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Abstract: The engineering of complex systems is more and more supported through computer-based models that rely 
on a comprehensive specification of their underlying data. This paper reflects on extensive industrial experi-
ence with a sophisticated application of conceptual data modeling, addressing requirements as they arise in 
the context of space systems engineering. For this purpose identified needs for conceptual data modeling in 
the scope of Model-Based Systems Engineering are formulated. Established and evolving approaches and 
technologies for building conceptual data models are characterized, analyzed, and discussed regarding their 
suitability for modeling engineering data. Based on this analysis of the state of the art, recommendations for 
the future evolution of conceptual data modeling are formulated. 

1 INTRODUCTION 

Building systems such as satellites, launch vehicles 
or other spacecraft requires the interaction of nu-
merous engineering disciplines. Each of these disci-
plines, such as mechanical engineering, software 
engineering, or verification engineering, uses their 
very own computer-based models such as CAD 
models, UML models, or verification matrices. In 
the scope of Model-based Systems Engineering 
(MBSE) a tendency can be observed to integrate 
critical pieces of data from all of these models in a 
central engineering database. One fundamental mo-
tivation for this evolution towards digitally shared 
models is the ability to interlink the domain-specific 
models in order to enable early multi-disciplinary 
analyses, early verification and validation, and find-
ing model inconsistencies. For integrating these 
models one approach that can be pursued is the in-
troduction of a central system database, containing a 
system model. For specifying the engineering con-
cepts that are contained inside the system model, a 
conceptual data model (CDM) is used. The CDM, in 
this context, provides a common, resilient, and com-
prehensive definition of engineering data, incorpo-
rating discipline-specific as well as system-level 
aspects. 

A variety of approaches exist for building such 
models. On the one hand there are approaches 
strongly driven by the implementation technologies 
that are used for producing engineering applications, 
relying on data models specified in UML or Ecore. 
On the other hand there are techniques almost ex-
clusively focused on representing knowledge that 
can also be used to specify data, such as the Web 
Ontology Language OWL or Object Role Modeling 
ORM. Each of these approaches has its own charac-
teristics with both shortcomings and unique benefits. 

Figure 1 consolidates the setting detailed in this 
paragraph using a couple of examples. The bottom  

 

Figure 1: The relation between domain-specific models, 
system model, CDM, and data modeling language. 
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level describes the system model or user model 
along with domain-specific models that perform 
some kind of information exchange. For specifying 
the concepts that make up the system model a CDM 
is used, forming the system model’s metamodel. 
This CDM is described using a data modeling lan-
guage. 

In the following sections, selected languages for 
conceptual data modeling are evaluated. Industrial 
requirements on such a language that arise in the 
context of MBSE are identified and an examination 
regarding how well each of these languages is able 
to fulfill the functions specified in the requirements 
is performed. Based on this examination, an over-
view of the state of the art in conceptual data model-
ing for MBSE is sketched, highlighting present 
shortcomings, and a proposal for future evolution is 
given. 

2 BACKGROUND 

This section explains the nature of systems engineer-
ing, its relation to models, and how system-wide 
models are described in the context of MBSE. 

2.1 Systems Engineering 

In many industrial engineering projects today, a 
multitude of disciplines is involved in building the 
systems of interest. For space projects such as satel-
lites, launch vehicles, and resupply spacecraft these 
disciplines involve, only to name a few, mechanical 
engineering, electrical engineering, thermal engi-
neering, requirements engineering, software engi-
neering, verification engineering, and their respec-
tive sub-disciplines. Each of these disciplines speci-
fies their designs and verifies specific aspects of the 
system. In order to provide an all-encompassing 
understanding of the system of interest, the unique, 
yet complementary views from every involved dis-
cipline are combined. The science and art of inte-
grating different views on one system towards sys-
tem thinking is called Systems Engineering. As 
NASA (2007) elegantly puts it: “Systems engineer-
ing is a holistic, integrative discipline, wherein the 
contributions of structural engineers, electrical engi-
neers, mechanism designers, power engineers, hu-
man factors engineers, and many more disciplines 
are evaluated and balanced, one against another, to 
produce a coherent whole that is not dominated by 
the perspective of a single discipline.” 
 
 

2.2 Systems Engineering and Models 

Many of the engineering activities performed inside 
these discipline domains are already well supported 
by computer-based models. Mechanical design 
models built with tools such as CATIA V5 (Dassault 
Systemes, 2014), mechanical analysis models built 
with tools such as PATRAN (MSC Software, 2014) 
and thermal analysis models built with tools such as 
ESATAN-TMS (ITP Engines UK, 2014) are well 
established in the space engineering community 
today. Furthermore, there are requirements models 
based on DOORS, software design models specified 
in the Ecore language (Eclipse Foundation, 2014) 
using the Eclipse Modeling Framework (Eclipse 
Foundation, 2014), as well as mission design models 
specified in SysML (OMG, 2012) with tools such as 
MagicDraw (No Magic, 2014) Furthermore, “tradi-
tional” tools such as Excel or Visio are used on a 
regular basis for building models. The practice of 
supporting engineering activities with models is 
called Model-based Engineering (MBE) or Model-
driven Engineering (MDE). 

These tools and the models they produce differ 
significantly from each other. They are provided by 
different vendors, rely on different implementation 
technologies and are based on different formats 
(Kogalovsky and Kalinichenko, 2009). Each model 
and the associated design methodology follow their 
own principles and paradigms and define their very 
own semantics. As a result of this heterogeneity, 
these models and tools are not yet integrated with 
each other and with the multi-domain systems engi-
neering process (INCOSE, 2014). For a truly multi-
disciplinary representation of a system, relevant 
aspects from all involved domains and their models 
have to be combined on the model level (Eisenmann, 
2012). 

2.3 Describing System-wide Models 

A computer-based model consists of two basic parts. 
The layer directly visible to the user is the instance 
model or user model, where the user enters his data 
and works with it. In order to specify what bits of 
information can be described in the user model, a 
data model or metamodel is required that specifies 
the concepts of the user model (Hong and 
Maryanski, 1990). It is worthy to note at this point 
that metamodel is a relative term. It describes con-
cepts one abstraction level above the model that is 
currently the focus of interest. 
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2.3.1 The System Model 

For such models in engineering the “working level” 
is represented by the system model or user model. In 
this model the system of interest is described. This 
includes domain-specific aspects of the system and 
the data relevant to systems engineering activities. 
Examples for such data are all requirements that are 
specified for the system, its logical decomposition, 
or the entirety of the functions the system performs.  

2.3.2 The Conceptual Data Model 

In order to be able to specify the system model, the 
concepts that make it up have to be specified some-
how. This happens in the CDM, forming the meta-
model of the user model. In this model, the defini-
tion about what a requirement is, how requirements 
relate to other requirements, how requirements relate 
to the system decomposition and how the system 
structure relates to system functions is taking place, 
for example. All in all the CDM describes the enti-
ties, conceptual structures, and characteristic rela-
tionships of the Universe of Discourse (UoD) 
(Kogalovsky and Kalinichenko, 2009) (Halpin and 
Morgan, 2008). 

A significant amount of information exchange 
occurs between the system model and existing disci-
pline-specific models. Consequently the system 
model’s metamodel, the CDM, specifies how these 
models interface with each other. The approach of 
using a CDM to interface between domain models 
on the one side and physical databases on the other 
side has already been described in 1975 in the inter-
im report of the ANSI/X3/SPARC Study Group on 
Data Base Management Systems (1975). The CDM 
in this context is used for specifying the concepts 
that come from the domains, interfacing with the 
domain disciplines and forming the basis for an 
implementation of a system-wide database. Conse-
quently, the conceptual data model can be seen as 
the backbone of MBSE (Eisenmann, 2012). 

It is worthy to note that the currently predomi-
nant approach in most engineering domains is to 
exchange knowledge between all discipline-specific 
models in a document-based fashion. This means 
that the knowledge stored in a computer model of a 
specific domain is written in a document which is 
then handed to another domain. Engineers from the 
other domain then extract their required bits of in-
formation from the document and employ it accord-
ingly. It is evident that this document-based ex-
change of information is a tedious process prone to 
errors and inconsistencies, often resulting in a signif-
icant amount of unnecessary overhead. Consequent-

ly, a large tendency to support such engineering 
processes with models, making the information 
accessible in an automated way, can be observed. It 
is expected that model-based information exchange 
significantly reduces the effort and consequently the 
costs involved in inter-disciplinary and inter-domain 
information exchange. Moreover, engineering pro-
cesses relying on MBSE are expected to benefit 
from improved quality, increased productivity, and 
reduced risk (Friedenthal, et al., 2009). 

2.3.3 The Data Modeling Language 

Being the center of MBSE-based activities the CDM 
can be specified in a number of languages. For de-
veloping relational databases, the conceptual model 
is often specified in Entity–relationship models 
(Halpin and Morgan, 2008) or MS Access database 
schemas. For furthering tool integration, the EX-
PRESS language (ISO, 2004) was developed. Other 
approaches directly rely on languages that are usual-
ly employed for specifying software, such as UML 
or Ecore (Kogalovsky and Kalinichenko, 2009) 
(Olivé, 2007) while knowledge-focused modeling 
languages such as Gellish (Van Renssen, 2005) 
Object Role Modeling (ORM) models (Halpin and 
Morgan, 2008) and the Web Ontology Language 
(OWL) (W3C, 2012) have also been employed for 
specifying a wide variety of UoDs. 

Some of those languages did not deliver the 
hoped for results (EXPRESS), others meanwhile 
reached their limits (ER, Access, Gellish, UML) 
while yet others are rather gaining momentum than 
losing ground (Ecore, ORM, OWL) in the context of 
MBSE. 

3 TECHNOLOGY EVALUATION 

In this section requirements on a CDM language are 
formulated, and selected modeling languages are 
evaluated against a defined evaluation scheme. 

3.1 Requirements on a CDM Language 

The requirements on languages for conceptual data 
modeling explained in this section are based upon 
extensive experience employing CDMs in the con-
text of MBSE. They incorporate a large amount of 
facets derived from lessons learned in past projects 
(ESA, 2012) (ESA, 2013) (Fischer, et al., 2014). 
These requirements have been partitioned into five 
categories. Explaining every required function of 
each category in equal detail would go beyond the 
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scope of this paper. Instead, an emphasis is given on 
specific, not so obvious, or difficult to understand 
language functions and properties. These categories 
and requirements are listed in Error! Reference 
source not found.. 

3.1.1 Semantic Relevance for MBSE 

In this category very specific requirements that arise 
from using the modeling language in the scope of 
MBSE are consolidated. 

Ability to Work with Closed World Facts: 
One specific requirement in this context is the ability 
of the language to produce models based upon the 
Closed World Assumption. This principle implies 
that everything that is not explicitly stated as true is 
false. For instance, if a model of a satellite would 
state that the satellite has mounted four solar arrays 
on it and a query would be made, asking for the 
number of solar arrays, the result would be “four”. 
In contrast to the Closed World Assumption stands 
the Open World Assumption that is common for 
ontology languages. The same query asking for the 
number of solar arrays would return the result “un-
known” since it is not explicitly stated that there are 
exactly four solar arrays. It is evident that such be-
havior can become problematic when producing 
engineering models (Hennig, 2012). Some ontology 
extensions allow “closing down” such facts, ena-
bling the correct answer of such queries, but result-
ing in a significant amount of additional modeling 
effort (Mehdi and Wissmann, 2013). 

Understandability of Language for Non-
modeling Experts: CDMs are often produced in 
accordance with experts of the UoD. These people 
are mostly mechanical engineers, electrical engi-
neers, or software engineers, not modeling experts. 
Consequently it is desirable for the modeling lan-
guage to be able to be understood by non-modeling 
experts. 

Ability to Separate between Tool-development 
and Tool-customization Concepts: A common 
activity in space engineering is the practice of tailor-
ing. Tailoring means that an existing model, proce-
dure, or application is being customized in order to 
exactly fit the needs of a specific project or mission. 
In case of applications based on a CDM, that would 
imply adapting the CDM. However, especially for 
larger projects, it is often not feasible to alter the 
CDM to every mission that is conducted, since it 
would result in also altering every application built 
upon it. Consequently, solutions have been proposed 
that introduce a secondary part to the CDM that is 
used for tailoring, being able to be adapted during 
model runtime (ESA, 2012) (ESA, 2013). 

Ability to Integrate Knowledge from other 
Resources and existence of a Transformation 
Mechanism: Since one of the focal points of CDMs 
is information exchange between different models, it 
should also be possible to map different CDMs to 
each other, i.e. to integrate another CDM as a re-
source, including model transformations, should 
they become necessary after the mapping is defined. 

Existence of a Language extension Mechanism: 
For introducing custom concepts to the language, 
some kind of extension mechanism is highly desira-
ble (Eisenmann, 2012). 

3.1.2 Adequacy for Developing MBSE 
Applications 

The second category deals with the aspects related to 
producing pieces of software that implement the 
CDM, as it is commonly done in MBSE. One exam-
ple for such an application is an engineering data-
base intended for storing the system model. 

Independence from Implementation Technol-
ogy: In order to ensure maximum flexibility for 
implementing applications it is desirable for the 
CDM language to be independent from any imple-
mentation technology. 

Low effort to get from CDM to Software 
Structure Specification: If the language used for 
modeling the CDM is suited for modeling software, 
specifying a piece of software is less effort com-
pared to a case where the CDM is specified in a 
language that cannot be used for describing soft-
ware. 

Suitability for Code Generation: Code genera-
tion has shown to significantly reduce development 
costs (Eisenmann, 2012) and is seen as a key ele-
ment for producing software intended for MBSE. 

3.1.3 Adequacy for MBSE Data Modeling  

A number of activities are usually performed when 
producing CDMs. Such activities include deriving 
the CDM from an engineering process, producing a 
specification, and validating the CDM. 

Support by a CDM Engineering Method: One 
requirement for a data modeling language is that it is 
supported by a method that helps in knowledge 
acquisition, configuration management, knowledge 
integration, and similar activities guiding the model-
er through the process of building the CDM. These 
methods are common in the area of knowledge engi-
neering (Halpin and Morgan, 2008) (Sure, et al., 
2004) (Suárez-Figueroa, 2010). 

Ability to Describe Process Activities and 
Process Artefacts: In model-based space systems 
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engineering a convenient starting point for building 
the CDM of a UoD is examining the engineering 
processes it should support. The CDM has to be able 
to represent the data of the input and output artefacts 
to the process activities (Hennig and Eisenmann, 
2014). Such processes are usually documented in 
UML activity diagrams or BPMN diagrams. It is of 
benefit for the modeling language to provide means 
for modeling the engineering process and its arte-
facts together with the CDM and to provide map-
pings between the process artefacts and the elements 
of the CDM, bridging the gap between both models. 

Ability to Provide Validation Instances: An-
other requirement is the ability to cultivate valida-
tion instances while the CDM is still in production, 
aiding the modeler by providing examples or even 
letting the modeler create own examples. Using 
examples together with the model has been shown to 
make the CDM more tangible (Halpin and Morgan, 
2008). 

Suitability for Verbalization: Verbalization of 
model elements is the process of representing 
knowledge stored in the model available in a sen-
tence. These sentences are usually formed using a 
subset of a natural language, e.g. English, made up 
by a controlled vocabulary and syntax (Halpin and 
Wijbenga, 2010). 

Employment of Surrogate Names for Rela-
tions: Some modeling languages require a unique 
name for each relation between model entities. This 
can become problematic once a lot of relations exist 
or once a number of commonly occurring relations 
is used. For instance a satellite might have the rela-
tions “has Designation”, “has UniqueID”, and “has 
Abbreviation”, whereas “has” is the reference and 
occurs multiple times. Although “has” is not a well-
formed relation in many cases, it is used frequently. 
For circumventing this problem, a surrogate name 
can be used for describing relations, e.g. “Satel-
liteHasDesignation” as unique name for the refer-
ence, but only displaying “has” to the user, acting as 
a surrogate for the actual reference. 

3.1.4 Richness of Data Structures 

Data structures form the central building blocks of a 
CDM. A modeling language for MBSE should be 
able to describe elements such as classes, attributes, 
and data types. The most basic relations between 
classes are binary relationships. Sometimes ternary 
relationships are needed for describing elementary 
facts of the UoD and some languages even support 
n-ary relationships between classes. It might become 
necessary to objectify a relation between classes for 

the purpose of handling it more like a class instead 
of a relation later on. Furthermore the data modeling 
language has to be able to modularize the data mod-
el, i.e. dividing it up into several packages and sub-
packages for the purposes of structuring and ena-
bling de-coupled definition with subsequent integra-
tion. The language should also be able to specify an 
explicit hierarchical structure apart from the taxo-
nomic structure of classes. 

3.1.5 Richness of Constraint Structures 

The most basic category of constraints are the cardi-
nalities of attributes and references that specify 
whether e.g. a reference is mandatory or optional, 
and how many references of one type can exist at the 
same time. Other constraints related to references 
include subsets (a reference can only exist if it is 
already represented by another specific reference) 
exclusion constraints (if reference A exists in the 
user model, reference B cannot exist), equality con-
straints (if reference A exists then reference B must 
also exist), or ring constraints (for cyclic references, 
e.g. a reference cannot reference the same instance it 
originated from). Some languages support more 
specific constraints, e.g. a maximum limit on the 
number of instances that can exist of one class at the 
same time, and some set theory constraints between 
subtypes of classes. Some languages also permit the 
specification of entirely user-defined consistency 
checks. 

3.2 Definition of an Evaluation Scheme  

The evaluation presented in Table 1 is based upon 
identified necessities derived from past experience 
using CDMs in the context of MBSE. The analysis 
employs weighted score evaluation and consists of 
two dimensions. The first dimension is made up of 
the requirements on the data modeling language. 
These requirements are assigned a weight (column 
“W”) with a value of either 1, 3, or 9, determining 
how important the requirement is in the context of 
MBSE for space systems. A 1 states that the feature 
stated in the requirement is nice to have, a 3 means 
that the feature is definitively helpful while 9 marks 
a critical feature. The second dimension determines 
how well each of the modeling languages can cope 
with the feature stated in the requirement. The lan-
guage columns can take values of 0 (not possible/not 
available/not publicly documented), 1 (possible, but 
with limitations), and 3 (fully supported). The lan-
guage evaluation consists of two columns for each 
language. The first column contains the score, the 
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second column contains the product of score and 
requirement weight. 

In the row of each category the maximum attain-
able score is given, along with the total score of the 
language in said category. 

While the detailed and comprehensive evaluation 
is presented in Table 1. The paragraphs below ex-
plain some specifics of the evaluation that might not 
directly be traceable without explanation  

3.3 Evaluation of Selected Languages 

While all data modeling languages outlined previ-
ously in 2.3.3 are using the same basic building 
blocks (classes, attributes, and references, although 
sometimes named differently) for specifying 
knowledge structures at first sight, they exhibit en-
tirely different nuances when closer examined. For 
closer examination UML, Ecore, ORM, and OWL 
have been selected. 

3.3.1 The Unified Modeling Language UML 

UML has been established as the de-facto standard 
for describing software systems for quite some time 
and forms the current mainstream approach for data 
modeling (Kogalovsky and Kalinichenko, 2009) 
(Olivé, 2007). 

UML models by default are based on the Closed 
World Assumption (3 points). However, data models 
in UML are considered difficult to understand for 
people not trained in software design with regard to 
specifying knowledge (0 points). An extension 
mechanism is given by introducing custom stereo-
types through profiling, but has been shown to be 
not sufficient for many data modeling efforts in 
MBSE (Eisenmann, 2012) (1 point). A lot of meth-
ods exist for producing pieces of software with 
UML, but these methods do not provide guided, 
prescriptive instructions for modeling the data struc-
ture of the UoD and do not cater to the needs of 
CDMing in MBSE (1 point). Processes can be mod-
eled using UML activity diagrams, but this approach 
also does not completely fit the needs for MBSE (1 
point). UML contains all of the basic data structures, 
can objectify relations using association classes, 
modularize models through packages, and describe 
explicit hierarchical structures using the composition 
and aggregation elements. UML has a limited num-
ber of constraints built in, such as the cardinalities of 
associations and subsets between associations. Other 
constraints, such as exclusion constraints, equality 
constraints, or ring constraints, are not directly built-
in and have to be asserted using OCL. However, 
OCL, due to its highly technical nature, is not desir-

able for modeling domain knowledge, only yielding 
a value of 1 point for each these constraints. 

3.3.2 Ecore 

The Eclipse Modeling Framework EMF is gaining 
considerable momentum in the area of model-driven 
software engineering. EMF comes with a dedicated 
modeling language called Ecore that picks up some 
model elements of UML. The capability for code 
generation, an agile software reuse process and so-
phisticated tool support have shown to considerably 
reduce costs for developing data model-intensive 
applications while still retaining high functionality 
and flexibility (Eisenmann, 2012). 

Ecore models are also by default based upon the 
Closed World Assumption (3 points) and require 
equal technical understanding as UML models (0 
points). A tailoring mechanism does also not exist (0 
points). Similar to UML Ecore supports integrating a 
multitude of resources and performing model trans-
formations (3 points each). Ecore is highly depend-
ent on the Eclipse Modeling Framework for imple-
menting software (0 points). The effort to get from 
the CDM to the specification of the software imple-
menting the CDM is equally manageable compared 
to UML. Code generation is one of the main selling 
points of EMF and Ecore (3 points). Ecore focuses 
solely on modeling structures and consequently does 
not model behavior such as processes (0 points). A 
limited mechanism for providing validation in-
stances exist by creating dynamic instances, but still 
needs considerable improvement to cater to the 
needs of MBSE (1 point). Ecore can describe clas-
ses, attributes, data types, and pack-ages (3 points 
each). An explicit hierarchical structure can be spec-
ified using the containment property of references (3 
points). Ecore supports binary relations (3 points), 
but none of higher arity (0 points). Objectification is 
also not directly sup-ported (0 points). Specification 
of constraints is similar to UML with the exception 
that the subset constraint is not directly built into 
Ecore (1 point), relying on OCL for specifying such 
semantically rich constraints. 

3.3.3 Object Role Modeling ORM 

For designing relational databases a data modeling 
language called ORM (Halpin and Morgan, 2008) 
has gained importance. This language offers a wide 
variety of built-in constraints, such as subset con-
straints, uniqueness constraints, and constraints 
regarding possible combinations of model entities. 
ORM is a kind of Fact Based Modeling (Halpin and 
Morgan, 2008).   Due   to   the     focus   on  business  
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Table 1: Evaluation of Conceptual Data Modeling Languages. 

ID Data Modeling Language Requirement W UML Ecore ORM OWL 
1 Semantic Relevance of Modeling Language for MBSE 162 69 87 78 69 
1.1 Ability to work with closed world facts 9 3 27 3 27 3 27 1 9 
1.2 Understandability of language for non-modeling experts 9 0 0 0 0 3 27 1 9 
1.3 Ability to represent aspects in a granular manner 3 0 0 0 0 0 0 3 9 
1.4 Ability to ensure the logical coherence of aspects 3 1 3 1 3 3 9 3 9 
1.5 Ability to specify business rules of the UoD 3 1 3 1 3 1 3 1 3 

1.6 
 

Ability to separate between tool-dev. and -customization con-
cepts 

9 0 0 0 0 0 0 0 0 

1.7 Ability to integrate knowledge from other resources 3 3 9 3 9 0 0 3 9 
1.8 Existence of transformations of the CDM into other languages 3 3 9 3 9 1 3 1 3 

1.9 
 

Existence of mechanism for specifying queries on the user 
model 

3 3 9 3 9 3 9 3 9 

1.10 Existence of a language extension mechanisms 9 1 9 3 27 0 0 1 9 

2 Adequacy for Developing MBSE Applications 63 45 54 3 12 
2.1 Independence from implementation technology 3 3 9 0 0 0 0 3 9 
2.2 Low effort to get from CDM to software structure specification 3 3 9 3 9 1 3 1 3 
2.3 Suitability for code generation 9 1 9 3 27 0 0 0 0 
2.4 Tight integration of language into tool chain 3 3 9 3 9 0 0 0 0 
2.5 Free availability of end-to-end development tool chain 3 3 9 3 9 0 0 0 0 

3 Adequacy for MBSE Data Modeling Activities 111 31 19 55 33 
3.1 Support by a CDM engineering method 9 1 9 1 9 3 27 1 9 
3.2 Ability to describe process activities and process artefacts 9 1 9 0 0 0 0 0 0 
3.3 Support for data model specification and verification activities 9 0 0 0 0 0 0 0 0 
3.4 Ability to provide validation instances 3 3 9 1 3 3 9 3 9 
3.5 Ability to propagate data model changes to the user model 1 1 1 1 1 1 1 3 3 
3.6 Suitability for verbalization 3 1 3 1 3 3 9 1 3 
3.7 Employment of surrogate names for relations 3 0 0 1 3 3 9 3 9 

4 Richness of Data Structures 159 159 144 132 108 
4.1 Ability to describe classes 9 3 27 3 27 3 27 3 27 
4.2 Ability to describe attributes 9 3 27 3 27 3 27 3 27 
4.3 Ability to describe data types 9 3 27 3 27 3 27 3 27 
4.4 Ability to describe binary relations 9 3 27 3 27 3 27 3 27 
4.5 Ability to describe ternary relations 3 3 9 0 0 3 9 0 0 
4.6 Ability to describe n-ary relations 1 3 3 0 0 3 3 0 0 
4.7 Ability to objectify relations 1 3 3 0 0 3 3 0 0 
4.8 Ability to modularize the data model 3 3 9 3 9 0 0 3 9 
4.9 Ability to describe an explicit hierarchical structure 9 3 27 3 27 1 9 0 0 

5 Richness of Constraint Structures 213 155 149 177 178 
5.1 Ability to specify internal uniqueness 9 3 27 3 27 3 27 3 27 
5.2 Ability to specify external uniqueness 1 1 1 1 1 3 3 0 0 
5.3 Ability to specify simple mandatory roles 9 3 27 3 27 3 27 3 27 
5.4 Ability to specify internal frequency constraints 9 3 27 3 27 3 27 3 27 
5.5 Ability to specify external frequency constraints 1 1 1 1 1 3 3 3 3 
5.6 Ability to specify subsets of relations 3 3 9 1 3 3 9 3 9 
5.7 Ability to specify sub-relation chains 3 1 3 1 3 0 0 3 9 
5.8 Ability to specify exclusion constraints 3 1 3 1 3 3 9 3 9 
5.9 Ability to specify exclusive or constraints 1 1 1 1 1 3 3 3 3 
5.10 Ability to specify inclusive-or constraints 3 1 3 1 3 3 9 3 9 
5.11 Ability to specify equality constraints 1 1 1 1 1 3 3 1 1 
5.12 Ability to specify ring constraints 3 1 3 1 3 3 9 3 9 
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Table 1: Evaluation of Conceptual Data Modeling Languages (Cont.). 

ID Data Modeling Language Requirement W UML Ecore ORM OWL 
5.13 Ability to specify subtype constraints 9 1 9 1 9 3 27 1 9 
5.14 Ability to specify object cardinality constraints 3 1 3 1 3 3 9 0 0 
5.15 Ability to specify role cardinality constraints 1 1 1 1 1 3 3 0 0 
5.16 Ability to specify user-defined constraints 9 3 27 3 27 0 0 3 27 
5.17 Ability to specify textual constraints 3 3 9 3 9 3 9 3 9 

 
modeling ORM is built with the principle in mind 
that the model and the information stored in it 
should be read in a “natural way”, enabling the do-
main experts that model and the information stored 
in it should be read in a “natural way”, enabling the 
domain experts that are usually not modeling experts 
to understand and work with the model. 

Models specified using Object Role Modeling 
are also based upon the Closed World Assumption 
(3 points). The language was designed with readabil-
ity and understandability for non-modeling experts 
in mind (3 points). A tailoring mechanism as re-
quired for MBSE does not exist (0 points). The same 
is true for a mechanism to integrate different ORM 
resources towards one CDM (0 points). Some trans-
formations exist, but are mainly focused on trans-
forming ORM models into relational database 
schemes (1 point). An interface for extending the 
language does not exist (0 points). Directly develop-
ing software from ORM schemes is out of scope of 
the language, yielding considerably low scores in the 
whole category. However, ORM has substantial 
support through modeling methods such as 
NIAM2007 (Lemmens, et al., 2007) and the Con-
ceptual Schema Design Procedure CSDP (Halpin 
and Morgan, 2008) (3 points). Modeling processes is 
out of ORM’s scope (0 points). Using validation 
instances for designing the CDM is an integral part 
of ORM (3 points). Furthermore ORM is suited for 
verbalization and has a mechanism for surrogate 
names (3 points each). ORM supports all of the main 
building blocks, along with n-ary relations (3 points 
across the board), but a partitioning mechanism does 
not exist (0 points). A hierarchical structure cannot 
be explicitly described, but the semantic prerequi-
sites for it exist (1 point). ORM scores considerably 
high in the constraint structure category, but misses 
out on user-defined constraints (0 points). 

3.3.4 The Web Ontology Language OWL 

In the context of the Semantic Web (Hendler, et al., 
2002), OWL has proven its applicability for provid-
ing a logical sub-structure of data made available 
through the Internet. It is standardized by the W3C 
(2012) and forms one of the backbones of semantic 

information exchange between web resources. OWL 
is based upon the Open World Assumption (Hennig, 
2012) and is focused on integrating vast amounts of 
knowledge across a variety of sources. OWL is also 
based upon a set theory principle called Description 
Logics that enables functions such as automatic 
classification of new knowledge and inference. 

 

Figure 2: Language Evaluation per Category. 

OWL is based upon the Open World Assumption. 
Some parts of the model can be locally closed down 
using workarounds (Mehdi and Wissmann, 2013), 
but resulting in substantial additional modeling ef-
fort (1 point). The basic structures of OWL ontolo-
gies are not hard to be understood, but the semanti-
cally rich structures are often difficult to grasp for 
non-ontology experts (1 point). A tailoring mecha-
nism as required for MBSE does not exist (0 points). 
Different OWL ontologies can be integrated with 
each other (3 points) and some transformation capa-
bilities exist (1 point). OWL can be extended by 
adding custom concepts, but running the risk of 
losing decidability (1 point). Developing applica-
tions is not really a focus of the OWL language, 
resulting in a low score in the software engineering 
category. The structure of the OWL language allows 
dynamic handling of (validation) instances in paral-
lel to the CDM (3 points). OWL supports the basic 
data structures, but does not support object proper-
ties with an arity other than 2. (0 points). Further-
more an explicit hierarchical structure, apart from 
the class taxonomy, is not part of the language (0 
points).The OWL language specifies many con-
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straints related to set theory through restrictions and 
axioms. User defined constraints can be asserted 
using language extensions such as SPARQL or 
SWRL (3 points). 

4 CONCLUSIONS 

This section summarizes the evaluation and sketches 
a picture of how to approach identified shortcom-
ings. 

4.1 Summary of Language Evaluation 

The analysis made evident that the ideal language 
for conceptual data modeling does not exist. Each of 
the discussed languages stands out when regarding 
characteristic aspects. 

Due to the very specific requirements on the 
modeling languages in the semantic relevance cate-
gory no language is able to fulfil all of the require-
ments. Some features, such as the separation be-
tween tool-development and tool-customization 
concepts are not supported by any language. In the 
software engineering category, both UML and Ecore 
score well, but Ecore comes out with the highest 
score due to the extremely tight integration and 
attunement with EMF, compensating for the low 
score at implementation-independence. The third 
category dealing with CDM engineering activities, 
also due to very specific requirements, is not well 
supported by any of the languages. ORM comes 
closest to fulfilling them, but misses out on the pro-
cess aspects. Regarding data structures UML fulfills 
all of the requirements, with Ecore and ORM scor-
ing a bit lower and OWL coming out last. No lan-
guage is able to fulfill all requirements in the con-
straint category, but both of the knowledge-oriented 
modeling languages, OWL and ORM, attain a simi-
larly adequate score. Figure 2 visualizes the results 
of the evaluation by presenting the performance of 
the languages per category. A value of 100 expresses 
that the language has attained the highest possible 
score in a category. 

4.2 Necessity for Future Development 

Since the ideal modeling language does not exist, 
significant improvement is becoming necessary. A 
combination of each of the language’s strong suits is 
one possible course of action in order to cope with 
the requirements needed for effective and efficient 
MBSE. One possible approach for bringing together 
the advantageous features of these languages is us-

ing Ecore with its meta-modeling mechanism for 
leveraging its software engineering capabilities. An 
Ecore metamodel extension based on ORM can 
serve as abstract and concrete syntax for CDMs, 
utilizing ORM’s capability for producing semanti-
cally rich data and constraint structures. Ontological 
concepts derived from OWL are used for employing 
additional knowledge-management functions while 
avoiding the Open World Assumption. In addition a 
number entirely newly developed functional aspects, 
including a tool-customization mechanism and a 
connection of the CDM to its originating engineer-
ing processes has to be included. Only such a har-
monized approach, merging the strong suits of each 
of these modeling languages, combined with new 
aspects, is able to facilitate genuinely cost-efficient, 
effective and consistent MBSE across a wide variety 
of engineering domains as required for space sys-
tems engineering. 

REFERENCES 

ANSI/X3/SPARC Study Group on Data Base 
Management Systems, 1975. Interim Report. FDT, 
ACM SIGMOD bulletin. Volume 7, No. 2, s.l.: s.n. 

Dassault Systemes, 2014. CATIA Version 5-6 
Release 2012. [Online]  
Available at: 
http://www.3ds.com/products/catia/portfolio/ catia-
v5/latest-release/ 

Eclipse Foundation, 2014. Eclipse Modeling 
Project. [Online]  
Available at: http://www.eclipse.org/modeling/emf/ 

Eclipse Foundation, 2014. org.eclipse.emf.ecore 
(EMF Documentation). [Online]  
Available at: 
http://download.eclipse.org/modeling/emf/emf/javad
oc/2.9.0/org/eclipse/emf/ecore/package-
summary.html 

Eisenmann, H., 2012. VSD Final Presentation. 
[Online]  
Available at: http://www.vsd-
project.org/download/presentations/VSD_P2_FP_20
12-05-15_v3.pdf/ 

ESA, 2012. The Virtual Spacecraft Design 
Project. [Online]  
Available at: http://vsd.esa.int/ 

ESA, 2013. EGS-CC - European Ground 
Systems - Common Core. [Online]  
Available at: http://www.egscc.esa.int/ 

Fischer, P. M., Eisenmann, H. and Fuchs, J., 
2014. Functional Verification by Simulation based 
on Preliminary System Design Data. 6th 
International Workshop on Systems and Concurrent 

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

392



Engineering for Space Applications (SECESA), 8-10 
October.  

Friedenthal, S., Griego, R. and Sampson, M., 
2009. INCOSE Model-Based Systems Engineering 
Workshop. [Online]  
Available at: 
http://www.incose.org/Chicagoland/docs/SanDiego/
3-18-
09%20INCOSE%20Model%20Based%20Systems%
20Engineering%20(MBSE)%20Workshop.pdf 

Halpin, T. and Morgan, T., 2008. Information 
Modeling and Relational Databases. 2nd ed. 
Burlington: Morgan Kaufmann. 

Halpin, T. and Wijbenga, J. P., 2010. FORML 2. 
In: I. Bider, et al. eds. Enterprise, Business-Process 
and Information Systems Modeling. Berlin: Springer, 
pp. 247-260. 

Hendler, J., Berners-Lee, T. and Miller, E., 2002. 
Integrating Applications on the Semantic Web. 
Journal of the Institute of Electrical Engineers of 
Japan, 122(10), pp. 676-680. 

Hennig, C., 2012. Evaluating Ontologies for Use 
in Model-Based Systems Engineering, München: 
Technische Universität München. 

Hennig, C. and Eisenmann, H., 2014. Applying 
Selected Knowledge Management Technologies and 
Principles for Enabling Model-based Management 
of Engineering Data in MBSE. 6th International 
Workshop on Systems and Concurrent Engineering 
for Space Applications (SECESA), 8-10 October.  

Hong, S. and Maryanski, F., 1990. Using a Meta 
Model to Represent Object-Oriented Data Models. 
6th International Conference on Data Engineering, 
5-9 Febuary, pp. 11-19. 

INCOSE, 2014. Systems Engineering Vision 
2025. [Online]  
Available at: 
http://www.incose.org/ProductsPubs/products/sevisi
on2025.aspx 

ISO, 2004. ISO 10303-11: Industrial automation 
systems and integration – product data 
representation and exchange – Part 11: Description 
methods: The EXPRESS language reference 
manual.. s.l.:s.n. 

ITP Engines UK, 2014. ESATAN-TMS: Home. 
[Online]  
Available at: https://www.esatan-tms.com/ 

Kogalovsky, M. R. and Kalinichenko, L. A., 
2009. Conceptual and Ontological Modeling in 
Information Systems. Programming and Computer 
Software, 35(5), pp. 241-256. 

Lemmens, I., Nijssen, M. and Nijssen, S., 2007. 
A NIAM2007 Conceptual Analysis of the ISO and 
OMG MOF Four Layer Metadata Architectures. In: 
R. Meersman, Z. Tari and P. Herrero, eds. On the 
Move to Meaningful Internet Systems 2007: OTM 
2007 Workshops. Berlin: Springer, pp. 613-623. 

Mehdi, A. and Wissmann, J., 2013. EQuIKa 
System: Supporting OWL Applications with Local 
Closed World Assumption. GI-Jahrestagung, 
Volume 220 of LNI, pp. 1943-1948. 

MSC Software, 2014. Patran. [Online]  
Available at: http://mscsoftware.com/product/patran 

NASA, 2007. NASA Systems Engineering 
Handbook (NASA-SP-2007-6105) Rev1, s.l.: s.n. 

No Magic, 2014. MagicDraw. [Online]  
Available at: 
http://www.nomagic.com/products/magicdraw.html 

Olivé, A., 2007. Conceptual Modeling of 
Information Systems. Berlin: Springer. 

OMG, 2012. OMG Systems Modeling Language 
(OMG SysML), Version 1.3. s.l.:s.n. 

Suárez-Figueroa, M. C., 2010. NeOn 
Methodology for Building Ontology Networks, 
Madrid: Universidad Politécnica de Madrid. 

Sure, Y., Staab, S. and Studer, R., 2004. On-To-
Knowledge Methodology (OTKM). Handbook on 
Ontologies, pp. 117-132. 

Van Renssen, A. S. H. P., 2005. Gellish - A 
Generic Extensible Ontological Language, Delft: 
Technische Universiteit Delft. 

W3C, 2012. OWL 2 Web Ontology Language 
Primer (Second Edition). [Online]  
Available at: http://www.w3.org/TR/owl2-primer/ 
 

On�Languages�for�Conceptual�Data�Modeling�in�Multi-disciplinary�Space�Systems�Engineering

393


