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Abstract: We present a new algorithm of curve-skeleton extraction from a wide variety of objects. The algorithm uses
visuall hull object approximation, which gives us an ability to work with the model in its silhouettes domain.
We propose an efficient algorithm for 3D distance transform computation for the inner voxels of visual hull.
Using that 3D distance transform we backproject continuous medial axes of visual hull silhouettes that form a
first approximation for a curve-skeleton. Then we use a set of filtering techniques to denoise that point cloud to
form a thinner approximation. We believe that a resulting approximation is usefull in its own. The described
method shows a great improvement in computational time comparing to existing ones. The method shows
good extraction results for models with complex geometry and topology. Resulting curve-skeletons conform
with most requirements to universal curve-skeletons.

1 INTRODUCTION

Curve-skeleton extraction is a popular topic nowa-
days. Curve-skeleton is essentially a graph that de-
picts simplified versions of object’s geometry and
topology. An inscribed sphere is associated with ev-
ery node of curve-skeleton. The envelope of all curve-
skeleton spheres aims to approximate the shape of the
object.

Curve-skeletons find many applications in prob-
lems where object’s shape analysis is needed, such as
object recognition, shape classification, object skele-
tal animation, object segmentation, finding visually
similar objects in databases and others (Cornea et al.,
2005).

Most existing methods are based on either voxel
thinning techniques or polygonal contraction proce-
dures. The former algorithms are time consuming,
though show good results with a lot of desirable prop-
erties (Sobiecki et al., 2014). The latter are faster, but
at the same time are very sophisticated and difficult
to implement with their own disadvantages (Sobiecki
et al., 2013). The contraction based methods are con-
sidered to be a state of the art nowadays.

Recent research (Livesu et al., 2012; Kustra et al.,
2013) introduces a new promising approach to curve-
skeleton extraction based on visual hull (Laurentini,
1994). In paper (Mestetskiy and Tsiskaridze, 2009)
authors utilize the observation that on a projection of
object without occlusions silhouette’s medial axis is

the projection of curve-skeleton’s bones. Although
object’s occlusions lead to spurious curves in result-
ing skeleton, experiments (Livesu et al., 2012) show
that even with occlusions projections store enough in-
formation for curve-skeleton extraction.

In this paper a new approach to curve-skeleton ex-
traction using visual hull is proposed. Our method
uses continuous medial axes extraction from object’s
silhouettes (Mestetskiy and Semenov, 2008) to orga-
nize an efficient iterative contraction process similar
to (Au et al., 2008).

2 PROPOSED METHOD

The proposed method is an iterative process. One it-
eration can be divided into the following steps:

• Curve-skeleton approximation with point cloud
reconstructed from silhouettes’ medial axes.

• Object contraction based on inscribed spheres
radii reduction associated with every point of the
approximating cloud.

2.1 Curve-skeleton Approximation with
Point Cloud

Proposed method is based on the observation that
on a projection of object without occlusions silhou-
ette’s medial axis is the projection of curve-skeleton’s
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bones. Assuming there are no occlusions on a projec-
tion, curve-skeleton can be reconstructed by medial
axis back-projecting. To eliminate the influence of
object’s occlusions we propose to use a set of projec-
tions. The main idea is to back-project object’s parts
that are visible without occlusions and filter out spu-
rious occluded parts. In this way we are effectively
extracting a curve-skeleton from visual hull approxi-
mation of an object, which is an intersection of prisms
with object’s silhouettes in their bases. A strict defi-
nition of Visual Hull (VH) is as follows:

VH = {x ∈ R
3 : ∀i Pri(x) ∈ Si},

where{Si} — set of object’s silhouettes, Pri(x) —
orthogonal projector of pointx ∈ R

3 on the plane of
silhouetteSi. Orthogonal projections defining a visual
hull are captured from uniformly distributed cameras
on a hemisphere around the object (Fig. 1). Uniformly
distributed points on a hemisphere are generated us-
ing hexahedron subdivision. We need only cameras
on one hemisphere since silhouettes from another one
will not change the resulting visual hull due to sym-
metry. Filtered parts acquired from different projec-
tions are combined into one graph and are aligned
with mean-shift algorithm, which is a kind of de-
noising technique.

Figure 1: Uniformly distributed cameras on a hemisphere
defining a visual hull.

To sum up, the approximation process can be de-
scribed with the following steps:

• Back-projection of silhouettes’ medial axes

• Alignment of skeleton nodes and bones from dif-
ferent projections.

2.1.1 Back-projection of Silhouettes’ Medial
Axes

For each silhouette, forming a VH, we extract a me-
dial axis which is a continuous graph (Mestetskiy and
Semenov, 2008) with nodes and bones (Fig. 2). To
back-project the node of medial axis we need to as-
sign a depth value to it along the ray, which is casted

Figure 2: Object’s projection, silhouette and medial axis.

from the node towards a camera view. For that pur-
pose we first extract a 3D distance transform of the
inner voxels of visual hull. The 3D distance transform
DT3(v) is defined for each voxelv ∈ R

3 of objectO
and its surface∂O as follows:

DT3(v) = min
u
{ρ(v,u)|u ∈ ∂O}.

We propose a novel algorithm for the 3D distance
transform extraction for the visual hull. It turns out
that having a 2D distance transformsDT2,i(p) for pix-
els of visual hull silhouettes the 3D distance transform
DT3(v) can be calculated as follows:

DT3(v) = min
i
{DT2,i(Pri(v))}

Fig. 3 shows voxels with differentDT3 values for
the elephant polygonal model. We can observe that
DT3 extraction is valid.

Figure 3: From left to right, top to bottom: voxels withDT3
values of 0, 3, 6 and 12 accordingly.

Having DT3 values for all inner voxels of visual
hull, we can now find the optimal depth values for
medial axes’ nodes. For every medial axis node of
each silhouette we cast a ray in the direction of that
silhouette camera view and find all intersections with
visual hull inner voxels. Intersections along the ray
are tested with a discrete step equal to one voxel size
in object coordinates. All the voxels with maximum
DT3 values on this ray are stored in a temporary list.

Curve-skeleton�Extraction�from�Visual�Hull

667



The middle element of this list is taken as a 3D back-
projection of that particular 2D medial axis node and
the radius for the corresponding inscribed sphere is
assigned to that maximumDT3 value. Such procedure
guarantees that all the estimated spheres of curve-
skeleton approximation will be strictly inside the vi-
sual hull.

There’s no need to calculateDT3 values for all in-
ner voxels of visual hull. TheDT3 value for a particu-
lar voxel is calculated on-the-fly and cached for future
use. It turns out that in average almost 50% of voxels
are never visited, thus reducing the computation time.

Fig. 4 shows an example of curve-skeleton ap-
proximation point cloud for the same elephant model
and a set of inscribed spheres.

Figure 4: Top to bottom: curve-skeleton approximation
point cloud and corresponding set of inscribed spheres.

Occlusions lead to spurious bones in medial axes
of silhouettes (Fig. 5). These bones don’t depict ob-
ject’s geometry and are not centered inside of the
model, and can even fall outside of the model after
back-projection. We suggest to delete bones that have
a large depth difference between connected nodes
compared to the bone’s length on the 2D medial axis,
i.e. we delete bones that have small angle (≤ φ0) with
corresponding camera view direction. This approach
might delete relevant curves, but due to usage of the
set of projections this curve will likely be captured
from another projection. The example of filtering re-
sult is shown in Fig. 6.

2.1.2 Alignment of Skeleton Nodes and Bones
from Different Projections

Even without occlusions same part of the object on
different projections can be back-projected into cen-
tered, but quite different curves (Fig. 7). We suggest

Figure 5: Projection with occlusions and its medial axis.
Medial axis doesn’t represent object geometry well due to
occlusions.

Figure 6: Silhouette medial axis, rotated back-projected
medial axis, back-projected medial axis with filtered bones.

Figure 7: Inconsistent back-projecting throughout different
projections due to elliptic shape.

to organize an alignment process to join nodes and
bones from different projections and to remove such
noise.

At this stage nodes and bones are centered in the
model and look like a very noisy curve-skeleton. The
basic idea behind alignment is noise canceling by
finding resulting nodes with the highest density of
neighbors. For this purpose Mean-Shift algorithm
(Huang et al., 2013) is used , that iteratively moves ev-
ery node from starting position to the average position
of its neighbors. When the node stops to significantly
change its position, the node is replaced with the fi-
nal average. The algorithm doesn’t take into account
the skeleton bones, that are automatically shifted with
adjacent nodes.

The following algorithm describes this ap-
proach:
Require: X — input nodes, ε — minimum shift

threshold, α — minimum density of neighbors
threshold,K(x) — kernel function;
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Ensure: Y — shifted nodes;
1: Y :=∅;
2: for xi ∈ X do
3: m := xi; {start Mean-Shift fromxi}
4: repeat
5: mold := m;

6: m :=
∑

x j∈X
K(x j−mold )x j

∑
x j∈X

K(x j−mold )
;

7: until ‖m−mold‖ ≥ ε
8: if ∑

x j∈X
K(x j −m)> α then

9: Y :=Y ∪{m};
10: end if
11: end for

The alignment algorithm is illustrated in case of
points on plane in Fig. 8. There’s an obvious draw-
back of such approach: the ending points of the line
travel too far. We suggest to use a heuristic that for-
bids ending points of medial axis (which is a graph)
to travel too far.
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Figure 8: The alignment algorithm for points on plane.
From left to right: set of points, aligned points, travel paths.

The result of such alignment is shown in Fig. 9.
The result is much cleaner and looks like a good
curve-skeleton approximation.

Figure 9: An object, back-projecting and filtering result,
aligned nodes and bones.

2.2 Iterative Contraction

We suggest to implement object contraction through
spheres of curve-skeleton approximation radii reduc-
tion. Point cloud from section 2.1 approximates
curve-skeleton and thus is centered and describes
shape quite well, hence spheres radii reduction leads
to visually correct object contraction (Fig. 10).

Contraction makes the object thinner, which helps
to get rid of occlusions, thus making point cloud ap-
proximation better through iterations. Fig. 11 illus-
trates 4 iterations of object contraction. We can see

Figure 10: Object contraction through spheres radii reduc-
tion.

Figure 11: 4 iterations of object contraction. Red arrows
depict curve-skeleton approximation with point cloud, blue
arrows depict object contraction based on approximation.

that point cloud approximation of curve-skeleton is
sufficient for object contraction.

3 EXPERIMENTS

Experiments were conducted on the computer with
Core i7 2.2 GHz CPU, 16 GB RAM, Intel HD Graph-
ics 5200 GPU. For continuous skeleton extraction li-
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brary (Mestetskiy and Semenov, 2008) was used. 2D
distance transform is done in linear time with the
method described in (Felzenszwalb and Huttenlocher,
2004).

Method used 33 projections with resolution
300×300. Bones filter was used withφ0 = 45◦.
Alignment of nodes and bones was used withε equal
to the height of one pixel in model coordinates,α
equal to 5%–10% percentile, kernel functionK(x) =
exp(−C‖x‖2) with C = 100.

Table 1 shows timings in milliseconds for differ-
ent stages of algorithm for different models. Due to
the fact that method doesn’t deal with polygons in
space, model complexity (number of polygons) has
little effect on extraction time.

Table 1: Timings in milliseconds for different stages of al-
gorithm.

Model Faces
in
model

Medial
axes

Back-
project

Mean-
Shift

Total

Fertility 50,000 44 1,229 496 1,769
Memento 52,550 62 1,426 1,056 2,544
Elk 48,026 61 1,754 1,130 2,954

Fig. 12 shows curve-skeletons for different mod-
els. The resulting curve-skeletons depict models’ ge-
ometry and topology well.

Figure 12: Examples of curve-skeletons extracted with de-
scribed method for Fertility, Horse and Dragon models.

4 METHOD ANALYSIS

Resulting curve-skeletons conform with most require-
ments to universal curve-skeletons based on research
(Cornea et al., 2005). This is achieved using filters,
mean-shift and inherited properties of medial axes
like centeredness and isometric invariance.

Compared to (Au et al., 2008) method shows 6
times increase in extraction speed (in average 3 sec.
vs 19 sec. for different models), though it’s hard to
compare the quality of resulting skeletons due to poor
formalization of the problem (Dey and Sun, 2006).
Visual comparison of resulting skeletons to the ones
extracted by (Au et al., 2008) shows that the proposed
method yields similar skeletons to the state-of-the-art
method (Fig. 13).

Figure 13: Visual comparison of resulting skeletons (left)
for Gargoyle and Elk models to the ones extracted by (Au
et al., 2008) (right).

Method looks ideal for parallel implementation as
most stages can be done on GPU, which promises
a huge decrease in computational time and possibly
new real-time applications for curve-skeletons.

Method fails to extract curve-skeletons for heav-
ily occluded objects with parts not visible without oc-
clusions (Fig. 14). Fortunately, most applications of
curve-skeletons assume that we have a character-like
object with significant visual branches.

5 CONCLUSION

A new method of curve-skeleton extraction is pro-
posed in this paper. It uses a visual hull approximation
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Figure 14: The method breaks topology for Memento
model.

and inherently can operate on any kind of model rep-
resentation which allows rasterization. The usage of
continuous medial axes reduces computational time
and gives an ability to analyze medial axis as a graph.
Described method shows good extraction results for
models with complex geometry and topology.

In the future we’ll try to eliminate the iterative na-
ture of the algorithm as stopping criteria is not clear
and time consumption can be drastically reduced.
We’ll explore applications for the method to find real
world limitations of visual hull approximation. We
want to design procedures providing some theoretical
guarantees like homotopy of the resulting skeletons.
We see a great potential in more sophisticated analy-
sis of graph structure of silhouettes’ medial axes, in
the current method it’s mostly neglected.
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