An Agent Architecture for Adaptive Supervision and Control of Smart Environments

Stefano Ferilli, Berardina De Carolis, Andrea Pazienza, Floriana Esposito and Domenico Redavid

Dip. di Informatica, University of Bari, via E. Orabona 4, Bari, Italy

Keywords: Ambient Intelligence, Workflow Management, Service Composition.

Abstract: This paper describes the architecture and functionality of a generic agent that is in charge of handling a given environment in an Ambient Intelligence context, ensuring suitable contextualized and personalized support to the user’s actions, adaptivity to the user’s peculiarities and to changes over time, and automated management of the environment itself. The architecture is implemented in a multi-agent system, where different types of agents are endowed with different levels of reasoning and learning capabilities. In addition to controlling normal operations of the environment, the system may identify user’s needs and goals and activate suitable workflows to satisfy them. Some actions in these workflow involve the execution of semantic services. When a single service is not available for fulfilling a given need, an automatic service composer is used to obtain a suitable combination of services. The architecture has been implemented in a prototypical agent-based system that works in a Smart Home Environment.

1 INTRODUCTION

Users of a smart environment often have contextual needs depending on the situation. According to (Yau and Liu, 2006), a situation-aware environment should understand both the status of the environment, and the status and the needs of users in order to proactively support them with the most appropriate configuration of actions of various devices and resources in the smart environment. This capability of the environment is even more important in the context of Ambient Assisted Living (AAL), where the aim is supporting elderly people in their daily life by assisting them with intelligent solutions for providing the services they need (Sun et al., 2009).

Developing a situation aware environment requires efficient, flexible and scalable solutions. We propose an approach based on software agents able to recognize the user’s situational goal, to provide smart (i.e., integrated, interoperable and personalized) services for satisfying this goal and to provide suitable interfaces using the possibilities offered by the various devices that are present in the environment. The environment must be able to reason on the situation of the users so as to understand their needs and goals for composing the most appropriate services.

The following approaches for composing services are most commonly used:

Manual Composition: the user must tell the system how to compose services. In general, this process is quite complex and requires knowledge about existing available services and about how to compose and integrate them. In order to help the users in manual composition of services, some interesting interaction metaphors have been proposed (Humble et al., 2003).

Automatic Composition: service composition is planned without human intervention by using methods and techniques typical of planning in Artificial Intelligence (Paik and Maruyama, 2007). The user has no workload for finding, filtering and integrating services. The system, starting from the high-level goal of the user, automatically generates the workflow of services that satisfy her needs. Planning however is a complex task and requires the correct formalization of the problem, of the actions and of the constraints. Moreover, problems might arise in understanding the user’s goals and in matching them semantically against existing services.

Semi-automatic Composition: the system, according to the recognized needs and situation, selects the most appropriate composition of services.
among those that are available in a repository or that can be planned. When this is not possible, the system interactively guides the user in finding, filtering and composing services (Kim et al., 2004).

We work in this latter direction and propose a Multi Agent System (MAS) architecture. The key feature of our proposal is the design and development of the architecture and functionalities of a generic agent class that can be specialized for several specific roles. These roles are in charge of handling the different features and capabilities of a situation-aware environment, ensuring suitable contextualized and personalized support to the user’s actions, adaptivity to the user’s status and needs and to changes over time, and automated management of the environment itself. The architecture has been implemented in a prototypical agent-based system that works in a Smart Home Environment (SHE) scenario, where it is necessary to combine services of the physical environment with net-centric ones according to the recognized situation.

The paper is structured as follows. The proposed architecture, and its most relevant components, are described in Section 3. Then, Section 4 proposes several kinds of roles to be implemented by agents that work in the smart environment. A sample scenario is proposed in Section 5, before concluding the paper and outlining future work issues in Section 6.

2 RELATED WORK

A smart environment is able to acquire and apply knowledge about its inhabitants and their surroundings in order to adapt to the situational goals (Cook, 2009). Then developing a smart environment requires software components that, at different levels of abstraction, may perceive the environment and, more or less autonomously, act on it by providing the response that is appropriate to the situation. An agent is an entity that matches these requirements (Wooldridge and Jennings, 1995). In particular, BDI (Belief Desire Intention) agents are endowed with this capability and act on the basis of practical reasoning (Rao and Georgeff, 1991). Their reasoning is based on their intentions, that originate from the intersection between beliefs about the state of the world, and desires (the agents’ goals).

Moreover, agents can be organized in order to solve complex and distributed problems in a Multi Agent System (MAS). Typically MAS meet the requirements on modularity, flexibility and scalability needed to handle the complexity of a smart environment (Ayala et al., 2012). When endowed with appropriate knowledge and reasoning capabilities a MAS represents a way to design and implement a proactive and adaptive environment in relation to individual and changing needs (Cook, 2009; Wolf et al., 2010).

Early research projects concerned with applying intelligent agents to the realization of a Smart Home focused on the development of a home that programs itself by observing the lifestyle and desires of the inhabitants, and learns to anticipate and accommodate their needs (Mozer, 2005; Rao and Cook, 2004; De Carolis et al., 2005). More recently, research has focused on how smart environments can be used to provide assistance and support to elderly people during their life at home (Sun et al., 2009).

Applying agent-based approaches on this domain seems to be a promising direction for research (Cook et al., 2009; O’Grady et al., 2010). In particular, (McNaull et al., 2011) presented a context-aware MAS that may help to assist an individual in an AAL scenario. (Sernani et al., 2013) adopt the metaphor of the Virtual Carer for implementing a MAS for monitoring the health conditions of assisted persons and facilitating their daily activities.

Recently the agent based approach has been combined to the service oriented one (Wu et al., 2007). In (Marsá-Maestre et al., 2008) the problem of service personalization in smart environments is addressed by a Service Oriented Architecture implementation based on multiagent systems. In particular they take advantage of the mobility features of software agents. In particular, they have developed a hierarchical, agent-based solution intended to be applicable to different smart space scenarios, ranging from small environments to large smart spaces like cities.

The proactive nature of a smart environment has been investigated by several research works that propose the processing of contextual data for carrying out analysis for erroneous events in order to provide “relevant information and/or services to the user, where relevancy depends on the user’s task.” (Dey, 2001). Many research projects touch upon context aware computing and ambient assisted living. Examples include the research conducted by (Chun-dong et al., 2009), that propose a framework providing adaptive service in an intelligent home environment. (D’Andrea et al., 2009) propose a system that interprets user’s spoken dialogue and exploits writing recognition to control a home environment. A framework for developing multi-model interfaces for reminding meals to elderly people is described in (Blumendorf and Albayrak, 2009) and a framework for adapting interactive systems based on user behavior is discussed by (Bezold, 2010).

Therefore, developing a smart environment requires designing a complex intelligent system able to
acquire and apply knowledge about the environment and its residents in order to improve their quality of life in that environment by providing situation-aware services through natural and effective interfaces. To achieve this aim, we recognized the need of developing an architecture of a MAS that combines the practical reasoning capabilities of BDI agents, the learning capabilities of intelligent learning agents and the service oriented approach in order to implement an Ambient Intelligence (AmI) system that is able to unobtrusively and proactively adapt to the individual situational needs.

3 ARCHITECTURE

The general architecture implemented by our agents, which is an extended version of that introduced in (Ferilli et al., 2011), is reported in Figure 1. According to this architecture, each agent is endowed with a multi-strategy reasoning engine involving two functional levels: the Reasoning Layer (ReaL) and the Learning Layer (LeaL). The environment in which the agent operates represents the Sensors, Effectors and Applications Layer (SeaL). Both ReaL and LeaL are able to apply several types of inference, including:

- **Abstraction** used to simplify the available information by removing irrelevant details;
- **Deduction** used to apply the user and context models in order to understand what is going on in the environment and what actions should be taken consequently;
- **Abduction** used to deal with cases of incomplete knowledge, hypothesizing sensible values for missing information;
- **Induction** used to adapt the user and context models based on the feedback obtained during the system’s interaction.

The initial knowledge base used by ReaL, organized in several cooperating modules referred to specific topics, is built using information provided by experts, but can be refined and improved automatically as long as the system works by exploiting the functionality of LeaL. Among other kinds of knowledge, it includes user models, context models and process models to be used for adapting/personalizing the interaction and controlling the flow of events.

A user model includes knowledge that allows to infer his mental and physical status, his goals and objectives, his preferences and interests, and his needs and requirements. Personalized models may be available for specific users, typically learned by monitoring their behavior. A context model includes knowledge that allows to infer what kind of situation is faced by the system, what is going on in the environment, and how to act in order to properly handle the situations that are occurring. A process model specifies which combinations of activities are allowed to accomplish a given goal. Many models may be available for reaching the same goal. Process models can be combined (e.g., one process may involve a complex activity, for which one or more process models may be available). Based on the user profile and the current context, the system identifies possible goals of the user, and extracts from its workflow repository the items that specify how to satisfy those goals.

The two levels currently include the following operational modules: AmICo (Ambient Intelligence Co-ordinator) applies the knowledge base; InTheLEx (Incremental Theory Learner from Examples) refines it according to the feedback obtained by the user and the environment; WoMan (Workflow Manager) controls process executions and SerPICo (Service Planner Identifier and Composer) provides service composition facilities.

3.1 Workflow Management

WoMan (Ferilli, 2014) includes two submodules: WEST (Workflow Enactment Supervisor and Trainer) can supervise a process execution and foresee the next activities of the user according to a given process model; WIND (Workflow INDucer) can learn and/or refine the process model based on cases that are provided as successful examples of process execution.

Given a goal, the system selects the process models that allow to reach that goal. While receiving the events coming from the environment, the system acts...
in supervision mode, checking whether it is compliant with the current model(s) that have been activated. The outcome for each activity can be:

- **ok** the activity is compliant with the model;
- **warning** the event does not match the model because the activity is not allowed by the model in the current status of the execution;
- **error** termination of an activity that had never begun; termination of the process execution with still pending activities.

As long as the process execution proceeds, these outcomes are collected. If several candidate workflow models are considered, they are used by the system to hypothesize which models are more likely to be taking place and which ones are less likely, using its submodule WoGue (acronym for Workflow GUesser).

For each model WoMan can also, based on the current status and context of the execution, foresee which will be the next actions of the user. This allows the agent to carry out suitable interventions that support or facilitate the execution of these actions, by just communicating useful information to the user or to an external interested person or by directly acting on suitable effectors to modify the environment. In other cases, the desired effect is provided by existing services that the agent may call. While atomic services can be directly activated by the agent, there are complex tasks for which a single service is not available, and there is no known composition of elementary services that solves the problem. In these cases, the system may call SerPICo to find service compositions that may reach the objective and are compliant with the given constraints, preferences or requirements.

When the process execution terminates, if no error was raised, and the system is notified that the execution was correct, the learning component is called to refine the process model as follows:

- adding new tasks to the activity flow model;
- adding new paths between available activities in the activity flow model;
- changing the weights of the components of the activity flow model;
- refining the pre- and/or post-conditions for the activities and/or paths in the activity flow model.

Correct cases just change the weights of the model.

3.2 Service Composition

Let us explain how to obtain OWL-S (OWL for Services\(^1\)) composed services using Semantic Web languages and tools, in particular the Semantic Web Rule Language (SWRL)\(^2\). OWL-S is an ontology that enables semantic descriptions of Web services by means of three perspectives: ServiceProfile, with advertisement aims; ServiceGrounding, used to link a concrete service description (i.e., WSDL); and ServiceModel, that defines the OWL-S process model. In particular, each process is based on an IOPR (Inputs, Outputs, Preconditions, and Results) model. The Inputs represent the information that is required for the execution of the process. The Outputs represent the information that the process returns to the requester. Preconditions are conditions imposed over the Inputs that must hold for successfully invoking the process. Since an OWL-S process may yield several results with corresponding outputs, the Results entity of the IOPR model provides a means to specify this situation.

Each result can be associated to a result condition, called inCondition, that specifies when that particular result can occur. It is assumed that such conditions are mutually exclusive, so that only one result can be obtained for each possible situation. When an inCondition is satisfied, there are properties associated to this event that specify the corresponding output (with Output property) and, possibly, the Effects (hasEffect properties) produced by the execution of the process. Effects are changes in the state of the world. The OWL-S conditions (Preconditions, inConditions and Effects) are represented as logical formulas. Since OWL offers limited support to formulate constructs like property compositions without becoming undecidable, a more powerful language is required for the representation of OWL-S conditions.

One of the proposed languages is SWRL. Although SWRL is undecidable, a solution has been proposed in (Motik et al., 2005) where decidability is achieved by restricting the application of SWRL rules only to the individuals explicitly introduced in the ABox. This kind of SWRL rules, called DL-safe, makes this language the best candidate for representing OWL-S conditions (Redavid et al., 2013). Let us now briefly mention the characteristics of SWRL that are relevant to our scope. SWRL extends the set of OWL axioms (classes, properties, built-ins) to include Horn-like rules in the form of implications between an antecedent (body) and a consequent (head), both consisting of conjunctions of zero or more atoms. The intended meaning can be read as: whenever the conditions specified in the antecedent hold, then the conditions specified in the consequent must also hold. A rule with conjunctive consequent can be transformed into multiple rules each with an atomic consequent by means of Lloyd-Topor transformations.

We encode an atomic OWL-S service with the fol-

\(^1\)http://www.w3.org/Submission/OWL-S/

\(^2\)http://www.w3.org/Submission/SWRL/
The following abstract rule (Redavid et al., 2013):

\[\text{Preconditions} \land \text{inCondition} \rightarrow \{ \text{output} \} \land \text{Effect} \]

If the service has many results, multiple rules having different inCondition, output and/or Effect are used. With this encoding we can apply the SWRL composer proposed in the same work. It implements a backward search algorithm for the composition task that works as follows: it takes as input a set of SWRL rules and a goal specified as a SWRL atom, and returns every possible path built by combining the available SWRL rules in order to achieve such a goal. These rules fulfill the SWRL safety condition. Specifically, the algorithm performs backward chaining starting from the goal in the same way as Prolog-like reasoners work for query answering. The difference is that this algorithm works on SWRL DL-safe rules instead of Horn clauses. This means that, besides the rule base, it takes into account also the Description Logic ontology the rules refer to.

The SWRL rule path found, and consequently the resulting OWL-S service composition, will be valid (in the sense that it will produce results for the selected goal) only if the SWRL rules in the path are DL-safe. In other words, DL-safety means that rules are true for individuals that are known, i.e., that appear in the knowledge base. The implemented prototype performs DL-safety check. This guarantees that the application of rules is grounded in the ABox and, consequently, that the services embodying those rules can be executed.

4 TYPES OF AGENTS

The types of agents that implement the above architecture extend those in (Cavone et al., 2012):

Sensor Agents (SA): provide information about sensor parameters and values (e.g., temperature, light level, humidity, etc.).

Context Agents (CA): determine the current context from sensor events; they are able to reason at a higher level than sensor agents, for instance starting from temperature and humidity data they may determine whether the user is in a comfortable situation (De Carolis et al., 2005).

User Profile Agent (UPA): is responsible for determining the preferences profile to be used, and may serve personalization purposes.

Butler Agent (BA): combines intelligent reasoning, machine learning, service-oriented computing and semantic Web technologies for flexibly coordinating and adaptively providing smart services in dynamically changing contexts.

Effector Agents (EA): each appliance and device is controlled by an EA that reasons on the opportunity of performing an action instead of another in the current context.

Interactor Agents (IA): handle interaction with the user. They are responsible for choosing the best interaction metaphor according to the situation and to the user’s needs and preferences, and for executing suitable communicative tasks by performing communicative actions.

Housekeeper Agent (HA): acts as a facilitator since it knows all the agents that are active in the house and also the goals they are able to fulfill.

The underlying metaphor is that of a butler in a grand-house that is in charge of perceiving the situation of the house and of coordinating the housestaff in order to satisfy the needs of the house inhabitants. In particular, it reasons on the user’s goals and devises the workflow to satisfy them.

These agents coordinate themselves as follows. Cyclically, or as an answer to a user action, the butler runs its reasoning model about the user. Based on the information provided by the appropriate CAs, it infers the possible goals and needs of the user and ranks them by urgency or certainty by consulting the UPA. Given a specific goal, it selects an appropriate workflow by matching semantically the goal with all the Input, Output, Pre-Condition and Effect (IOPE) descriptions of the workflows stored in a workflow repository. During workflow enactment, semantic matchmaking is also used to select the services/actions to be invoked among those available in the environment.

The available semantic Web services are listed in a Semantic Web Services Register (SWSR) according to the IOPE standard representation (Meyer, 2007). Hence, the workflow services are invoked dynamically, matching the user’s needs in the most effective way. As regards predicates of Web Services, both simple and complex Web Services will be implemented according to the standard OWL-S.

5 SAMPLE SCENARIO

As a sample scenario, consider a SHE in which Steve usually lives alone, but is occasionally visited by his relatives, friends and girlfriend (Tina). It is Friday evening, and based on the user’s profile and current context the system has inferred the need for pursuing the goal ‘relaxing amusement’. The corresponding workflow extracted from the repository is ‘evening_at_home’. The system loads the corre-
An Agent Architecture for Adaptive Supervision and Control of Smart Environments

Figure 2: Choose Pizza service sequences (a) and Order Pizza service sequences (b).

Building on the corresponding model and starts checking compliance of the user’s actions with this model (in addition to carrying out normal control activities over the environment). Tina is also present.

At some point during workflow enactment, the system foresees that the user will almost certainly perform task ‘dinner’ and, concurrently, ‘watch_movie’ or ‘watch_football’.

- Dinner, is a complex activity that may be carried out according to different sub-workflows: ‘formal_dinner’, ‘informal_dinner’, or ‘fast_dinner’. Since a precondition for ‘formal_dinner’ is that the user has dressed elegant clothes, and that the ‘relax_amusement’ goal is not active, the system discards the ‘formal_dinner’ option, and starts checking compliance of the user’s actions with the remaining two models. These actions cause more warnings on ‘informal_dinner’ than on ‘fast_dinner’ (e.g., activities ‘set_table’ and ‘use_kitchen’, required by the former, are not executed), for which reason the latter is deemed as more likely to be running. While tracking this process, at some point the system foresees that the user will carry out activities ‘pizza’ and ‘beer’. As to the latter, it immediately activates suitable effectors to start cooling a beer. As to the former, no pizza is available at home, so it must be ordered.

- As to the ‘watch_movie’ vs. ‘watch_football’ option, the precondition for the latter requires, among other features, that it must be Wednesday and that Steve’s girlfriend must not be present (because, according to her profile, she doesn’t like football). Due to these requirements being not fulfilled, the option is discarded, and the ‘watch_movie’ action is pursued.

Both actions ‘pizza’ and ‘watch_movie’ can be carried out by the system by calling corresponding (compositions of) Web Services. E.g., suppose that no single Web service is available to order a pizza, nor a composite service is known to the system to do this. In this case, the system activates the Service Composer to find one.

For instance, the set of available services, annotated in OWL-S, might be as reported in Table 1. Using the OWL-S composer, the agent obtains the compositions in Figure 2. Note that different services use different ontologies. These ontologies have been previously aligned, to know which classes of the former are equivalent to which ones of the latter. Given the compositions, the agent executes the following steps:

1. it uses the composition in Figure 2(a) to evaluate what sequence of services best matches its requirement (examples of evaluation conditions might be a lower price or the possibility to change the order);
2. it uses the composition in Figure 2(b) to evaluate whether the sequence of services for the dealer selected in the previous step can be used (i.e., it has all the required input parameter values); if needed or appropriate, it may consider the other services offered by the provider (e.g., SpizzicoRegistration or SpizzicoRechargeService for Spizzico);
3. in case the selected sequence is not applicable, it goes back to step 1 to select another sequence, not considering anymore the evaluated sequence;
4. it executes the chosen service sequence and obtains the order receipt.

The agent might apply the same procedure to order the movie.

6 CONCLUSIONS

This paper describes the architecture and functional-
ity of a generic agent that is in charge of handling a given environment in an AmI context, ensuring suitable contextualized and personalized support to the user’s actions, adaptivity to the user’s peculiarities and to changes over time, and automated management of the environment itself.

The architecture is implemented in a multi-agent system, where different types of agents are in charge of performing different tasks. At different levels, they are endowed with reasoning and learning capabilities, and are coordinated by a ‘butler’. In addition to controlling normal operations of the environment, the butler may identify user’s needs and goals and activate suitable workflows to satisfy them. Some actions in these workflows involve the execution of semantic services. When a single service is not available for fulfilling a given need, an automatic service composer is used to obtain a suitable combination of services.

The architecture has been implemented in a prototypical agent-based system that works in a smart home environment. It is currently undergoing extension and refinement in order to make it able to deal with more varied and complex situations.

ACKNOWLEDGEMENTS

This work was partially funded by the Italian PON 2007-2013 project PON02_00563_3489339 ‘Puglia@Service’.

REFERENCES

