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Abstract: Similarity search of time series can be efficiently handled through a multi-resolution representation scheme 
which offers the possibility to use pre-computed distances that are calculated and stored at indexing time 
and then utilized at query time together with filters in the form of exclusion conditions which speed up the 
search. In this paper we introduce a new multi-resolution representation and search framework of time 
series. Compared with our previous multi-resolution methods which use first degree polynomials to reduce 
the dimensionality of the time series at different resolution levels, the novelty of this work is that it applies 
Haar wavelets to represent the time series. This representation is particularly adapted to our multi-resolution 
approach as discrete wavelet transforms have the ability of reflecting the local and global information 
content at every resolution level thus enhancing the performance of the similarity search algorithm, which is 
what we have shown in this paper through extensive experiments on different datasets. 

1 INTRODUCTION 

A time series is an ordered collection of 
observations over a period of time. Time series data 
arises in many applications including medical, 
financial, and engineering. For this reason, time 
series data mining has received attention over the 
last years. 

Time series data mining handles several tasks, 
the most important of which are query-by-content, 
clustering, and classification. Executing these tasks 
requires performing another fundamental task in 
data mining which is the similarity search. 

A similarity search problem consists of a 
database D, a query or a pattern q, which does not 
necessarily belong to D, and a constraint that 
determines the extent of proximity that the data 
objects should satisfy to qualify as answers to that 
query.  

The time series similarity search problem has 
many applications in computer science. Similarity 
between two time series can be depicted using a 
similarity measure, which is usually a costly 
operation compared with other tasks such as CPU 
time or even I/O time.  

Direct sequential scanning compares every 
single time series in D against q to answer this 
query. Obviously this is not an efficient approach 
given that modern time series databases are usually 
very large. 

The main framework for reducing the 
computational cost of the similarity search problem 
is the Generic Multimedia Indexing (GEMINI) 
algorithm (Faloutsos et al, 1994). GEMINI reduces 
the dimensionality of the time series by converting 
them from a point in an n-dimensional space into a 
point in an N-dimensional space, where N<<n. If the 
similarity measure defined on the reduced space is a 
lower bound of the original similarity measure then 
the similarity search returns no false dismissals in 
this case. A post-processing sequential scan on the 
candidate response set is performed to filter out all 
the false alarms and return the final response set. 
Figure 1 illustrates the GEMINI algorithm. 

Dimensionality Reduction Techniques, also 
known as Representation Methods, follow the 
GEMININ framework to find a faster solution to the 
similarity search problem in time series databases.  

This is achieved by mapping the time series to 
lower dimensional spaces, thus reducing their 
dimensionality, and then processing the query in 
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those reduced spaces. The main objective of 
dimensionality reduction is to reveal data structure 
which is hard to obtain from a high-dimensional 
space (Yang, 2010). 

 

 

Figure 1: The GEMINI algorithm for range queries. 

Several dimensionality reduction techniques 
have been suggested in the literature, of those we 
mention: Piecewise Aggregate Approximation 
(PAA) (Keogh et al., 2000) and (Yi and Faloutsos, 
2000), Piecewise Linear Approximation (PLA) 
(Morinaka et al., 2001), and Adaptive Piecewise 
Constant Approximation (APCA) (Keogh et al., 
2001). 

The problem with all these dimensionality 
reduction techniques is that they use a “one-
resolution” approach. The dimension of the reduced 
space is decided at indexing time and the 
performance at query time depends completely on 
the choice made at indexing time. But in practice we 
do not necessarily know a priori the optimal 
dimension of the reduced space. 

This was the motivation behind our multi-
resolution approach which offers more control on 
the parameters that determine the effectiveness and 
efficiency of the dimensionality reduction methods. 
The basis of these multi-resolution methods is to 
map the time series to multiple spaces instead of 
one. In (Muhammad Fuad and Marteau, 2010b) we 

presented Weak-MIR: a multi-resolution indexing 
and retrieval method of time series. Weak-MIR is a 
standalone method that uses two filters to exclude 
non-qualifying time series. Later in (Muhammad 
Fuad and Marteau, 2010c) we introduced MIR-X 
which associates the multi-resolution approach with 
another dimensionality reduction technique. Our last 
multi-resolution method Tight-MIR was presented in 
(Muhammad Fuad and Marteau, 2010a). Tight-MIR 
has the advantages of the two previously mentioned 
methods. All these versions were validated through 
extensive experiments. 

In this paper we introduce a new multi-resolution 
method of time series data which uses the Discrete 
Wavelet Transform (DWT), namely the Haar 
Wavelets, in conjunction with the multi-resolution 
approach. This combination boosts the performance 
of the multi-resolution approach. 

In the following we first present the related 
background in Section 2. In Section 3, we introduce 
the new method which we validate in Section 4. 
Finally, the concluding discussion is presented in 
Section 5.  

2 BACKGROUND 

Multi-representation approaches store data at 
different scales called resolution levels. The 
principle of this representation is that a 
representation of a higher resolution contains all the 
data of the lower resolutions (Sun and Zhou, 2005). 
Multi-resolution methods are widely used in 
multimedia databases. In (Figueras et al., 2002) a 
multi-resolution Matching Pursuit is used to 
decompose images. Multi-resolution is also used for 
a color reduction algorithm in (Ramella and Sanniti 
di Baja, 2010). In (Vogiatzis and Tsapatsoulis, 2006) 
the authors use multi-resolution schemes to estimate 
missing values for DNA micro-arrays. 

Multi-resolution methods have also been 
exploited in time series information retrieval and 
data mining. In (Bergeron and Foulks, 2006) a 
visualization application for very large 
multidimensional time series datasets is developed. 
The proposed data model supports multiple 
integrated spatial and temporal resolutions of the 
original data. Using multi-resolution techniques to 
effectively visualize large time series is also applied 
in (Hao et al., 2007) where the proposed framework 
uses multiple resolution levels. In (Castro and 
Azevedo, 2010) the authors propose a method based 
on the multi-resolution property of iSAX (Shieh and 
Keogh, 2008), (Shieh and Keogh, 2009) to derive 
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motifs at different resolutions. In (Lin et al., 2005) 
the authors propose a multi-resolution PAA (Keogh 
et al, 2000), (Yi and Faloutsos, 2000); a well-known 
time series dimensionality reduction technique, to 
achieve an algorithm for iterative clustering. This 
clustering process is sped up by examining the time 
series at increasingly higher resolution levels of the 
PAA. 

In (Vlachos et al., 2003) and (Lin et al., 2007) 
the authors propose a time series k-means clustering 
algorithm based on the multi-resolution property of 
wavelets. In (Megalooikonomou et al, 2005) and 
(Wang et al, 2010) a method of multi resolution 
representation of time series is presented. 

In (Muhammad Fuad and Marteau, 2010b) we 
presented the Multi-resolution Indexing and 
Retrieval Algorithm (Weak-MIR). Weak-MIR 
involves a multi-resolution representation of time 
series. The indexing system stores different numbers 
of pre-computed distances, corresponding to the 
number of resolution levels. Lower resolution levels 
have lower dimensions, so distance computations at 
these levels are less costly than higher resolution 
levels where dimensions are higher, so distance 
evaluations are more expensive. But the 
computational complexity at any level is always less 
than that of sequential scanning because even at the 
highest level the dimension is still lower than that of 
the original space which is used in sequential 
scanning. The search algorithm of Weak-MIR starts 
at the lowest resolution level and tries to exclude the 
time series, which are not answers to the query, at 
that level where the distances are not costly to 
calculate, and the algorithm does not access a higher 
level until all the pre-computed distances of the 
lower level have been exploited.  

Later in (Muhammad Fuad and Marteau, 2010c) 
we introduced another version of the multi-
resolution method called MIR-X. MIR-X combines 
a representation method with a multi-resolution one, 
so we have two representations of each segment of 
the time series. We showed in (Muhammad Fuad 
and Marteau, 2010c) how MIR-X can boost the 
performance of Weak-MIR. MIR-X uses one of the 
two filters that Weak-MIR uses together with the 
lower-dimensional distance of a time series 
dimensionality reduction technique.  

In (Muhammad Fuad and Marteau, 2010a) we 
presented Tight-MIR which is an improved multi-
resolution indexing and retrieval algorithm. The 
principle of Tight-MIR is based on the remark that 
the two filters used in Weak-MIR can be applied 
separately, so the second filter in Tight-MIR is 
applied by directly accessing the raw data in the 

original space using a number of points that 
corresponds to the dimension of the reduced space at 
that resolution level. Tight-MIR has the advantages 
of both Weak-MIR and MIR-X in that it is a 
standalone method, like Weak-MIR, yet it has the 
same competitive performance of MIR-X. This fact 
has been shown through extensive experiments.   

3 THE HAAR WAVELET-BASED 
MULTI-RESOLUTION 
METHOD (H-MIR) 

Despite the improvement that Weak-MIR, MIR-X 
and Tight-MIR  offer, they all share a drawback that 
hinders their performance; the dimensionality 
reduction technique they use, which is first degree 
polynomials linking the two end points of each 
segment of the time series, is too basic. A more 
sophisticated dimensionality reduction technique 
that better reflects the local and global information 
content of the whole time series at every resolution 
level will give better results.  

Of all the dimensionality reduction techniques 
known in the literature one is particularly adapted 
for this purpose. It is Discrete Wavelet Transform  

3.1 Discrete Wavelet Transform 
(DWT) 

Wavelets are mathematical tools for hierarchically 
decomposing functions. Regardless of whether the 
function of interest is an image, a curve, or a surface, 
wavelets offer an elegant technique for representing 
the levels of details present (Stollnitz et al., 1995). 
Wavelets have successfully been used in many fields 
of computer science such as image compression 
(DeVore et al., 1992), image querying and many 
others. DWT has also been used in time series 
information retrieval as a dimensionality reduction 
technique (Chan and Wai-chee Fu, 1999), 
(Popivanov and Miller, 2002), (Wu et al., 2000). The 
advantage that DWT has over other methods in 
indexing time series data is that DWT is a multi- 
resolution representation method and it can represent 
local information in addition to global information. 

Table 1: Example of the Haar wavelet decomposition. 

Resolution Averages DTW Coefficients 

4 [8,4,3,5]  

2 [6,4] [2,-1] 

1 [5] [1] 
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Figure 2: DWT representation of a time series. 

Haar wavelets are the simplest form of wavelets. 
Haar wavelet transform is a series of averaging and 
differentiating operations. To get an idea of how 1-
dimensional Haar wavelets work, let us consider the 
following 4-dimensional time series:

  5,3,4,8s . By taking the average of each two 

successive values we get the following 2-
dimenisonal time series:  4,6s . Recursively 

repeating this process we get the full decomposition 
of s as shown in the Table 1. 

So the wavelet transform of s  is  1,2,1,5  .  
The principal idea behind using DWT as a 

dimensionality reduction technique is that a time 
series can uniquely be represented by a wavelet 
transform, but by keeping only the 
first N coefficients we can reduce the dimensionality 
and keep much of the information that is in the 
original time series. For instance, Figure 2 shows the 
DWT decomposition at level 7 of a 128-dimension 
time series.  

A lower bounding distance to the Euclidean 
distance was presented in (Chan and Wai-chee Fu, 
1999) and it was proven that this lower bound 
guarantees no false alarms. It is important to 
mention that DWT requires that the length of the 
time series be a power of 2.  

3.2 The Proposed H-MIR Algorithm 

The basis of our new H-MIR representation method 
is as follows: let S  be the original n -dimensional 
space where the time series are embedded. At each 
resolution level k each time series is represented by 
DWT (Haar wavelets) keeping the first 

k2 coefficients. We refer to this reduced space 

by
 kR . The distance between this DWT 

representation and the time series is minimal thus 
this representation is the best approximation at level 
k.  The image of all the points of the time series on 
DWT is an n -dimensional vector which we call the 

image vector and denote by  ks . The DWT 
representation at every resolution level is denoted 

by
 kRs . We define two distances, the first is nd  : 

an n-dimensional distance metric (so it is the 
distance between two time series in S , or the 
distance between a time series and its image vector). 

The second distance denoted by )( kRd is the 
distance between two DWT representations of two 
time series at level k. As mentioned in Section 3.1, 
this distance is proven to lower bound the Euclidean 
distance. 

The principle of H-MIR is to speed up the search 
by establishing exclusion conditions that filter out 
non-qualifying time series using pre-computed 
distances.  

Given a query ),( q , let )(ks , )(kq be the 

image vectors of s , q , respectively, on their DTW 

representation at level k. Given that nd  is metric 
and by applying the triangle inequality we get: 

      Ssqqdsqdsqd knnkn  )()( ,,,  (1)

The range query can thus be expressed as:  

   )()( ,, knkn qqdsqd    (2)

Since the distance between 
)(ks  and s at level k is 

minimal we get: 

   )()( ,, knkn ssdsqd   (3)

So equation (2) can be written as: 

   )()( ,, knkn qqdssd    (4)

So all the time series that satisfy: 

   )()( ,, knkn qqdssd    (5)

are non-qualifying and can be safely excluded. 
In a similar manner, and by applying the triangle 

inequality again, we get:  

   )()( ,, knkn ssdqqd    (6)

Equation (6) implies that all the time series that 
satisfy: 

   )()( ,, knkn ssdqqd    (7)

are non-qualifying and can also be excluded. 
From equations (5) and (7) we get the first filter 

of H-MIR which is: 

     )()( ,, knkn ssdqqd  (8)

In addition to the above filter H-MIR, and at
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Figure 3: Comparison of the latency time between MIR-Tight and H-MIR on datasets (Foetal ecg), (CBF), (Yoga), (Wafer), 
(GunPoint) and (FaceAll). 

each resolution level k, uses the following exclusion 
condition: 

  )()()( , kRkRkR sqd  (9)

Equation (9) is the second filter of H-MIR. 

Indexing Time: At each resolution level k the time 

series are mapped to a 
k2 –dimension space using a 

DWT transform and keeping the first 
k2 coefficients. 

We compute and store all the distances 

  Ssssd kn ,, )(  .  

Query Time: The query is also mapped to a 
k2 –

dimension space using a DWT transform and 

keeping the first 
k2 coefficients. 

The first filter has a much lower computational cost 
than the second filter as it does not include any 
online distance evaluation. The computational cost 
of the second filter also increases as the resolution 
level gets higher.  

After applying the first filter to all time series at 
all resolution levels, we apply the second filter. 

This filter is applied starting the lowest level first 
before moving to the higher level because this filter 
requires computing Rd whose computational cost 
increases as the resolution level gets higher, but the 
pruning power of the second filter also rises as we 
move to higher resolution levels. 

 

4 EXPERIMENTS 

In order to evaluate the performance of our new 
method H-MIR we conducted several similarity 
search experiments on different time series datasets 
from different time series repositories (Povinelli), 
(SISTA's Identification Database), (StatLib - 
Datasets Archive), (Keogh et al., 2011) using 
different threshold values. In our experiments we 
compared H-MIR against Tight-MIR since it was 
shown in (Muhammad Fuad and Marteau, 2010a) 
that Tight-MIR outperforms both Weak-MIR and 
MIR-X. 

As mentioned in Section 3.1 DWT is applicable 
to time series whose lengths are of the power of 2, 
so when this was not the case for the dataset tested 
we truncated the time series. 

As in (Muhammad Fuad and Marteau, 2010a), 
the comparison criteria was  based on the latency 
time concept presented in (Schulte et al., 2005) 
which calculates the number of cycles the processor 
takes to perform different arithmetic operations (>,+ 
- ,*,abs, sqrt) to execute the similarity search. This 
number for each operation is multiplied by the 
latency time of that operation to get the total latency 
time of the similarity search.  The latency time is 5 
cycles for (>, + -), 1 cycle for (abs), 24 cycles for 
(*), and 209 cycles for (sqrt) (Schulte et al., 2005). 

In the first set of experiments we compared H- 
MIR against Tight-MIR on different datasets of
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Figure 4: The latency time of H-MIR, Tight-MIR, and sequential scanning on datasets (motoCurrent) and (Wind). 

different dimensionalities and sizes and for different 
threshold values. In Figure 3 we present some of the 
results obtained. 

The results obtained show that H-MIR 
outperforms Tight-MIR on all these datasets and for 
all values of the threshold ε. 

As in (Muhammad Fuad and Marteau, 2010a), 
we also tested the stability of H-MIR on a wide 
range of time series dimension. We report in Figure 
4 the results of the similarity search on two time 
series with very different dimensions, the first is 
(Wind) whose dimension is 12, and the second is 
(motoCurrent) whose dimension is 1500. These 
experiments were conducted for different values of 
the threshold ε. For comparison, we also report the 
results obtained by using Tight-MIR and sequential 
scanning. This latter method represents the baseline 
performance. 

As we can see, H-MIR has a stable performance 
on time series of different dimensions, which is the 
same advantage that Tight-MIR has. 

5 CONCLUSIONS 

We presented in this paper a new representation 
method of time series data which, in contrast to 
other time series representation methods, uses 
multiple spaces to represent the data. We also 
proposed a framework for performing the similarity 
search using the new method. This framework 
reduces the number of online distance evaluations by 
using pre-computed distances and exclusion 
conditions. The particularity of the new method over 
other multi-resolution representation methods is that 
the new method uses a dimensionality reduction 
technique, DWT, which is especially adapted for our 
method owing to its multi-resolution nature. We 
validated our new method through experiments on 

datasets from different time series archives. 
We believe our new method can be extended to 

handle other data types, especially to process image 
querying where the concept of multi-resolution 
levels is pertinent and where DWT is widely used. 
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