving speed of 0.5m/s. The 
RGB-D camera is mounted on the mobile robot to 
capture RGB-D data in the forward direction and its 
position is adjusted precisely to make sure the X-Z 
plane of the camera coordinate system is parallel with 
the moving plane of the robot.  
 

ᇱܣ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ඥܽଵଵ

ଶ  ܽଵଶ
ଶ ܽଵଷ ܽଵସ

ሺܽଶଶܽଷଵ െ ܽଶଵܽଷଶሻඥܽଵଵ
ଶ  ܽଵଶ

ଶ ܽଵଵܽଶଶܽଷଷ െ ܽଵଶܽଶଵܽଷଷ ܽଵଵܽଶଶܽଷସ െ ܽଵଵܽଶସܽଷଶ െ ܽଵଶܽଶଵܽଷସ  ܽଵଶܽଶସܽଷଵ

ሺܽଶଶܽସଵ െ ܽଶଵܽସଶሻඥܽଵଵ
ଶ  ܽଵଶ

ଶ 0 ܽଵଵܽଶଶܽସସ െ ܽଵଵܽଶସܽସଶ െ ܽଵଶܽଶଵܽସସ  ܽଵଶܽଶସܽସଵ

ሺܽଷଶܽସଵ െ ܽଷଵܽସଶሻඥܽଵଵ
ଶ  ܽଵଶ

ଶ െܽଵଵܽଷଷܽସଶ  ܽଵଶܽଷଷܽସଵ ܽଵଵܽଷଶܽସସ െ ܽଵଵܽଷସܽସଶ െ ܽଵଶܽଷଵܽସସ  ܽଵଶܽଷସܽସଵے
ۑ
ۑ
ۑ
ۑ
ې

,  

 

′ܤ ൌ ൦

ܾଵ	
ܽଵଵܽଶଶܾଷ െ ܽଵଵܽଷଶܾଶ െ ܽଵଶܽଶଵܾଷ  ܽଵଶܽଷଵܾଶ
ܽଵଵܽଶଶܾସ െ ܽଵଵܽସଶܾଶ െ ܽଵଶܽଶଵܾସ  ܽଵଶܽସଵܾଶ
ܽଵଵܽଷଶܾସ െ ܽଵଵܽସଶܾଷ െ ܽଵଶܽଷଵܾସ  ܽଵଶܽସଵܾଷ

൪,    ܺᇱ ൌ 
sinሺߠ  ߰ሻ

௫ݐ
௭ݐ

൩. 

(12)
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(a)                                                                                             (b) 

Figure 2: The estimated trajectories of all the methods for two data sets. (a): Corridor, (b): Hall. Coloured lines on the graphs 
represent different methods while the red dashed line represents the proposed method. 

Table 1: Methods for performance analysis. 

 Methods 

3 DoF 2pt* 

6 DoF EPnP 
(Lepetit et al., 2009)  

3pt 
(Gao et al., 2003) 

LM 
(Levenberg, 1944) 

 

Table 2: Information of two experimental sequences. 

Sequences Travel Distance (m) # of frames 

Corridor 49.5 3,042 

Hall 53.9 3,471 

 

All experiments are done in indoor. For more 
precise analysis, the closed-loop translation and 
rotation errors are measured in all two test sequences. 
Table 2 shows details of our test sets. 

3.1 Implementation 

We have implemented the proposed algorithm in C++ 
using the OpenCV library. The SIFT algorithm 
(Lowe, 2004) is first applied to obtain the 2D-2D 
correspondences between two consecutive RGB 
images. The matching pairs between two keypoint 
sets are obtained by comparing the keypoint 
descriptors with FLANN library (Muja et al., 2009). 
For robust implementation, all the PnP algorithms are 
supported by RANSAC scheme to remove the 
outliers of the matching pairs. 

3.2 Results 

When the mobile robot has returned back to the 
starting point after traveling, the differences of both 
the heading direction and the position between first 
and last frames are measured. 

Table 3 shows the closed-loop rotation and 
translation errors of each estimation algorithm for two 
indoor sequences. The top ranks in each sequence are 
printed in boldface with green shades. Note that the 

proposed method yields the lowest errors in the 
translation of two test sequences. The motion 
trajectory results of the mobile robot in corridor and 
hall environments are shown in Figure 2(a) and 2(b) 
respectively. The trajectory of the proposed method 
is expressed in red dashed lines and the starting 
position with a black cross mark. 

Pose estimation time is also compared as shown 
in Figure 3. The proposed approach is very fast 
compared to other motion estimation algorithms. The 
average processing time per frame is less than 40ms 
(including RANSAC process), which assures that the 
proposed algorithm runs at least 10 times faster than 
LM based algorithms. The processing time mainly 
depends on the total number of features, which could 
result in a time delay in RANSAC process. With the 
advantage of fast processing time and absolute 
motion estimation, the proposed algorithm can be 
applied very usefully in localization and map building 
of mobile robots. 

4 CONCLUSIONS 

In this paper, we proposed a new P2P algorithm to 
estimate the absolute pose between two different pose 
of a RGB-D camera. The proposed algorithm requires 
less computational time compared to other 
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conventional pose estimation algorithms because it 
needs only two 3D-2D correspondences. Compared 
to other 3-DoF pose estimation algorithms, such as 1-
point and 2-point algorithms, the proposed algorithm 
has the advantage of directly obtaining the real metric 
scale for the translation motion. Through several 
localization experiments, we showed that the 
proposed algorithm can achieve very accurate results 
in fast computational time. 

 

Figure 3: Computational time comparison. 

Table 3: Position error of closed-loop test. 

Methods 
Corridor Hall 

 Translation 
(m) 

Rotation 
(degree) 

Translation 
(m) 

Rotation 
(degree)

2Pt.* 0.87 -3.74 1.14 4.17 

EPnP 2.34 -4.75 1.55 4.92 

3Pt. 2.01 -8.33 1.27 3.04 

LM 1.06 -2.82 1.24 -4.2 
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