
On Languages for Conceptual Data Modeling in Multi-disciplinary
Space Systems Engineering

Christian Hennig1, Harald Eisenmann2, Alexander Viehl1 and Oliver Bringmann3
1Intelligent Systems and Production Engineering, FZI Research Center for Information Technology, Karlsruhe, Germany

2TSOEC3, Space Systems, Airbus Defence and Space, Friedrichshafen, Germany
3Wilhelm-Schickard-Institute for Computer Science, Eberhard-Karls-University of Tübingen, Tübingen, Germany

Keywords: Systems Engineering, Model-based Systems Engineering, Conceptual Data Modeling, UML, Ecore, OWL,
ORM.

Abstract: The engineering of complex systems is more and more supported through computer-based models that rely
on a comprehensive specification of their underlying data. This paper reflects on extensive industrial experi-
ence with a sophisticated application of conceptual data modeling, addressing requirements as they arise in
the context of space systems engineering. For this purpose identified needs for conceptual data modeling in
the scope of Model-Based Systems Engineering are formulated. Established and evolving approaches and
technologies for building conceptual data models are characterized, analyzed, and discussed regarding their
suitability for modeling engineering data. Based on this analysis of the state of the art, recommendations for
the future evolution of conceptual data modeling are formulated.

1 INTRODUCTION

Building systems such as satellites, launch vehicles
or other spacecraft requires the interaction of nu-
merous engineering disciplines. Each of these disci-
plines, such as mechanical engineering, software
engineering, or verification engineering, uses their
very own computer-based models such as CAD
models, UML models, or verification matrices. In
the scope of Model-based Systems Engineering
(MBSE) a tendency can be observed to integrate
critical pieces of data from all of these models in a
central engineering database. One fundamental mo-
tivation for this evolution towards digitally shared
models is the ability to interlink the domain-specific
models in order to enable early multi-disciplinary
analyses, early verification and validation, and find-
ing model inconsistencies. For integrating these
models one approach that can be pursued is the in-
troduction of a central system database, containing a
system model. For specifying the engineering con-
cepts that are contained inside the system model, a
conceptual data model (CDM) is used. The CDM, in
this context, provides a common, resilient, and com-
prehensive definition of engineering data, incorpo-
rating discipline-specific as well as system-level
aspects.

A variety of approaches exist for building such
models. On the one hand there are approaches
strongly driven by the implementation technologies
that are used for producing engineering applications,
relying on data models specified in UML or Ecore.
On the other hand there are techniques almost ex-
clusively focused on representing knowledge that
can also be used to specify data, such as the Web
Ontology Language OWL or Object Role Modeling
ORM. Each of these approaches has its own charac-
teristics with both shortcomings and unique benefits.

Figure 1 consolidates the setting detailed in this
paragraph using a couple of examples. The bottom

Figure 1: The relation between domain-specific models,
system model, CDM, and data modeling language.

System Model

Mechanical
Engineering

Requirements Engineering

DOORS
Requirements

Repository

PATRAN
Analysis
Model

Mission Design

STK
Orbit

Model

SysML
Mission
Model

Simulator
Engineering

MATLAB
Analysis
Model

Modelica
Analysis
Model

Excel
Mass

Budget

Conceptual Data Model

Data Modeling Language

CATIA
CAD

Model

Simulator
Database

384 Hennig C., Eisenmann H., Viehl A. and Bringmann O..
On Languages for Conceptual Data Modeling in Multi-disciplinary Space Systems Engineering.
DOI: 10.5220/0005329003840393
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 384-393
ISBN: 978-989-758-083-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

level describes the system model or user model
along with domain-specific models that perform
some kind of information exchange. For specifying
the concepts that make up the system model a CDM
is used, forming the system model’s metamodel.
This CDM is described using a data modeling lan-
guage.

In the following sections, selected languages for
conceptual data modeling are evaluated. Industrial
requirements on such a language that arise in the
context of MBSE are identified and an examination
regarding how well each of these languages is able
to fulfill the functions specified in the requirements
is performed. Based on this examination, an over-
view of the state of the art in conceptual data model-
ing for MBSE is sketched, highlighting present
shortcomings, and a proposal for future evolution is
given.

2 BACKGROUND

This section explains the nature of systems engineer-
ing, its relation to models, and how system-wide
models are described in the context of MBSE.

2.1 Systems Engineering

In many industrial engineering projects today, a
multitude of disciplines is involved in building the
systems of interest. For space projects such as satel-
lites, launch vehicles, and resupply spacecraft these
disciplines involve, only to name a few, mechanical
engineering, electrical engineering, thermal engi-
neering, requirements engineering, software engi-
neering, verification engineering, and their respec-
tive sub-disciplines. Each of these disciplines speci-
fies their designs and verifies specific aspects of the
system. In order to provide an all-encompassing
understanding of the system of interest, the unique,
yet complementary views from every involved dis-
cipline are combined. The science and art of inte-
grating different views on one system towards sys-
tem thinking is called Systems Engineering. As
NASA (2007) elegantly puts it: “Systems engineer-
ing is a holistic, integrative discipline, wherein the
contributions of structural engineers, electrical engi-
neers, mechanism designers, power engineers, hu-
man factors engineers, and many more disciplines
are evaluated and balanced, one against another, to
produce a coherent whole that is not dominated by
the perspective of a single discipline.”

2.2 Systems Engineering and Models

Many of the engineering activities performed inside
these discipline domains are already well supported
by computer-based models. Mechanical design
models built with tools such as CATIA V5 (Dassault
Systemes, 2014), mechanical analysis models built
with tools such as PATRAN (MSC Software, 2014)
and thermal analysis models built with tools such as
ESATAN-TMS (ITP Engines UK, 2014) are well
established in the space engineering community
today. Furthermore, there are requirements models
based on DOORS, software design models specified
in the Ecore language (Eclipse Foundation, 2014)
using the Eclipse Modeling Framework (Eclipse
Foundation, 2014), as well as mission design models
specified in SysML (OMG, 2012) with tools such as
MagicDraw (No Magic, 2014) Furthermore, “tradi-
tional” tools such as Excel or Visio are used on a
regular basis for building models. The practice of
supporting engineering activities with models is
called Model-based Engineering (MBE) or Model-
driven Engineering (MDE).

These tools and the models they produce differ
significantly from each other. They are provided by
different vendors, rely on different implementation
technologies and are based on different formats
(Kogalovsky and Kalinichenko, 2009). Each model
and the associated design methodology follow their
own principles and paradigms and define their very
own semantics. As a result of this heterogeneity,
these models and tools are not yet integrated with
each other and with the multi-domain systems engi-
neering process (INCOSE, 2014). For a truly multi-
disciplinary representation of a system, relevant
aspects from all involved domains and their models
have to be combined on the model level (Eisenmann,
2012).

2.3 Describing System-wide Models

A computer-based model consists of two basic parts.
The layer directly visible to the user is the instance
model or user model, where the user enters his data
and works with it. In order to specify what bits of
information can be described in the user model, a
data model or metamodel is required that specifies
the concepts of the user model (Hong and
Maryanski, 1990). It is worthy to note at this point
that metamodel is a relative term. It describes con-
cepts one abstraction level above the model that is
currently the focus of interest.

On�Languages�for�Conceptual�Data�Modeling�in�Multi-disciplinary�Space�Systems�Engineering

385

2.3.1 The System Model

For such models in engineering the “working level”
is represented by the system model or user model. In
this model the system of interest is described. This
includes domain-specific aspects of the system and
the data relevant to systems engineering activities.
Examples for such data are all requirements that are
specified for the system, its logical decomposition,
or the entirety of the functions the system performs.

2.3.2 The Conceptual Data Model

In order to be able to specify the system model, the
concepts that make it up have to be specified some-
how. This happens in the CDM, forming the meta-
model of the user model. In this model, the defini-
tion about what a requirement is, how requirements
relate to other requirements, how requirements relate
to the system decomposition and how the system
structure relates to system functions is taking place,
for example. All in all the CDM describes the enti-
ties, conceptual structures, and characteristic rela-
tionships of the Universe of Discourse (UoD)
(Kogalovsky and Kalinichenko, 2009) (Halpin and
Morgan, 2008).

A significant amount of information exchange
occurs between the system model and existing disci-
pline-specific models. Consequently the system
model’s metamodel, the CDM, specifies how these
models interface with each other. The approach of
using a CDM to interface between domain models
on the one side and physical databases on the other
side has already been described in 1975 in the inter-
im report of the ANSI/X3/SPARC Study Group on
Data Base Management Systems (1975). The CDM
in this context is used for specifying the concepts
that come from the domains, interfacing with the
domain disciplines and forming the basis for an
implementation of a system-wide database. Conse-
quently, the conceptual data model can be seen as
the backbone of MBSE (Eisenmann, 2012).

It is worthy to note that the currently predomi-
nant approach in most engineering domains is to
exchange knowledge between all discipline-specific
models in a document-based fashion. This means
that the knowledge stored in a computer model of a
specific domain is written in a document which is
then handed to another domain. Engineers from the
other domain then extract their required bits of in-
formation from the document and employ it accord-
ingly. It is evident that this document-based ex-
change of information is a tedious process prone to
errors and inconsistencies, often resulting in a signif-
icant amount of unnecessary overhead. Consequent-

ly, a large tendency to support such engineering
processes with models, making the information
accessible in an automated way, can be observed. It
is expected that model-based information exchange
significantly reduces the effort and consequently the
costs involved in inter-disciplinary and inter-domain
information exchange. Moreover, engineering pro-
cesses relying on MBSE are expected to benefit
from improved quality, increased productivity, and
reduced risk (Friedenthal, et al., 2009).

2.3.3 The Data Modeling Language

Being the center of MBSE-based activities the CDM
can be specified in a number of languages. For de-
veloping relational databases, the conceptual model
is often specified in Entity–relationship models
(Halpin and Morgan, 2008) or MS Access database
schemas. For furthering tool integration, the EX-
PRESS language (ISO, 2004) was developed. Other
approaches directly rely on languages that are usual-
ly employed for specifying software, such as UML
or Ecore (Kogalovsky and Kalinichenko, 2009)
(Olivé, 2007) while knowledge-focused modeling
languages such as Gellish (Van Renssen, 2005)
Object Role Modeling (ORM) models (Halpin and
Morgan, 2008) and the Web Ontology Language
(OWL) (W3C, 2012) have also been employed for
specifying a wide variety of UoDs.

Some of those languages did not deliver the
hoped for results (EXPRESS), others meanwhile
reached their limits (ER, Access, Gellish, UML)
while yet others are rather gaining momentum than
losing ground (Ecore, ORM, OWL) in the context of
MBSE.

3 TECHNOLOGY EVALUATION

In this section requirements on a CDM language are
formulated, and selected modeling languages are
evaluated against a defined evaluation scheme.

3.1 Requirements on a CDM Language

The requirements on languages for conceptual data
modeling explained in this section are based upon
extensive experience employing CDMs in the con-
text of MBSE. They incorporate a large amount of
facets derived from lessons learned in past projects
(ESA, 2012) (ESA, 2013) (Fischer, et al., 2014).
These requirements have been partitioned into five
categories. Explaining every required function of
each category in equal detail would go beyond the

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

386

scope of this paper. Instead, an emphasis is given on
specific, not so obvious, or difficult to understand
language functions and properties. These categories
and requirements are listed in Error! Reference
source not found..

3.1.1 Semantic Relevance for MBSE

In this category very specific requirements that arise
from using the modeling language in the scope of
MBSE are consolidated.

Ability to Work with Closed World Facts:
One specific requirement in this context is the ability
of the language to produce models based upon the
Closed World Assumption. This principle implies
that everything that is not explicitly stated as true is
false. For instance, if a model of a satellite would
state that the satellite has mounted four solar arrays
on it and a query would be made, asking for the
number of solar arrays, the result would be “four”.
In contrast to the Closed World Assumption stands
the Open World Assumption that is common for
ontology languages. The same query asking for the
number of solar arrays would return the result “un-
known” since it is not explicitly stated that there are
exactly four solar arrays. It is evident that such be-
havior can become problematic when producing
engineering models (Hennig, 2012). Some ontology
extensions allow “closing down” such facts, ena-
bling the correct answer of such queries, but result-
ing in a significant amount of additional modeling
effort (Mehdi and Wissmann, 2013).

Understandability of Language for Non-
modeling Experts: CDMs are often produced in
accordance with experts of the UoD. These people
are mostly mechanical engineers, electrical engi-
neers, or software engineers, not modeling experts.
Consequently it is desirable for the modeling lan-
guage to be able to be understood by non-modeling
experts.

Ability to Separate between Tool-development
and Tool-customization Concepts: A common
activity in space engineering is the practice of tailor-
ing. Tailoring means that an existing model, proce-
dure, or application is being customized in order to
exactly fit the needs of a specific project or mission.
In case of applications based on a CDM, that would
imply adapting the CDM. However, especially for
larger projects, it is often not feasible to alter the
CDM to every mission that is conducted, since it
would result in also altering every application built
upon it. Consequently, solutions have been proposed
that introduce a secondary part to the CDM that is
used for tailoring, being able to be adapted during
model runtime (ESA, 2012) (ESA, 2013).

Ability to Integrate Knowledge from other
Resources and existence of a Transformation
Mechanism: Since one of the focal points of CDMs
is information exchange between different models, it
should also be possible to map different CDMs to
each other, i.e. to integrate another CDM as a re-
source, including model transformations, should
they become necessary after the mapping is defined.

Existence of a Language extension Mechanism:
For introducing custom concepts to the language,
some kind of extension mechanism is highly desira-
ble (Eisenmann, 2012).

3.1.2 Adequacy for Developing MBSE
Applications

The second category deals with the aspects related to
producing pieces of software that implement the
CDM, as it is commonly done in MBSE. One exam-
ple for such an application is an engineering data-
base intended for storing the system model.

Independence from Implementation Technol-
ogy: In order to ensure maximum flexibility for
implementing applications it is desirable for the
CDM language to be independent from any imple-
mentation technology.

Low effort to get from CDM to Software
Structure Specification: If the language used for
modeling the CDM is suited for modeling software,
specifying a piece of software is less effort com-
pared to a case where the CDM is specified in a
language that cannot be used for describing soft-
ware.

Suitability for Code Generation: Code genera-
tion has shown to significantly reduce development
costs (Eisenmann, 2012) and is seen as a key ele-
ment for producing software intended for MBSE.

3.1.3 Adequacy for MBSE Data Modeling

A number of activities are usually performed when
producing CDMs. Such activities include deriving
the CDM from an engineering process, producing a
specification, and validating the CDM.

Support by a CDM Engineering Method: One
requirement for a data modeling language is that it is
supported by a method that helps in knowledge
acquisition, configuration management, knowledge
integration, and similar activities guiding the model-
er through the process of building the CDM. These
methods are common in the area of knowledge engi-
neering (Halpin and Morgan, 2008) (Sure, et al.,
2004) (Suárez-Figueroa, 2010).

Ability to Describe Process Activities and
Process Artefacts: In model-based space systems

On�Languages�for�Conceptual�Data�Modeling�in�Multi-disciplinary�Space�Systems�Engineering

387

engineering a convenient starting point for building
the CDM of a UoD is examining the engineering
processes it should support. The CDM has to be able
to represent the data of the input and output artefacts
to the process activities (Hennig and Eisenmann,
2014). Such processes are usually documented in
UML activity diagrams or BPMN diagrams. It is of
benefit for the modeling language to provide means
for modeling the engineering process and its arte-
facts together with the CDM and to provide map-
pings between the process artefacts and the elements
of the CDM, bridging the gap between both models.

Ability to Provide Validation Instances: An-
other requirement is the ability to cultivate valida-
tion instances while the CDM is still in production,
aiding the modeler by providing examples or even
letting the modeler create own examples. Using
examples together with the model has been shown to
make the CDM more tangible (Halpin and Morgan,
2008).

Suitability for Verbalization: Verbalization of
model elements is the process of representing
knowledge stored in the model available in a sen-
tence. These sentences are usually formed using a
subset of a natural language, e.g. English, made up
by a controlled vocabulary and syntax (Halpin and
Wijbenga, 2010).

Employment of Surrogate Names for Rela-
tions: Some modeling languages require a unique
name for each relation between model entities. This
can become problematic once a lot of relations exist
or once a number of commonly occurring relations
is used. For instance a satellite might have the rela-
tions “has Designation”, “has UniqueID”, and “has
Abbreviation”, whereas “has” is the reference and
occurs multiple times. Although “has” is not a well-
formed relation in many cases, it is used frequently.
For circumventing this problem, a surrogate name
can be used for describing relations, e.g. “Satel-
liteHasDesignation” as unique name for the refer-
ence, but only displaying “has” to the user, acting as
a surrogate for the actual reference.

3.1.4 Richness of Data Structures

Data structures form the central building blocks of a
CDM. A modeling language for MBSE should be
able to describe elements such as classes, attributes,
and data types. The most basic relations between
classes are binary relationships. Sometimes ternary
relationships are needed for describing elementary
facts of the UoD and some languages even support
n-ary relationships between classes. It might become
necessary to objectify a relation between classes for

the purpose of handling it more like a class instead
of a relation later on. Furthermore the data modeling
language has to be able to modularize the data mod-
el, i.e. dividing it up into several packages and sub-
packages for the purposes of structuring and ena-
bling de-coupled definition with subsequent integra-
tion. The language should also be able to specify an
explicit hierarchical structure apart from the taxo-
nomic structure of classes.

3.1.5 Richness of Constraint Structures

The most basic category of constraints are the cardi-
nalities of attributes and references that specify
whether e.g. a reference is mandatory or optional,
and how many references of one type can exist at the
same time. Other constraints related to references
include subsets (a reference can only exist if it is
already represented by another specific reference)
exclusion constraints (if reference A exists in the
user model, reference B cannot exist), equality con-
straints (if reference A exists then reference B must
also exist), or ring constraints (for cyclic references,
e.g. a reference cannot reference the same instance it
originated from). Some languages support more
specific constraints, e.g. a maximum limit on the
number of instances that can exist of one class at the
same time, and some set theory constraints between
subtypes of classes. Some languages also permit the
specification of entirely user-defined consistency
checks.

3.2 Definition of an Evaluation Scheme

The evaluation presented in Table 1 is based upon
identified necessities derived from past experience
using CDMs in the context of MBSE. The analysis
employs weighted score evaluation and consists of
two dimensions. The first dimension is made up of
the requirements on the data modeling language.
These requirements are assigned a weight (column
“W”) with a value of either 1, 3, or 9, determining
how important the requirement is in the context of
MBSE for space systems. A 1 states that the feature
stated in the requirement is nice to have, a 3 means
that the feature is definitively helpful while 9 marks
a critical feature. The second dimension determines
how well each of the modeling languages can cope
with the feature stated in the requirement. The lan-
guage columns can take values of 0 (not possible/not
available/not publicly documented), 1 (possible, but
with limitations), and 3 (fully supported). The lan-
guage evaluation consists of two columns for each
language. The first column contains the score, the

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

388

second column contains the product of score and
requirement weight.

In the row of each category the maximum attain-
able score is given, along with the total score of the
language in said category.

While the detailed and comprehensive evaluation
is presented in Table 1. The paragraphs below ex-
plain some specifics of the evaluation that might not
directly be traceable without explanation

3.3 Evaluation of Selected Languages

While all data modeling languages outlined previ-
ously in 2.3.3 are using the same basic building
blocks (classes, attributes, and references, although
sometimes named differently) for specifying
knowledge structures at first sight, they exhibit en-
tirely different nuances when closer examined. For
closer examination UML, Ecore, ORM, and OWL
have been selected.

3.3.1 The Unified Modeling Language UML

UML has been established as the de-facto standard
for describing software systems for quite some time
and forms the current mainstream approach for data
modeling (Kogalovsky and Kalinichenko, 2009)
(Olivé, 2007).

UML models by default are based on the Closed
World Assumption (3 points). However, data models
in UML are considered difficult to understand for
people not trained in software design with regard to
specifying knowledge (0 points). An extension
mechanism is given by introducing custom stereo-
types through profiling, but has been shown to be
not sufficient for many data modeling efforts in
MBSE (Eisenmann, 2012) (1 point). A lot of meth-
ods exist for producing pieces of software with
UML, but these methods do not provide guided,
prescriptive instructions for modeling the data struc-
ture of the UoD and do not cater to the needs of
CDMing in MBSE (1 point). Processes can be mod-
eled using UML activity diagrams, but this approach
also does not completely fit the needs for MBSE (1
point). UML contains all of the basic data structures,
can objectify relations using association classes,
modularize models through packages, and describe
explicit hierarchical structures using the composition
and aggregation elements. UML has a limited num-
ber of constraints built in, such as the cardinalities of
associations and subsets between associations. Other
constraints, such as exclusion constraints, equality
constraints, or ring constraints, are not directly built-
in and have to be asserted using OCL. However,
OCL, due to its highly technical nature, is not desir-

able for modeling domain knowledge, only yielding
a value of 1 point for each these constraints.

3.3.2 Ecore

The Eclipse Modeling Framework EMF is gaining
considerable momentum in the area of model-driven
software engineering. EMF comes with a dedicated
modeling language called Ecore that picks up some
model elements of UML. The capability for code
generation, an agile software reuse process and so-
phisticated tool support have shown to considerably
reduce costs for developing data model-intensive
applications while still retaining high functionality
and flexibility (Eisenmann, 2012).

Ecore models are also by default based upon the
Closed World Assumption (3 points) and require
equal technical understanding as UML models (0
points). A tailoring mechanism does also not exist (0
points). Similar to UML Ecore supports integrating a
multitude of resources and performing model trans-
formations (3 points each). Ecore is highly depend-
ent on the Eclipse Modeling Framework for imple-
menting software (0 points). The effort to get from
the CDM to the specification of the software imple-
menting the CDM is equally manageable compared
to UML. Code generation is one of the main selling
points of EMF and Ecore (3 points). Ecore focuses
solely on modeling structures and consequently does
not model behavior such as processes (0 points). A
limited mechanism for providing validation in-
stances exist by creating dynamic instances, but still
needs considerable improvement to cater to the
needs of MBSE (1 point). Ecore can describe clas-
ses, attributes, data types, and pack-ages (3 points
each). An explicit hierarchical structure can be spec-
ified using the containment property of references (3
points). Ecore supports binary relations (3 points),
but none of higher arity (0 points). Objectification is
also not directly sup-ported (0 points). Specification
of constraints is similar to UML with the exception
that the subset constraint is not directly built into
Ecore (1 point), relying on OCL for specifying such
semantically rich constraints.

3.3.3 Object Role Modeling ORM

For designing relational databases a data modeling
language called ORM (Halpin and Morgan, 2008)
has gained importance. This language offers a wide
variety of built-in constraints, such as subset con-
straints, uniqueness constraints, and constraints
regarding possible combinations of model entities.
ORM is a kind of Fact Based Modeling (Halpin and
Morgan, 2008). Due to the focus on business

On�Languages�for�Conceptual�Data�Modeling�in�Multi-disciplinary�Space�Systems�Engineering

389

Table 1: Evaluation of Conceptual Data Modeling Languages.

ID Data Modeling Language Requirement W UML Ecore ORM OWL
1 Semantic Relevance of Modeling Language for MBSE 162 69 87 78 69
1.1 Ability to work with closed world facts 9 3 27 3 27 3 27 1 9
1.2 Understandability of language for non-modeling experts 9 0 0 0 0 3 27 1 9
1.3 Ability to represent aspects in a granular manner 3 0 0 0 0 0 0 3 9
1.4 Ability to ensure the logical coherence of aspects 3 1 3 1 3 3 9 3 9
1.5 Ability to specify business rules of the UoD 3 1 3 1 3 1 3 1 3

1.6

Ability to separate between tool-dev. and -customization con-
cepts

9 0 0 0 0 0 0 0 0

1.7 Ability to integrate knowledge from other resources 3 3 9 3 9 0 0 3 9
1.8 Existence of transformations of the CDM into other languages 3 3 9 3 9 1 3 1 3

1.9

Existence of mechanism for specifying queries on the user
model

3 3 9 3 9 3 9 3 9

1.10 Existence of a language extension mechanisms 9 1 9 3 27 0 0 1 9

2 Adequacy for Developing MBSE Applications 63 45 54 3 12
2.1 Independence from implementation technology 3 3 9 0 0 0 0 3 9
2.2 Low effort to get from CDM to software structure specification 3 3 9 3 9 1 3 1 3
2.3 Suitability for code generation 9 1 9 3 27 0 0 0 0
2.4 Tight integration of language into tool chain 3 3 9 3 9 0 0 0 0
2.5 Free availability of end-to-end development tool chain 3 3 9 3 9 0 0 0 0

3 Adequacy for MBSE Data Modeling Activities 111 31 19 55 33
3.1 Support by a CDM engineering method 9 1 9 1 9 3 27 1 9
3.2 Ability to describe process activities and process artefacts 9 1 9 0 0 0 0 0 0
3.3 Support for data model specification and verification activities 9 0 0 0 0 0 0 0 0
3.4 Ability to provide validation instances 3 3 9 1 3 3 9 3 9
3.5 Ability to propagate data model changes to the user model 1 1 1 1 1 1 1 3 3
3.6 Suitability for verbalization 3 1 3 1 3 3 9 1 3
3.7 Employment of surrogate names for relations 3 0 0 1 3 3 9 3 9

4 Richness of Data Structures 159 159 144 132 108
4.1 Ability to describe classes 9 3 27 3 27 3 27 3 27
4.2 Ability to describe attributes 9 3 27 3 27 3 27 3 27
4.3 Ability to describe data types 9 3 27 3 27 3 27 3 27
4.4 Ability to describe binary relations 9 3 27 3 27 3 27 3 27
4.5 Ability to describe ternary relations 3 3 9 0 0 3 9 0 0
4.6 Ability to describe n-ary relations 1 3 3 0 0 3 3 0 0
4.7 Ability to objectify relations 1 3 3 0 0 3 3 0 0
4.8 Ability to modularize the data model 3 3 9 3 9 0 0 3 9
4.9 Ability to describe an explicit hierarchical structure 9 3 27 3 27 1 9 0 0

5 Richness of Constraint Structures 213 155 149 177 178
5.1 Ability to specify internal uniqueness 9 3 27 3 27 3 27 3 27
5.2 Ability to specify external uniqueness 1 1 1 1 1 3 3 0 0
5.3 Ability to specify simple mandatory roles 9 3 27 3 27 3 27 3 27
5.4 Ability to specify internal frequency constraints 9 3 27 3 27 3 27 3 27
5.5 Ability to specify external frequency constraints 1 1 1 1 1 3 3 3 3
5.6 Ability to specify subsets of relations 3 3 9 1 3 3 9 3 9
5.7 Ability to specify sub-relation chains 3 1 3 1 3 0 0 3 9
5.8 Ability to specify exclusion constraints 3 1 3 1 3 3 9 3 9
5.9 Ability to specify exclusive or constraints 1 1 1 1 1 3 3 3 3
5.10 Ability to specify inclusive-or constraints 3 1 3 1 3 3 9 3 9
5.11 Ability to specify equality constraints 1 1 1 1 1 3 3 1 1
5.12 Ability to specify ring constraints 3 1 3 1 3 3 9 3 9

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

390

Table 1: Evaluation of Conceptual Data Modeling Languages (Cont.).

ID Data Modeling Language Requirement W UML Ecore ORM OWL
5.13 Ability to specify subtype constraints 9 1 9 1 9 3 27 1 9
5.14 Ability to specify object cardinality constraints 3 1 3 1 3 3 9 0 0
5.15 Ability to specify role cardinality constraints 1 1 1 1 1 3 3 0 0
5.16 Ability to specify user-defined constraints 9 3 27 3 27 0 0 3 27
5.17 Ability to specify textual constraints 3 3 9 3 9 3 9 3 9

modeling ORM is built with the principle in mind
that the model and the information stored in it
should be read in a “natural way”, enabling the do-
main experts that model and the information stored
in it should be read in a “natural way”, enabling the
domain experts that are usually not modeling experts
to understand and work with the model.

Models specified using Object Role Modeling
are also based upon the Closed World Assumption
(3 points). The language was designed with readabil-
ity and understandability for non-modeling experts
in mind (3 points). A tailoring mechanism as re-
quired for MBSE does not exist (0 points). The same
is true for a mechanism to integrate different ORM
resources towards one CDM (0 points). Some trans-
formations exist, but are mainly focused on trans-
forming ORM models into relational database
schemes (1 point). An interface for extending the
language does not exist (0 points). Directly develop-
ing software from ORM schemes is out of scope of
the language, yielding considerably low scores in the
whole category. However, ORM has substantial
support through modeling methods such as
NIAM2007 (Lemmens, et al., 2007) and the Con-
ceptual Schema Design Procedure CSDP (Halpin
and Morgan, 2008) (3 points). Modeling processes is
out of ORM’s scope (0 points). Using validation
instances for designing the CDM is an integral part
of ORM (3 points). Furthermore ORM is suited for
verbalization and has a mechanism for surrogate
names (3 points each). ORM supports all of the main
building blocks, along with n-ary relations (3 points
across the board), but a partitioning mechanism does
not exist (0 points). A hierarchical structure cannot
be explicitly described, but the semantic prerequi-
sites for it exist (1 point). ORM scores considerably
high in the constraint structure category, but misses
out on user-defined constraints (0 points).

3.3.4 The Web Ontology Language OWL

In the context of the Semantic Web (Hendler, et al.,
2002), OWL has proven its applicability for provid-
ing a logical sub-structure of data made available
through the Internet. It is standardized by the W3C
(2012) and forms one of the backbones of semantic

information exchange between web resources. OWL
is based upon the Open World Assumption (Hennig,
2012) and is focused on integrating vast amounts of
knowledge across a variety of sources. OWL is also
based upon a set theory principle called Description
Logics that enables functions such as automatic
classification of new knowledge and inference.

Figure 2: Language Evaluation per Category.

OWL is based upon the Open World Assumption.
Some parts of the model can be locally closed down
using workarounds (Mehdi and Wissmann, 2013),
but resulting in substantial additional modeling ef-
fort (1 point). The basic structures of OWL ontolo-
gies are not hard to be understood, but the semanti-
cally rich structures are often difficult to grasp for
non-ontology experts (1 point). A tailoring mecha-
nism as required for MBSE does not exist (0 points).
Different OWL ontologies can be integrated with
each other (3 points) and some transformation capa-
bilities exist (1 point). OWL can be extended by
adding custom concepts, but running the risk of
losing decidability (1 point). Developing applica-
tions is not really a focus of the OWL language,
resulting in a low score in the software engineering
category. The structure of the OWL language allows
dynamic handling of (validation) instances in paral-
lel to the CDM (3 points). OWL supports the basic
data structures, but does not support object proper-
ties with an arity other than 2. (0 points). Further-
more an explicit hierarchical structure, apart from
the class taxonomy, is not part of the language (0
points).The OWL language specifies many con-

On�Languages�for�Conceptual�Data�Modeling�in�Multi-disciplinary�Space�Systems�Engineering

391

straints related to set theory through restrictions and
axioms. User defined constraints can be asserted
using language extensions such as SPARQL or
SWRL (3 points).

4 CONCLUSIONS

This section summarizes the evaluation and sketches
a picture of how to approach identified shortcom-
ings.

4.1 Summary of Language Evaluation

The analysis made evident that the ideal language
for conceptual data modeling does not exist. Each of
the discussed languages stands out when regarding
characteristic aspects.

Due to the very specific requirements on the
modeling languages in the semantic relevance cate-
gory no language is able to fulfil all of the require-
ments. Some features, such as the separation be-
tween tool-development and tool-customization
concepts are not supported by any language. In the
software engineering category, both UML and Ecore
score well, but Ecore comes out with the highest
score due to the extremely tight integration and
attunement with EMF, compensating for the low
score at implementation-independence. The third
category dealing with CDM engineering activities,
also due to very specific requirements, is not well
supported by any of the languages. ORM comes
closest to fulfilling them, but misses out on the pro-
cess aspects. Regarding data structures UML fulfills
all of the requirements, with Ecore and ORM scor-
ing a bit lower and OWL coming out last. No lan-
guage is able to fulfill all requirements in the con-
straint category, but both of the knowledge-oriented
modeling languages, OWL and ORM, attain a simi-
larly adequate score. Figure 2 visualizes the results
of the evaluation by presenting the performance of
the languages per category. A value of 100 expresses
that the language has attained the highest possible
score in a category.

4.2 Necessity for Future Development

Since the ideal modeling language does not exist,
significant improvement is becoming necessary. A
combination of each of the language’s strong suits is
one possible course of action in order to cope with
the requirements needed for effective and efficient
MBSE. One possible approach for bringing together
the advantageous features of these languages is us-

ing Ecore with its meta-modeling mechanism for
leveraging its software engineering capabilities. An
Ecore metamodel extension based on ORM can
serve as abstract and concrete syntax for CDMs,
utilizing ORM’s capability for producing semanti-
cally rich data and constraint structures. Ontological
concepts derived from OWL are used for employing
additional knowledge-management functions while
avoiding the Open World Assumption. In addition a
number entirely newly developed functional aspects,
including a tool-customization mechanism and a
connection of the CDM to its originating engineer-
ing processes has to be included. Only such a har-
monized approach, merging the strong suits of each
of these modeling languages, combined with new
aspects, is able to facilitate genuinely cost-efficient,
effective and consistent MBSE across a wide variety
of engineering domains as required for space sys-
tems engineering.

REFERENCES

ANSI/X3/SPARC Study Group on Data Base
Management Systems, 1975. Interim Report. FDT,
ACM SIGMOD bulletin. Volume 7, No. 2, s.l.: s.n.

Dassault Systemes, 2014. CATIA Version 5-6
Release 2012. [Online]
Available at:
http://www.3ds.com/products/catia/portfolio/ catia-
v5/latest-release/

Eclipse Foundation, 2014. Eclipse Modeling
Project. [Online]
Available at: http://www.eclipse.org/modeling/emf/

Eclipse Foundation, 2014. org.eclipse.emf.ecore
(EMF Documentation). [Online]
Available at:
http://download.eclipse.org/modeling/emf/emf/javad
oc/2.9.0/org/eclipse/emf/ecore/package-
summary.html

Eisenmann, H., 2012. VSD Final Presentation.
[Online]
Available at: http://www.vsd-
project.org/download/presentations/VSD_P2_FP_20
12-05-15_v3.pdf/

ESA, 2012. The Virtual Spacecraft Design
Project. [Online]
Available at: http://vsd.esa.int/

ESA, 2013. EGS-CC - European Ground
Systems - Common Core. [Online]
Available at: http://www.egscc.esa.int/

Fischer, P. M., Eisenmann, H. and Fuchs, J.,
2014. Functional Verification by Simulation based
on Preliminary System Design Data. 6th
International Workshop on Systems and Concurrent

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

392

Engineering for Space Applications (SECESA), 8-10
October.

Friedenthal, S., Griego, R. and Sampson, M.,
2009. INCOSE Model-Based Systems Engineering
Workshop. [Online]
Available at:
http://www.incose.org/Chicagoland/docs/SanDiego/
3-18-
09%20INCOSE%20Model%20Based%20Systems%
20Engineering%20(MBSE)%20Workshop.pdf

Halpin, T. and Morgan, T., 2008. Information
Modeling and Relational Databases. 2nd ed.
Burlington: Morgan Kaufmann.

Halpin, T. and Wijbenga, J. P., 2010. FORML 2.
In: I. Bider, et al. eds. Enterprise, Business-Process
and Information Systems Modeling. Berlin: Springer,
pp. 247-260.

Hendler, J., Berners-Lee, T. and Miller, E., 2002.
Integrating Applications on the Semantic Web.
Journal of the Institute of Electrical Engineers of
Japan, 122(10), pp. 676-680.

Hennig, C., 2012. Evaluating Ontologies for Use
in Model-Based Systems Engineering, München:
Technische Universität München.

Hennig, C. and Eisenmann, H., 2014. Applying
Selected Knowledge Management Technologies and
Principles for Enabling Model-based Management
of Engineering Data in MBSE. 6th International
Workshop on Systems and Concurrent Engineering
for Space Applications (SECESA), 8-10 October.

Hong, S. and Maryanski, F., 1990. Using a Meta
Model to Represent Object-Oriented Data Models.
6th International Conference on Data Engineering,
5-9 Febuary, pp. 11-19.

INCOSE, 2014. Systems Engineering Vision
2025. [Online]
Available at:
http://www.incose.org/ProductsPubs/products/sevisi
on2025.aspx

ISO, 2004. ISO 10303-11: Industrial automation
systems and integration – product data
representation and exchange – Part 11: Description
methods: The EXPRESS language reference
manual.. s.l.:s.n.

ITP Engines UK, 2014. ESATAN-TMS: Home.
[Online]
Available at: https://www.esatan-tms.com/

Kogalovsky, M. R. and Kalinichenko, L. A.,
2009. Conceptual and Ontological Modeling in
Information Systems. Programming and Computer
Software, 35(5), pp. 241-256.

Lemmens, I., Nijssen, M. and Nijssen, S., 2007.
A NIAM2007 Conceptual Analysis of the ISO and
OMG MOF Four Layer Metadata Architectures. In:
R. Meersman, Z. Tari and P. Herrero, eds. On the
Move to Meaningful Internet Systems 2007: OTM
2007 Workshops. Berlin: Springer, pp. 613-623.

Mehdi, A. and Wissmann, J., 2013. EQuIKa
System: Supporting OWL Applications with Local
Closed World Assumption. GI-Jahrestagung,
Volume 220 of LNI, pp. 1943-1948.

MSC Software, 2014. Patran. [Online]
Available at: http://mscsoftware.com/product/patran

NASA, 2007. NASA Systems Engineering
Handbook (NASA-SP-2007-6105) Rev1, s.l.: s.n.

No Magic, 2014. MagicDraw. [Online]
Available at:
http://www.nomagic.com/products/magicdraw.html

Olivé, A., 2007. Conceptual Modeling of
Information Systems. Berlin: Springer.

OMG, 2012. OMG Systems Modeling Language
(OMG SysML), Version 1.3. s.l.:s.n.

Suárez-Figueroa, M. C., 2010. NeOn
Methodology for Building Ontology Networks,
Madrid: Universidad Politécnica de Madrid.

Sure, Y., Staab, S. and Studer, R., 2004. On-To-
Knowledge Methodology (OTKM). Handbook on
Ontologies, pp. 117-132.

Van Renssen, A. S. H. P., 2005. Gellish - A
Generic Extensible Ontological Language, Delft:
Technische Universiteit Delft.

W3C, 2012. OWL 2 Web Ontology Language
Primer (Second Edition). [Online]
Available at: http://www.w3.org/TR/owl2-primer/

On�Languages�for�Conceptual�Data�Modeling�in�Multi-disciplinary�Space�Systems�Engineering

393

