Range and Vision Sensors Fusion for Outdoor 3D Reconstruction

Ghina El Natour¹, Omar Ait Aider¹, Raphael Rouveure², François Berry¹ and Patrice Faure²

¹Blaise Pascal Institut UBP-CNRS 6602, Blaise Pascal University, Clermont-Ferrand, France
²IRSTEA, Institut national de Recherche en Sciences et Technologies pour l’Environnement et l’Agriculture, Clermont-Ferrand, France

Keywords: 3D Reconstruction, Multi-sensor Calibration, Range Sensor, Vision Sensor.

Abstract: The conscience of the surrounding environment is inevitable task for several applications such as mapping, autonomous navigation and localization. In this paper we are interested by exploiting the complementarity of a panoramic microwave radar and a monocular camera for 3D reconstruction of large scale environments. Considering the robustness to environmental conditions and depth detection ability of the radar on one hand, and the high spatial resolution of a vision sensor on the other hand, makes these tow sensors well adapted for large scale outdoor cartography. Firstly, the system model of the two sensors is represented and a new 3D reconstruction method based on sensors geometry is introduced. Secondly, we address the global calibration problem which consists in finding the exact transformation between radar and camera coordinate systems. The method is based on the optimization of a non-linear criterion obtained from a set of radar-to-image target correspondences. Both methods have been validated with synthetic and real data.

1 INTRODUCTION

Virtual world creation and the conscience of real world are important tasks for several applications such as mapping, autonomous navigation and localization. Therefore, data acquisition through a sensor or a host of sensors is required. Despite the large number of studies and researches in this field ((Bhagawati, 2000; Kordelas et al., 2010)), there are still many challenges for fully automatic and real time modeling process together with high quality results, because of acquisition and matching constraints, calling for more contributions. The methods can be classified according to sensors used: vision sensor, range sensor, odometers or a set of sensors. To overcome the limitations of single sensor approaches, multi-sensory fusion have been recently a point of interest in widespread applications and researches especially for 3D mapping applications.

Regarding the low cost and high spatial resolution of vision sensors, a huge number of vision based approaches for 3D reconstruction have been proposed. For example, a method based on a single panoramic image was described in Sturm et al. (Sturm, 2000). Gallup et al. (Gallup et al., 2007) worked on frames of a single video-camera to reconstruct the depth maps. Some other examples can be found in (Pollefeys et al., 2008) and (Royer et al., 2007). Methods for 3D scene reconstruction from an image sequence can be grouped in two classes: Structure-from-Motion and dense stereo. In the last years, many works tend to fill the gap between the two approaches in order to propose methods which may handle very large scale outdoor scenes. Results seem to be of good quality though it recommends a large amount of input data and heavy algorithms which make it not quite suitable for real time processing. It is also known that techniques for large scene reconstruction by vision generally suffer from scale factor drift and loop closing problems. In addition, vision sensors present several drawbacks due to the influence of image quality when illumination and weather conditions are deteriorated. For this reason, tapping into active sensors has become essential. Furthermore, the capability of range sensors to work in difficult atmospheric conditions and its decreasing cost, made it well suited for extended outdoor robotic applications. For example, Grimes et al. (Grimes and Jones, 1974) investigated on automotive radar and discussed in detail its configurations and different potential applications for vehicles. In (Rouveure et al., 2009), RADio Detection And Ranging (RADAR) is used for simultaneous localization and mapping (R-SLAM algorithm) applications in agriculture. In (Austin et al., 2011), single radar is used to reconstruct sparse 3D model. However, range sensors fail to recognize elevation, shape, texture, and
size of a target. Many solutions based on the combination of depth and vision sensors are described in the literature. An example of this fusion can be found in (Forlani et al., 2006), an automatic classification of raw data from Light Detection And Ranging (LIDAR) in external environments, and a reconstruction of 3D models of buildings is presented. The Lidar provides a large number of 3D points which requires data processing algorithms, and can be memory and time consuming. SLAM applications with Kinect are also numerous ((Smisek et al., 2013; Schindhelm, 2012; Pan- cham et al., 2011)). Yet the performances are generally limited in outdoor environment due to the small depth range and sensitivity to illumination conditions.

In this paper, we are investigating the combination of panoramic MMW (Millimetre Waves) radar and a camera in order to achieve a sparse 3D reconstruction of large scale outdoor environments. Recently, this type of fusion has been studied for on-road obstacle detection and vehicle tracking: in (Bertozzi et al., 2008), camera and radar were integrated with an inertial sensor to perform road obstacle detection and classification. Other works on radar-vision fusion for obstacle detection can also be found in literature (see for example (Roy et al., 2009; Hofmann et al., 2003; Wang et al., 2011; Haselhoff et al., 2007; Alessandretti et al., 2007; Bombini et al., 2006)). However, we are not aware of any work using radar and camera for outdoor 3D reconstruction. More than data fusion, our aim is to build a 3D sensor which provides textured elevation maps. Therefore, a geometrical model of the sensors and a calibration technique should be provided. These two sensors are complementary: we rely on the fact that the distance from an object to the system is given by the radar measurements having a constant range error with increasing distance. While its altitude and size can readily be extracted from the image. The camera/radar system is rigidly fixed and the acquisitions from the two sensors are done simultaneously. In multi-sensors systems, each sensor performs measurements in its own coordinate system. Thus, one needs to transform these measurements into a global coordinate system. Our goal is to simplify this tricky and important step, which is crucial for the matching process and inhibits the reconstruction accuracy so that it can be carried out easily and anywhere, by a non-expert operator. Therefore we propose a technique which uses only a set of radar-to-image point matches. These points are simple targets positioned in front of the camera/radar system and the distances between them are measured. A nonlinear geometrical constraint is derived from each match and a cost function is built. Finally, the transformation between the radar and the camera frames is recovered by a LM-based optimization (Levenberg-Marquardt). Once the calibration parameters are defined, the 3D reconstruction of any radar-vision matched target can be achieved resolving a system of geometrical equations. Indeed, the intersection point of a sphere centered on radar frame origin and a light ray passing through the camera optical center is the 3D position of the object. So, a small amount of input data (single image and panoramic frame) is sufficient to achieve a sparse 3D map allowing thereby the real time processing.

The paper is organized as follows: In section 2 we describe the camera and radar geometrical models and we addressed the 3D reconstruction problem. Section 3 focuses on the calibration method. And finally, experimental results obtained with both synthetic and real data are presented and discussed in section 4.

2 3D RECONSTRUCTION

3D reconstruction of large scale environment is a challenging topic. Our goal is to build a simple 3D sensor which provides textured elevation maps as illustrated in fig.1. In order to achieve the 3D reconstruction a preliminary steps must be carried on: Data acquisition should be done simultaneously by each of the sensors having an overlapping field of view. Features extraction and matching between the data provided by these two sensors is a difficult process since it is inherently different and thus it cannot be easily compared or matched. For the current stage, further works are under progress for this step. Finally, the calibration consists of determining the transformation mapping targets coordinates from one sensor frame to another.

![Figure 1: An illustration of elevation map generation exploiting radar and vision complementarity.](image-url)

2.1 The System Model

The system model is formed by a camera and radar rigidly linked. The camera frame and centre are de-
noted R_s and $O_s(x_s,y_s,z_s)$, respectively. Similarly R_r and $O_r(x_r,y_r,z_r)$ are respectively the radar’s frame and centre. The sensors system is illustrated in fig.2. The radar performs acquisitions over 360° per second thanks to its 1^{st} step rotating antenna. It generates each second a panoramic image of type PPI (Plan Position Indicator), where detected targets are localized in 2D polar coordinates. The radar-target distance measurement is based on the FMTCW principle (Skolnik, 2001). It can be shown that the frequency difference (called beat frequency) between the transmitted signal and the signal received from a target is proportional to the sought distance. The reflected signal has a different frequency because of the continuous variation of the transmitted signal around a fixed reference frequency. Therefore, the radar performs a circular projection on a horizontal plane passing through the centre of the antenna first lobe, the projected point is denoted $m_r(\alpha, r)$. So, the real depth r and azimuth α of a detected target is provided without any altitude information. For the camera, we assume a pinhole model consisting of two transformations: first transformation projects a 3D point $\tilde{M}(x, y, z, 1)^T$ into $\tilde{p}(u, v, 1)^T$ (in homogeneous coordinates system) of the image plane I_c and it is written as follows:

$$w\tilde{p} = [K][I_c]_{4\times 4}\tilde{M}$$

(1)

$$w\begin{bmatrix}u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & u_0 & 0 \\ 0 & f_y & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

(2)

Where w is a scale factor and K is the matrix of intrinsic parameters, assumed to be known, since the camera is calibrated (Bouguet, 2004). One can write:

$$M = [K^{-1}\tilde{p}] = [wm]$$

(3)

and

$$m = [K^{-1}\tilde{p}] = [m_1 \quad m_2 \quad m_3]^T$$

(4)

Second, the calibration parameters are described by a 3D transformation (rotation R and translation t) mapping any point M from the camera frame R_c to a point $\tilde{Q}(X,Y,Z,1)^T$ in the radar frame R_r such as:

$$M = AQ$$

(5)

with A the extrinsic matrix parameters.

$$A = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} & t_x \\ R_{21} & R_{22} & R_{23} & t_y \\ R_{31} & R_{32} & R_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(6)

Replacing \tilde{M} in equation (1) by the formula in (5), provides the final transformation mapping 3D to 2D point as follows:

$$w\tilde{p} = [K'][A\tilde{Q}]$$

(7)

2.2 The 3D Reconstruction Method

Because of the projected geometry of vision and radar sensors, part of informations are lost while acquisition. 3D reconstruction of an unknown scene is then the compensation of missing data from two dimensions acquisitions. In order to recover the third dimension we proceed as follows: a 3D point Q detected by both camera and radar is the intersection of the light ray L passing by the optical centre and the sphere C centred on radar as shown in fig.3. Therefore, its 3D coordinates are obtained by estimating the intersection point Q is lying on the sphere C whose equation is:

$$(C) (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$$

(8)

Our method consists of three steps: First the scale factor w is computed. From equation (3), x, y and z can be written as a function of w: $x = wm_1$, $y = wm_2$ and $z = wm_3$, thereby, leading to a quadratic equation in w:

$$w^2(m_1^2 + m_2^2 + m_3^2) - 2w(m_1x_0 + m_2y_0 + m_3z_0) + (x_0^2 + y_0^2 + z_0^2 - r^2) = 0$$

(9)
Since we are working in large scale environment, the targets are usually too far compared to the baseline (the distance between the radar and camera frames). Then, the camera is always inside the sphere C, so theoretically, two solutions exist, w and w'. From these solutions, two points $\tilde{M}(x, y, z, 1)^T$ and $\tilde{M}'(x', y', z', 1)^T$ relative to the vision sensor are deduced from (20). Secondly, the transformation is applied to these latter in order to determine their coordinates in the radar frame system. The two points in radar frame are then:

$$\begin{align*}
\tilde{Q} &= A^{-1}\tilde{M} \\
\tilde{Q}' &= A^{-1}\tilde{M}'
\end{align*}$$

Finally, azimuth of these 3D points are computed from the Cartesian coordinates. Thereby, the correct solution is selected by comparing the computed azimuth angle and the one measured by the radar. The calibration step is then requisite in order to determine the transformation matrix A.

3 SYSTEM CALIBRATION

The calibration stage is an important factor affecting the reconstruction accuracy. Hence, it is required to develop an accurate calibration method. For sum application one might need to re-calibrate the system due to mechanical vibrations or to enable free positioning of the sensors thus it should be rather simple to implement.

3.1 Related Work

The closest work on camera-radar system calibration is the work of S. Sugimoto et al. (Sugimoto et al., 2004). Radar’s acquisitions are considered to be coplanar, since it perform a planar projection on its a horizontal plane. Therefore, the transformation A is a homography H between image and radar planes. In spite of its theoretical simplicity, this method is hard to be implemented. Indeed, while the canonical target is being continuously moved up and down by a mechanical system, it should be simultaneously acquired by radar and camera. Then, pairs of matches (4 pairs at least) corresponding to the exact intersection of the target with the horizontal plane of the radar, are extracted. Moreover, due to sampling frequency, the exact positions are determined from the maximum of the intensity reflected by the target using bilinear interpolation of the measurement samples along the vertical trajectory of each target.

3.2 The Proposed Calibration Method

Our goal is to determine rotation and translation. The only constraint for the proposed method is the a priori knowledge of distances between the targets used for calibration. For an azimuth angle α, we have the normal to the plane VP, $\vec{n} = (\sin(\alpha), -\cos(\alpha), 0)$. Since VP is a vertical plane passing by O_c it have the following equation:

$$X \sin(\alpha) - Y \cos(\alpha) = 0$$

$O_r(x_r, y_r, z_r)$ and r are the sphere centre and radius respectively in radar coordinate frame. The sphere C is then centred on $O_r(0, 0, 0)$, equation (9) becomes:

$$(C)(X)^2 + (Y)^2 + (Z)^2 = r^2$$

From equation (7), X, Y and Z are expressed in terms of unknown A and w:

$$\begin{align*}
X &= A_{11}w_1 + A_{12}w_2 + A_{13}w_3 + A_{14}
Y &= A_{21}w_1 + A_{22}w_2 + A_{23}w_3 + A_{24}
Z &= A_{31}w_1 + A_{32}w_2 + A_{33}w_3 + A_{34}
\end{align*}$$

For n matches, system (S_1) is obtained, with $i = 1 \rightarrow n$ and ε the residuals:

$$\begin{align*}
(S_1) \left\{ \begin{array}{l}
X_i^2 + Y_i^2 + Z_i^2 - r_i^2 = \varepsilon_i^2 \\
\sin(\alpha)
\end{array} \right. \quad \text{and} \quad \varepsilon_i = Y_i \cos(\alpha_i)
\end{align*}$$

The equations are expressed with respect to a parameter vector $[\gamma_1, \gamma_2, \gamma_3, \ldots, \gamma_2, \gamma_3, \ldots, \gamma_2, \gamma_3]$, γ are the three rotational angles relative to Ox, Oy and Oz. In order to calculate the scale factor w_i, we applied the generalized form of the Pythagorean theorem for an unspecified triangle; to the triangle formed by two 3D points M_1, M_2 with O_c as illustrated in fig.4. This gives the following equations:

$$D_1^2 + D_2^2 - 2L_{12} = d_{12}^2$$

where

$$L_{12} = D_1D_2 \cos(\theta_{12})$$

D_i is the depth of the point relative to O_c and it is related to the scale factor w_i, and the angle β_i formed between the principle point p_i and pixel p_i by the formula:

$$D_i = \frac{w_i}{\cos(\beta_i)}$$

with

$$\cos(\beta_i) = \frac{p_i^2 + (\gamma k)^2 - p_i}{\sqrt{(p_i^2 + (\gamma k)^2 - p_i)(p_i^2 + (\gamma k)^2 - p_i)}}$$

Figure 4: The triangle formed by M_1, M_2 (3D points in the camera frame) and O_c is shown. d_{12} is the known distance between M_1 and M_2 and D_1, D_2 are their depths relative to O_c.

$$D_1^2 + D_2^2 - 2L_{12} = d_{12}^2$$

$$L_{12} = D_1D_2 \cos(\theta_{12})$$

D_i is the depth of the point relative to O_c and it is related to the scale factor w_i, and the angle β_i formed between the principle point p_i and pixel p_i by the formula:

$$D_i = \frac{w_i}{\cos(\beta_i)}$$

with

$$\cos(\beta_i) = \frac{p_i^2 + (\gamma k)^2 - p_i}{\sqrt{(p_i^2 + (\gamma k)^2 - p_i)(p_i^2 + (\gamma k)^2 - p_i)}}$$
d_{ij} is the known distance between points and θ_{ij} is the angle between two rays lining up the 3D points with O_c. Since we have six degrees of freedom (DOF): three for rotation angles and three for the translation, both relative to O_x, O_y and O_z, we need at least six points. With six 3D points, we have 15 inter-distances so we obtain a system (S_2) of 15 equations in terms of $w_i = 1 \rightarrow 6$ and ϵ are the residuals:

$$(S_2) \left(D^2_i + D^2_j - 2L_{ij} - d^2_{ij} \right) = \epsilon_i^j$$

The system is solved by the algorithm of Levenberg-Marquardt, based on non-linear least squares optimization of the sum of squared residuals $(\epsilon)^2$, in order to determine the approximate solution as shown hereafter:

$$\sum (\epsilon_{i1}^j)^2 + (\epsilon_{i2}^j)^2 \text{ and } \sum (\epsilon_{i3}^j)^2$$

(18)

4 RESULTS

4.1 Simulation Results

Simulations with synthetic data were carried out in order to test the efficiency and the robustness of the new methods with respect to numerous parameters such as number of points and noise level. Sets of 3D points are randomly generated following a uniform random distribution within a cubic work space in front of the camera-radar system. The projected pixel of each 3D point is computed using the pinhole model of the camera, and its spherical coordinates are computed. At first, both algorithms were tested without additional noise and a very low error levels were obtained (1.180 10^{-6} m on translation, 1.269 10^{-12} ° on rotation and 3.671 10^{-14} m on reconstruction results). Afterwards, the simulations were extended emulating realistic cases, in order to test the accuracy of the calibration and reconstruction methods. Therefore synthetic data are perturbed by uniformly distributed, random noise. Linear increasing of noise level is applied on data, starting from level 1 corresponding to ± 0.5 pixels, $\pm 0.5^\circ$ on azimuth angle, $\pm 0.5cm$ on distance up to level 25 corresponding to ± 2.5 pixels, $\pm 5^\circ$ on azimuth angle, $\pm 50cm$ on distance and $\pm 5mm$ on inter-distance. This multi level noise is added progressively on data. Both calibration and reconstruction errors graphs are shown in fig.5 and 6.

The number of matches used for the calibration process is 10. It should be noticed that the increasing noise on the rotation and translation increases the errors: non-linear algorithms are affected by noise and yet our algorithm shows an acceptable behaviour in the presence of noisy data. The graph in fig.6 shows the mean and standard deviation of the RMSE upon 50 reconstructed points. Despite of the slight raising of error with increasing noise level, it is quite clear that the method is very robust in the presence of a realistic noise level.

4.2 Experimental Results

The radar and the camera were mounted in a fixed configuration in order to carry out real data acquisitions (for the current stage the radar antenna rotates 360° but the camera is stable). The system is shown in fig.7. The radar is called K2Pi. It has been devel-

Figure 5: Calibration error with respect to the noise level. Left: translation error in meter. Right: rotation error in radian. The graphs show the mean and the standard deviation of RMSE upon 6 specimen.

Figure 6: Reconstruction error with respect to the noise level. The error is in meter relative to the points depths (r). The mean and standard deviation over 50 reconstructed points are shown.

Figure 7: Radar and camera system.

Figure 8: The canonical targets were painted in order to readily extract the centre (yellow cross).
oped by Irstea Institute. The optic sensor used is uEye by IDS (Imaging Development Systems). Camera and radar’s characteristics are listed in table 1. Eight canonical targets were placed in front of the sensors system. Metallic targets are highly reflective. Their tetrahedral and spheric forms provide the same radar waves reflection regardless of their position relative to the radar. The depth of targets is chosen to be slightly close (between 6 and 14m) and targets were painted to increase the contrast and thus facilitate the features (targets centres) extraction from the image. The fig.8 shows an example of these targets. First the system is calibrated using our algorithm. The inter-distances between the targets centres are measured precisely, and an image and a panoramic of the 8 targets in random configurations are used. Image and radar targets are extracted and matched manually.

<table>
<thead>
<tr>
<th>Camera characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor technology</td>
<td>CMOS</td>
</tr>
<tr>
<td>Sensor size</td>
<td>4.512×2.880 mm</td>
</tr>
<tr>
<td>Pixel size</td>
<td>0.006 mm</td>
</tr>
<tr>
<td>Resolution ($h \times v$)</td>
<td>752×480</td>
</tr>
<tr>
<td>Focal distance</td>
<td>8 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radar characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier frequency</td>
<td>24 GHz</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>20 dB</td>
</tr>
<tr>
<td>Range</td>
<td>3 – 100m</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>4°</td>
</tr>
<tr>
<td>Distance resolution</td>
<td>1m</td>
</tr>
<tr>
<td>Distance precision</td>
<td>0.02m</td>
</tr>
</tbody>
</table>

Fig.9 shows the corresponding pixels and radar points extracted in the image of the camera and the panoramic image. In order to validate the reconstruction method and to assess our calibration results, the 8 targets were placed at different heights and depths. The matches were also extracted and the reconstruction is done in radar frame. Fig.10 represent the results of the reconstruction technique, using the method of section 3.2 and reconstruction from a stereo head, used as ground truth. The ground truth point set and the reconstructed one were registered using ICP (Iterative Closest Point) algorithm. The RMS of the reconstruction error is about 0.1939 m with a standard deviation of 0.015 m. The results show a realistic error for the 3D reconstruction of targets at a mean depth of 12 m.

A qualitative evaluation of the reconstruction method is also provided in fig.11. In this exemple, an interactive segmentation and matching of the data are done. An accurate result of a 3D reconstruction of a real urban scene is shown and enhanced with a texture map. In fact, the interest of this sensor fusion is shown in this example as the radar provides no information about the elevation of the bridge, so it is detected as a barrier which is corrected after the reconstruction.

5 CONCLUSIONS

In this paper, we presented a 3D reconstruction method using a radar and a camera for extended outdoor applications and a geometrical algorithm for spatial calibration. Our methods are both validated by simulated data, and real experiments with sparse data. Results show the accuracy of these methods and prove the interest of the application of these two sensors for 3D reconstruction of outdoor scenes and quite a good behavior in the presence of noise. To our knowledge, these types of sensors have not been used for large outdoor reconstruction applications. For the current stage, sparse point matches are extracted manually, therefore, RANSAC-like algorithms must be settled up to make automatic matching and to achieve dense 3D reconstruction. Further real time reconstruction experiments of urban scenes should be carried out.
REFERENCES

