
A Toolchain for Model-based Design and Testing of Access Control
Systems

Said Daoudagh1, Donia El Kateb2, Francesca Lonetti1, Eda Marchetti1 and Tejeddine Mouelhi3
1Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, Pisa, Italy

2Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg, Luxembourg
3itrust consulting, Niederanven, Luxembourg

Keywords: XACML Language, Model-based-testing, Access Control Systems.

Abstract: In access control systems, aimed at regulating the accesses to protected data and resources, a critical compo-
nent is the Policy Decision Point (PDP), which grants or denies the access according to the defined policies.
Due to the complexity of the standard languag-e, it is recommended to rely on model-driven approaches
which allow to overcome difficulties in the XACML policy definition. We provide in this paper a toolchain
that involves a model-driven approach to specify and generate XACML policies and also enables automated
testing of the PDP component. We use XACML-based testing strategies for generating appropriate test cases
which are able to validate the functional aspects, constraints, permissions and prohibitions of the PDP. An
experimental assessment of the toolchain and its use on a realistic case study are also presented.

1 INTRODUCTION

Nowadays many IT systems are required to satisfy
several properties orthogonal to the main functional-
ities, one of them is security. Resources, e.g., data,
machines or services, could be sensitive and valu-
able, and hence a proper security support must be put
in place to protect them against unauthorized, mali-
cious, improper or erroneous usage. For ICT systems,
authorization mechanisms provide the procedures for
managing data and resources according to the security
policy requirements.

Commonly adopted authorization systems, based
on XACML (eXtensible Access Control Markup Lan-
guage), rely on the same architectural model which
includes in a simplified version three main compo-
nents: a Policy Enforcement Point (PEP), a Policy
Decision Point (PDP) and an Attribute Manager. PEP
is an application dependent component which inter-
cepts and transmits any incoming access request to
the Policy Decision Point (PDP). The latter, using
specific attribute values collected by the application
dependent Attribute Manager, will grant or deny the
access based on a set of established rules defining us-
age decision process. The critical core of the access
control system is therefore the PDP which is an appli-
cation independent component in charge of regulating
the accesses to the protected data and resources.

Several PDP have been defined in scientific litera-
ture, and some implementations of this component,
both academic, free and commercial, are currently
available, such as the SUN’s XACML engine (Sun
Microsystems, 2006), named Sun PDP in the rest of
the paper. However, even if these implementations
could be ready-to-use solutions for the access control
system development, in the last years the adoption of
domain specific PDPs, able to not impact on the over-
all performance of IT systems and to be compliant
with specific implementation constraints becomes a
more common attitude. The use of either a ready-to-
use solution or a customized version of the PDP com-
ponent would require careful verification and testing
process before its integration into the access control
system: any fault or problem in the PDP may result
in a critical failure of the overall security system. Un-
fortunately, PDP testing is per se a time and effort
consuming activity that hardly matches the strict ICT
market requirements.

To this purpose this paper presents a first attempt
of a toolchain for automatic testing of the PDP com-
ponent. The toolchain provides different facilities:
i) a model-driven approach to specify and generate
security policies; ii) a test case generation strategy
and automated execution of the test suite on the tar-
get PDP; iii) a model-based oracle and an automated
checker able to derive the expected results and com-

411Daoudagh S., El Kateb D., Lonetti F., Marchetti E. and Mouelhi T..
A Toolchain for Model-based Design and Testing of Access Control Systems.
DOI: 10.5220/0005330604110418
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 411-418
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



pare them with test results; iv) a set of predefined
policies with the associated test cases and expected
results. An experimental assessment of the toolchain
and its use for testing a specific PDP implementation,
the Sun PDP (Sun Microsystems, 2006), are also pre-
sented.

The remainder of this paper is structured as fol-
lows: Section 2 presents background about XACML
language. In Section 3 we present the toolchain and
its underlying functions, while a case study shows
how to use the different components of the toolchain
for testing Sun PDP in Section 4. Finally, Section 5
outlines related work whereas Section 6 concludes the
paper also hinting at future work.

2 THE XACML LANGUAGE

XACML (OASIS, 2005) is a de-facto standard-
ized specification language that defines access con-
trol policies and access control decision requests/re-
sponses in an XML format. An XACML policy de-
fines the access control requirements of a protected
system. An access control request triggers a policy
evaluation and aims at accessing a protected resource.
The PDP evaluates the request against the rules in
the policy and returns the access response (Permit/-
Deny/NotApplicable/Indeterminate) according to the
specified XACML policy. An XACML policy can
contain one or more policy set or policy elements. A
policy set or policy includes a target (containing a set
of subjects, a set of resources, a set of actions and fi-
nally a set of environments) and one or more rules.
A rule contains a decision type (Permit or Deny) and
a target. A rule contains a condition element, i.e., a
boolean function that specifies constraints on the sub-
jects, resources, actions and environments values so
that if the condition evaluates to true, then the rule’s
decision type is returned. A combining algorithm is
used to select which policy (policy-combining algo-
rithm) or rule (rule-combining algorithm) has to be
considered in case the request matches more than one
policy (or rule). For instance, the first-applicable
combining algorithm will select the first applicable
policy (or rule). An access request contains subject,
resource, action, and environment attributes. At the
decision making time, the Policy Decision Point eval-
uates an access request against a policy, by compar-
ing all the attributes in an access request against the
attributes in all the target and condition elements of
the policy set, policy and rule elements. If there is a
match between the attributes of the request and those
of the policy, the effect of a matching rule is returned,
otherwise the NotApplicable decision is drawn.

3 TOOL CHAIN ARCHITECTURE

In this section we present the proposed toolchain, that
consists of three main parts:
Model-driven Policy Design composed by:
� a modeling framework for specifying security re-

quirements, i.e. a graphical security model aim-
ing at simplifying the designing of security con-
straints (Ecore Model);

� an automated translation of the graphical security
model into an XACML policy, so to avoid the
common errors and problems due to the writing
of XACML policies (Ecore2XACML);

� an automated model driven oracle for deriving the
expected response of each request (Oracle).
Test Case Generation and Execution composed

by:

� an automated tests generation according to differ-
ent testing strategies to speed up and improve the
testing process by reducing as much as possible
time and effort due to test cases specification (X-
CREATE);

� an automated execution of test cases on the SUT
PDP i.e. a selected access control engine (Test
Executor);

� an automated analysis of test results against the
expected ones (Checker).

Test Archive which consists of a repository of
predefined policies, test sets and expected responses
(Test Archive).

Figure 1 schematizes the architecture of the pro-
posed toolchain that can be used either for model-
driven testing (steps from 1 to 8) or adopting prede-
fined test sets (steps from 1’ to 6’). More technical
details about the components of the toolchain are pro-
vided in the following sections.

3.1 Model Based Specification

Figure 2 illustrates the security policy metamodel
adopted in the proposed toolchain. The metamodel is
defined using the following classes: i) POLICYType:
it defines a set of element types ElementType and a
set of rule types RuleType; ii) Parameter: it has a type
which must belong to the ElementType of the Policy-
Type; iii) RuleType: it has a set of Parameters that are
typed by ElementTypes.

The meta-model allows the definition of a generic
security policy model and the definition of a security
policy formalism according to this security model.
The security policy metamodel can be instantiated
into an XACML metamodel which targets the main

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

412



Figure 1: Toolchain.

name: String

PolicyType

name:String

RuleType

1..*ruleTypes

name: String
hierarchy: boolean

ElementType

1..*elementTypes

name: String

Policy

name: String

Parameter

parameters1..*

Name: String

Rule

1..*rules

parameters

1..*

* children
1 type

1 type

type

1

1..*

parameters

Figure 2: Security Policy Metamodel.

specific elements and constraints of XACML lan-
guage.

Figure 3 presents the XACML metamodel, which
is an instance of the security policy metamodel de-
picted in Figure 2. As shown in the Figure, there are
five RuleType elements:

� PS Comb: it is composed of a policySet (PS),
which is the name of the policy set, and the policy
combining algorithm (PSComb) associated to the
policySet;

� P Comb: it contains a policy name (Policy) and
the associated rule combining algorithm (Rule-
Comb). According to the XACML language spec-
ification the definition of at least one policy is
mandatory;

� PS Policy: it is composed of a policySet name
(PS), and the policy name (Policy) that is con-
tained in that policySet;

� P Rule: it contains a policy name (Policy) and the
rule name contained in that policy (RuleName);

� XACML Rule: it contains a subject (Subject), an
action (Action), a resource (Resource), an envi-
ronment (Env), a decision (Decision) and a rule
name (RuleName).

In order to define an XACML policy model, we need
to create an instance of the XACML metamodel ac-
cording to the following steps:

� define the policy structure, that is to create a list of
all XACML policy elements: subjects, actions, re-
sources, environments, policies, rules names, pol-
icy sets names, decision (predefined values: per-
mit and deny), policy and rule combining algo-
rithms (predefined values according to XACML
standard);

� define a set of rules that is: 1) define a set of policy
sets, policies, and policy combining algorithms;
2) define which policy set contains which poli-
cy/ies, and which policy contains which rule/s; 3)
create XACML rules.

The XACML metamodel is implemented as an

A�Toolchain�for�Model-based�Design�and�Testing�of�Access�Control
Systems

413



Figure 3: XACML Metamodel.

Ecore model and comes with an associated editor al-
lowing users to easily specify new XACML policy
models. In Figure 4 an extract of the Library Manage-
ment System (LMS) access control model (Pretschner
et al., 2008) is presented. It instantiates the meta-
model of Figure 3 specifying a rule allowing a student
to borrow a book during the working days.

3.2 Model2XACML Transformation

This section describes the transformation algorithm
implemented into the Ecore2XACML component of
Figure 1 for deriving the XACML policy. This al-
gorithm is implemented using the Kermeta language
(Jézéquel et al., 2011).

First of all, the algorithm collects the metamodel
rules having the type “PS Policy”. Based on these
rules the algorithm creates the full list of policies con-
tained in the global policy set. Then, the algorithm
collects the combining algorithms for the policy set
and its policies (using the rules having the rule type
“PS Comb” and “P Comb” respectively). Once this
step is performed, the algorithm generates the initial
tags (policy set and policies). The XACML rules con-
tained in each policy are built based on the metamodel
rules having the type “P Rule” (that links a rule with
the policy containing it). Finally, for each rule, the
subject, action, resource and environment are created
using “XACML Rule” and the corresponding rule is
generated. As an example Table 1 reports the transla-
tion of PS Comb and P Comb into the XACML lan-
guage.

It is important to note that some parts of the
XACML code is generated by default. As shown in
Table 1, the “xmlns” and “xmlns:xsi” have default
values that are added automatically. Considering for
instance the LMS access control model described in
Section 3.1, the transformation algorithm derived the
LMS XACML policy which contains a PolicySet, a
Policy, 42 rules, 8 subjects, 3 resources, 10 actions
and 3 environments 1.

3.3 Oracle

The oracle defined in our toolchain takes as input an
XMI file that represents the Ecore model of the secu-
rity policy and an XACML request. Subject, action,
resource, environment attributes are extracted from
the request using an attribute extraction tool. Based
on the relevant attributes in the request and on the pol-
icy model, the oracle provides as an output a response
for the input request. The algorithm that defines the
oracle behavior is described in Algorithm 1. It takes
as input an XACML request req and the ecore model
of the XACML policy mod (line 1), extracts policy
from the model (line 4) and creates a set of applicable
rules (lines 5-9). A rule R is applicable to a request
req if and only if the values of Subject, Resource,
Action and Environment in R are equal to those con-
tained in the request req. If the set of applicable rules
is empty the oracle decision is NotApplicable (lines

1For space limitation we cannot provide here the source
file.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

414



Figure 4: LMS model.

Table 1: Model2XACML transformation example.

Metamodel XACML

PS Comb: (LMSPolicySet, deny-overrides) < PolicySetxmlns = “urn : oasis : names : tc : xacml : 2:0 : policy :
schema : os00xmlns : xsi = “htt p : ==www:w3:org=2001=XMLSchema �
instance00PolicySetId = “LMSPolicySet 00PolicyCombiningAlgId = “urn :
oasis : names : tc : xacml : 1:1 : policy � combining � algorithm :
deny�overrides00 >

P Comb: (BookPolicy, permit-overrrides) <PolicyPolicyId = “BookPolicy00RuleCombiningAlgId = “urn : oasis : names :
tc : xacml : 1:1 : rule� combining�algorithm : permit�overrides00 >

10-12), otherwise the Oracle takes a decision accord-
ing to the Rule Combining Algorithm defined in the
model. In particular, lines 13-21 determine the de-
cision in case of the rule-permit-overrides algorithm;
lines 22-30 define the oracle behavior in case of rule-
deny-overrides algorithm and finally lines 31-34 cal-
culate the decision in case of rule-first-applicable al-
gorithm.

The following example illustrates the oracle rea-
soning: a request R, with the attributes values “Stu-
dent”, “Borrow”, “Book”, “WorkingDays” related re-
spectively to the subject, action, resource and envi-
ronment attributes is evaluated against the following
rule in the policy: i) Name: StudentRule; ii) Type:
XACML RULE; iii) Parameters: Element R1, Ele-
ment Permit, Element Student, Element Borrow, El-
ement Book, Element WorkingsDays. The request R
is evaluated in this case according to the decision ele-
ment Permit.

3.4 X-CREATE

The policy derived by the Ecore2XACML component
is then used for the automatic generation of test cases
(step 2 in Figure 1). In particular, among the available
tools for test cases generation, in this toolchain we in-
tegrated X-CREATE (Bertolino et al., 2010; Bertolino
et al., 2012a; Bertolino et al., 2013). Experimental re-
sults presented in (Bertolino et al., 2010; Bertolino
et al., 2012a; Bertolino et al., 2013) showed that the
fault detection effectiveness of X-CREATE test suites
is similar or higher than that of comparable tools (like
for instance Targen (Martin and Xie, 2006)).

Algorithm 1: Oracle Algorithm.

1: Input: Request req, Model mod
2: Output: Decision 2 fPermit, Deny, NotApplicableg
3: Set applicableRules := /0

4: Policy P := mod.getPolicy()
5: for all Rule R 2 P do
6: if R.isApplicable(req) then
7: applicableRules.add(R)
8: end if
9: end for
10: if applicableRules = /0 then
11: Decision := NotApplicable
12: end if
13: if P:RuleCombiningAlgorithm = permit overrides then
14: if 9 R 2 applicableRules s.t. R.effect = Permit then
15: Decision := Permit
16: else
17: if 9 R 2 applicableRules s.t. R.effect = Deny then
18: Decision := Deny
19: end if
20: end if
21: end if
22: if P:RuleCombiningAlgorithm = deny overrides then
23: if 9 R 2 applicableRules s.t. R.effect = Deny then
24: Decision := Deny
25: else
26: if 9 R 2 applicableRules s.t. R.effect = Permit then
27: Decision := Permit
28: end if
29: end if
30: end if
31: if P:RuleCombiningAlgorithm = first applicable then
32: Rule R := applicableRules.getFirstRule()
33: Decision := R.effect
34: end if

In the toolchain implementation among the var-
ious X-CREATE proposals, we decided to use the
Multiple Combinatorial test strategy (Bertolino et al.,
2013). As described in (Bertolino et al., 2013) for
each policy this strategy generates four sets: the
SubjectSet, ResourceSet, ActionSet, and Environ-
mentSet, containing the values of elements and at-

A�Toolchain�for�Model-based�Design�and�Testing�of�Access�Control
Systems

415



tributes of the subjects, resources, actions and envi-
ronments respectively. The elements and attributes
values in each set are then combined in order to ob-
tain the subject, resource, action, environment enti-
ties. Specifically, a subject entity is defined as a com-
bination of the values of elements and attributes of the
SubjectSet set. Similarly the resource entity, the ac-
tion entity and the environment entity represent com-
binations of the values of the elements and attributes
of the ResourceSet, ActionSet, and EnvironmentSet
respectively.

The XACML requests are then generated by
combining the subject, resource, action and envi-
ronment entities applying first a pair-wise, then a
three-wise, and finally a four-wise combination, ob-
taining all possible combinations. In this process
X-CREATE automatically eliminates the duplicated
combinations. For more details we refer to (Bertolino
et al., 2010; Bertolino et al., 2012a; Bertolino et al.,
2013).

Considering the LMS XACML policy, derived as
described in Section 3.2, 1800 XACML requests are
generated. In the following an example of XACML
request derived from LMS policy, expressed in JSON
format.
{"XacmlRequest":{
"Subject":["Student"],
"Resource":["Book"],
"Actions":["BorrowBook"],
"Environment": ["WorkingDays","HolyDays"],
}

}

This request denotes that a student wants to bor-
row a book during the working and holy days.

3.5 Test Executor

The Test Executor interacts directly with the SUT
PDP either in case of model-driven testing, i.e. when
the set of requests is derived by the X-CREATE com-
ponent (steps 1, 2, 3 of Figure 1), or when a prede-
fined test set is considered, (step 1’ of Figure 1). In
both cases the Test Executor takes as inputs the set of
requests and the related policy and one by one it sends
the requests to the SUT PDP together with the related
XACML policy (steps 4 and 2’ of Figure 1).

The Test Executor intercepts the obtained PDP re-
sponse and derives the couple (request, response) use-
ful to the Checker component for the final test verdict
definition (step 6 and 3’ of Figure 1).

3.6 Checker

The Checker defines a verdict for a given test case. As
the Test Executor, it works either in case of model-

driven testing, in this case the set of expected re-
sponses is generated by the Oracle component (step
7 of Figure 1), or when the predefined test set is con-
sidered, in this case the expected responses are taken
from the database (step 5’ of Figure 1). In both cases,
the Checker takes as inputs the couple (request, re-
sponse) obtained by the execution of the request on
the SUT PDP (step 6 and 4’ of Figure 1), and the cou-
ple (request, expected response) containing the cor-
rect PDP output. Thus for each request if the response
is equal to the expected one then the Checker’s verdict
is Pass, otherwise is Fail (step 8 and 6’ of Figure 1).
The separation between the oracle and the checker in
our model enables the checker to take as input any
oracle response in the form of (request, expected re-
sponse).

3.7 Test Archive

The last component of the proposed toolchain is the
Test Archive which lets the possibility to test the SUT
PDP by means of a predefined set of XACML poli-
cies. This kind of testing could be performed as an
alternative (or in association) to the model-driven test-
ing approach to improve the possibility to find faults
in the SUT PDP.

The Test Archive is a repository of policies, each
one with an associated set of requests and the cor-
responding expected responses. In particular the
Test Archive integrates the XACML conformance test
suite (OASIS Committee, 2005) and a set of real
world policies (Bertolino et al., 2013). Details of this
set of policies are summarized in Table 2, while the
associated requests and expected responses provided
by the X-CREATE tool are showed in Table 3.

As shown in Figure 1, the Test Archive interacts
both with the Test Executor and the Checker. In par-
ticular the policies selected by the toolchain user are
sent one by one to the Test executor with the asso-
ciated set of requests (step 1’ of Figure 1), then the
associated couple (request, expected response) is sent
to the Checker for computing the final verdict (step 5’
of Figure 1).

4 EXPERIMENTAL RESULTS

In this section we describe the experimental results
collected by a class of 14 master degree students in
Computer Science, using the proposed toolchain for
testing a specific PDP implementation, the Sun PDP
(Sun Microsystems, 2006).

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

416



Table 2: Structure and description of XACML Policies.

Policy # PolicySet # Policy # Rule # Cond # SubAttDes # ResAttDes # ActAttDes # EnvAttDes # Funct
XACMLrules 3 7 17 10 2 35 10 0 4

create-document 0 1 3 2 1 2 1 0 3
delete-document 0 1 3 2 1 3 1 0 3

demo-11 0 1 3 2 2 5 1 0 5
demo-26 0 1 2 1 1 5 1 0 4
demo-5 0 1 3 2 2 5 2 0 4

read-document 0 1 4 3 2 4 1 0 3
read-information-unit 0 1 2 1 0 2 1 0 2

read-patient 0 1 4 3 2 4 1 0 3
student-application-1 0 1 2 0 7 2 2 0 2
student-application-2 0 1 2 0 19 2 2 0 2
university-admin-1 0 1 3 0 33 3 3 0 2
university-admin-2 0 1 3 0 32 3 3 0 2
university-admin-3 0 1 3 0 32 3 3 0 2

Using Test Archive. In this first experiment we
asked the students to deploy the Sun PDP in the com-
puters available in our students lab and to perform the
testing of this engine using the predefined set of data
available for the validation. Thus referring to Figure
1, the students followed the path labeled from 1’ to 6’.
Specifically, interacting with the toolchain each stu-
dent selected either the execution of one or more ele-
ments from the set (policies, requests, exp reponses)
or to execute the conformance test suite. At this point
the toochain starts the Sun PDP testing by: sending
one by one the policy and the associated set of re-
quests to the Test Executor, (step 1’ of Figure 1);
executing each request on the Sun PDP and collect-
ing the associated response (step 2’ and 3’ of Fig-
ure 1); comparing the set of couples (requests, ex-
pected responses), (requests, responses) for comput-
ing the final verdict (step 4’, 5’ and 6’ of Figure 1).
In Table 3, for space limitation we report only the re-
sults collected for the real world policy set. In this
case the execution of the requests on the Sun PDP
does not evidence any inconsistency between the col-
lected responses and the expected ones. This means
that all the requests having as expected response Per-
mit (third column) (Deny (fourth column), NotApp
(fifth column), Indet (sixth column) respectively) in
Table 3, have risen the same response when executed
over the Sun PDP. Even if no failure have been dis-
covered (mainly due to the overall good quality of
the Sun PDP implementation), the experiment was a
good benchmark for the proposed toolchain and the
derived suggestions were useful for improving the us-
ability of the user interface and the data collection of
the toolchain.

Using Model-based Approach. In this second ex-
periment we asked the students to perform the test-
ing of the Sun PDP by using the Library Manage-
ment System (LMS) access control model (Pretschner

Table 3: PDP Under Test results using Multiple Combina-
torial strategy.

PDP Under Test
Policy # Req # Permit # Deny # NotApp # Indet

XACMLrules 17250 1035 16215 0 0
create-document 3 2 0 1 0
delete-document 7 3 0 3 1

demo-11 98 28 28 42 0
demo-26 7 1 3 3 0
demo-5 861 394 98 369 0

read-document 42 16 0 21 5
read-information-unit 3 1 0 1 1

read-patient 42 13 0 21 8
student-application-1 7 3 4 0 0
student-application-2 63 4 59 0 0
university-admin-1 1159 22 1137 0 0
university-admin-2 1159 176 983 0 0
university-admin-3 13908 88 4544 9276 0

et al., 2008) (see Section 3.1). Referring to Figure
1, the students followed the path labeled from 1 to
8 of the proposed toolchain. In particular, a set of
1800 XACML requests has been derived by using the
tool X-CREATE from the LMS policy. The result
of the requests execution was: 18 Deny, 24 Permit
and 1758 NotApplicable. By using the Checker com-
ponent, the students compared each couple (request,
response) with the corresponding couple of (request,
expected response). As in the previous experiment,
all the verdicts got the Pass value and therefore no
failure has been discovered.

5 RELATED WORK

This section addresses several existing initiatives in
applying model-based approaches for security test-
ing. A standard language for designing test models
is UML Testing Profile (UML-TP) (OMG, 2004) that
represents a lightweight extension of UML with spe-
cific concepts (stereotypes) to support the design of
testing artifacts. In (Lodderstedt et al., 2002), UML
models have been used to generate security infrastruc-

A�Toolchain�for�Model-based�Design�and�Testing�of�Access�Control
Systems

417



tures through SecureUML language which is based on
Role based Access Control Model (RBAC).

Model-based testing has been investigated for
the XACML policy testing (Le Traon et al., 2007;
Pretschner et al., 2008). The approaches proposed
in (Le Traon et al., 2007; Pretschner et al., 2008) are
based on the representation of policy implied behav-
ior by means of models. Differently from these works
model based testing in this paper addresses testing of
the PDP engine. The authors of (Li et al., 2008) ad-
dress testing of the XACML PDP by running different
XACML implementations for the same test inputs and
detecting not correctly implemented XACML func-
tionalities when different outputs are observed. Dif-
ferently from our proposal, this approach randomly
generates requests for a given policy and requires
more PDP implementations for providing an oracle
facility by means of a voting mechanism. Our fo-
cus is to provide an integrated toolchain including test
case generation as well as policy and oracle speci-
fication for the PDP testing. A different solution in
the context of usage control is presented in (Bertolino
et al., 2012b) where the authors provide a fault model
and a test strategy able to highlight the problems,
vulnerabilities and faults that could occur during the
PDP implementation. This solution is specifically de-
signed for PolPA language, then it cannot be used for
XACML PDP testing.

6 DISCUSSION AND
CONCLUSION

This paper presented a toolchain for testing an
XACML PDP. The main facilities of the proposed
toolchain are: a model-based specification of the
XACML policy, a test suite generation and execution
engine, and the oracle definition. Two different ex-
periments confirmed the effectiveness of the toolchain
for testing a real PDP engine (Sun PDP). Concern-
ing the validity of the experiments, i.e. the amount of
confidence on the reported results, an important key
factor is the employed test set: we used X-CREATE
for deriving test suites, but it is likely that other test
sets may produce different results. In this paper, we
have applied our model based approach for deriving
LMS policy which includes 42 rules. Therefore, big-
ger policies need to be considered to guarantee the
scalability of the proposed approach. For future work,
we plan to extend the Test Archive including XACML
policies having a large number of rules, consider dif-
ferent test suites and improve the toolchain to support
the XACML 3.0.

ACKNOWLEDGEMENTS

The authors would like to thank Antonia Bertolino
and Yves Le Traon for their suggestions and useful
discussions.

REFERENCES

Bertolino, A., Daoudagh, S., Lonetti, F., and Marchetti, E.
(2012a). Automatic XACML requests generation for
policy testing. In Proc. of SECTEST, pages 842–849.

Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Mar-
tinelli, F., and Mori, P. (2012b). Testing of PolPA Au-
thorization Systems. In Proc. of AST, pages 8–14.

Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., and
Schilders, L. (2013). Automated testing of extensible
access control markup language-based access control
systems. IET Software, 7(4):203–212.

Bertolino, A., Lonetti, F., and Marchetti, E. (2010). Sys-
tematic XACML Request Generation for Testing Pur-
poses. In Proc. of EUROMICRO (SEAA), pages 3–11.

Jézéquel, J.-M., Barais, O., and Fleurey, F. (2011). Model
driven language engineering with kermeta. In Gen-
erative and Transformational Techniques in Software
Engineering III, pages 201–221. Springer.

Le Traon, Y., Mouelhi, T., and Baudry, B. (2007). Testing
security policies: going beyond functional testing. In
Proc. of ISSRE, pages 93–102.

Li, N., Hwang, J., and Xie, T. (2008). Multiple-
implementation testing for XACML implementations.
In Proc. of TAV-WEB, pages 27–33.

Lodderstedt, T., Basin, D., and Doser, J. (2002). Se-
cureUML: A UML-based modeling language for
model-driven security. In The Unified Modeling Lan-
guage, pages 426–441. Springer.

Martin, E. and Xie, T. (2006). Automated Test Generation
for Access Control Policies. In Supplemental Proc. of
ISSRE.

OASIS (1 Feb 2005). eXtensible Access Control Markup
Language (XACML) Version 2.0.

OASIS Committee (2005). XACML Version 2.0 Confor-
mance Tests.

OMG (2004). UML 2.0 Testing Profile Specification.
http://utp.omg.org/.

Pretschner, A., Mouelhi, T., and Traon, Y. L. (2008).
Model-based tests for access control policies. In Proc.
of ICST, pages 338–347.

Sun Microsystems (2006). Sun’s XACML Implementation.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

418


