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Abstract: This paper proposes a novel strategy to find the best reference homography in mosaics from video sequences.
The reference homography globally minimizes the distortions induced on each image frame by the mosaic ho-
mography itself. This method is designed for planar mosaics on which a bad choice of the first reference image
frame can lead to severe distortions after concatenating several successive homographies. This often happens
in the case of underwater mosaics with non-flat seabed and no georeferential information available. Given
a video sequence of an almost planar surface, sub-mosaics with low distortions of temporally close image
frames are computed and successively merged according to a hierarchical clustering procedure. A robust and
effective feature tracker using an approximated global position map between image frames allows us to build
the mosaic also between locally close but not temporally consecutive frames. Sub-mosaics are successively
merged by concatenating their relative homographies with another reference homography which minimizes
the distortion on each frame of the fused image. Experimental results on challenging real underwater videos
show the validity of the proposed method.

1 INTRODUCTION

Over the last decade, image mosaicing has received
a considerable attention for its wide range of prac-
tical applications (Brown and Lowe, 2007). How-
ever, despite the recent progress in the field, obtain-
ing good mosaics still remains a challenging and not
fully solved task. This is mostly due to the assump-
tion of input data with sufficiently scene distance or
image acquired by camera rotations only (Hartley and
Zisserman, 2003). These requisites cannot be effec-
tively met in practice, causing image misalignments
and ghosting artefacts. In order to avoid or alle-
viate these issues, several image stitching and post
processing techniques have been developed in recent
years (Lin et al., 2011; Zaragoza et al., 2014; Zhang
and Liu, 2014).

Furthermore, video mosaicing has become quite
popular in underwater vision (Pizarro and Singh,
2003; Bellavia et al., 2007; Prados et al., 2012), due to
its applications to in situ exploration and autonomous
navigation. While common panoramic mosaics as-
sume spherical or cylindrical models, in the case of
underwater environments planar surface models are
assumed. A problem commonly ignored, yet often
present in practice, is the selection of a reference ho-

mography reprojection frame on which to attach the
various mosaic images. The most common and trivial
choice is to use the first frame image or, often sup-
ported by geo-referential camera positions, a user pre-
defined one. A bad choice for the reference frame can
lead to very distorted mosaics (see Fig. 1 (left)). This
can also result after some sequential frame concate-
nations into degenerate and incorrect configurations.
This problem is accentuated in underwater videos due
to the unstable trajectory of the acquisition vehicle
with roll and pitch shakes and the non-flat truly na-
ture of the seabed in most cases. To the best of our
knowledge, methods to solve this issue exist in the
literature solely for the case of planar mosaics from
rotation-only frames (Capel, 2001).

This paper presents in Sect. 2 a novel multi-step
method to estimate the mosaic reference homography
in the case of planar mosaics from video sequences.
An output example is shown in Fig. 1 (right). This
general approach is sided with a robust full mosaic
pipeline particularly designed for underwater envi-
ronments, where the non-planar nature of the scenes
make it difficult to match and track the keypoints re-
quired to compute inter-frame homographies. Some
selected results on real underwater video sequences
from different oceanographic campaigns are given in
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Figure 1: A distorted mosaic due to a wrong reference ho-
mography selection (left). Note that in the former case more
than half of the frames accumulate on the bottom with large
scale variations and distortions. This is not present in the
output given by the proposed method (right). In both cases
no post-processing color correction or blending have been
applied.

Sect. 3, showing the good performance of the overall
algorithm. Finally, conclusions and future work are
draw out in Sect. 4.

2 METHOD DESCRIPTION

2.1 Overview

The overall pipeline of the method is schematically
described in Fig. 2. The approach starts by dividing
the video sequence into successive piecewise planar
sub-mosaics with low geometric distortions with re-
spect to the original image frames, as described in
Sect. 2.2.

Sequential concatenation of temporally consecu-
tive frames is sufficient to produce the piecewise pla-
nar sub-mosaics. However, a global strategy is re-
quired to match frames locally close but temporally
non-consecutive. This is required in order to reduce
the propagation of homography estimation errors due
to the non-planar real nature of the scene.

An approximated 2D map of the video frame po-
sitions is then computed, by considering the average
translation between successive frames, which is up-
dated when two close frames are discovered. The
best paths on the map are used to robustly track fea-
tures in spatially close but non-consecutive frames
and compute the homography between them. De-
tails of this step are given in Sect. 2.3. Finally, as

  Sub-mosaic generation:
- consecutive image matching and
  homography computation
- sequential greedy homography
  concatenation

  Feature track map building:
- frame location map generation
- best path computation
- keypoint track across sub-mosaics

  Hierachical sub-mosaic merging 
- sub-mosaic alignment
- reference homography estimation
- post-processing

Figure 2: A schematic view of the mosaic pipeline.

described in Sect. 2.4, sub-mosaics are merged us-
ing the tracked keypoints one at a time according to
a hierarchical clustering, preferring sub-mosaics with
high overlap. When two sub-mosaics are merged, the
best reference homography between them is found in
order to minimize the distortion of the image frames.
This is achieved by exploring the search space of the
“average” homographies between the two sub-mosaic
images. Common blending and photometric post-
processing steps are eventually applied to refine the
results (Uyttendaele et al., 2001; Kwatra et al., 2003;
Brown and Lowe, 2007; Prados et al., 2012).

2.2 Sub-mosaic Generation

Given the video sequence of n+1 consecutive frames
I0, I1, . . . , In, the first step is to extract the image
keypoints to obtain the matches between overlapping
frames and their associated homography. For this pur-
pose, the HarrisZ detector (Bellavia et al., 2011) is
used, providing robust and reliable corner features.

In the following step, homographies between con-
secutive image frame pairs (Ik; Ik+1) are computed.
In particular, feature matches are computed using
the sGOr matching selection strategy (Bellavia et al.,
2014) under the further assumption that the optical
flow between successive frames is bounded. That is,
given a generic keypoint pair (xk;xk+1) with xi 2 Ii, it
must hold

k xk�xk+1 k< er (1)
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where the threshold er is set to a third of the diago-
nal of the rectangular video frame. The homography
Hk;k+1 2R3�3 that maps points from Ik to Ik+1 is com-
puted on the obtained matches using the noRANSAC
method (Bellavia and Tegolo, 2011), a robust exten-
sion of the RANSAC 7-point algorithm (Hartley and
Zisserman, 2003) using normalized errors.

Finally, a piecewise planar sub-mosaic Si; j going
from frame i to frame j (see Fig. 3) is constructed
from its keyframe sequence Ki; j

Ki; j = Ik1 ; Ik2 ; : : : ; Ikm (2)

with i = k1 < k2 < :: : < km = j, as explained here-
after. The first image frame and keyframe Ii of the
subsequence is used as reference, so that the ho-
mography map Hi; j

w relating the sub-mosaic to any
keyframe Ikw , is simply obtained by concatenating the
sequential homographies from Hi;i+1 to Hkw�1;kw :

Hi; j
w = Hkw�1;kw Hkw�1;kw�2 : : : Hi;i+1 (3)

The sub-mosaic is then built according to a greedy
strategy by sequentially looking for next keyframe in
Ii+1; Ii+2; : : :. The frame I j is added as keyframe if the
overlap between the current sub-mosaic and the pro-
jection of frame I j onto the sub-mosaic is less than a
threshold. The sub-mosaic generation process stops
when the projection of frame I j+1 is too distorted to
be included in Ki j. In this case I j is added as the fi-
nal keyframe with the sub-mosaic Si; j as output and
starting from I j+1 a new sub-mosaic is grown.

The distortion criterion is defined as follows. As-
suming rectangular video frames, their projections
into quadrilaterals in the mosaic are considered dis-
torted if one of the following conditions is met: (1) the
ratio between the original and projected frames is out-
side a user-defined range, (2) the area of the bounding
box including all common keypoints in the projected
mosaic is below a threshold, (3) the ratio between the
minimum and maximum semi-axis lengths of the pro-
jected quadrilateral exceeds a given value.

2.3 Feature Track Map Building

Sequential sub-mosaics can be merged using only the
homography between boundary keyframes, for exam-
ple using the homography H j; j+1 between the sub-
mosaics Si; j and S j+1;w, with i < j < w. However,
this solution is not robust, due to inevitable inaccura-
cies in the homography which may propagate across
the sequence, especially when coming back to an al-
ready seen location of the mosaic. According to this
observation, adding more robust matches and recog-
nizing loop-closures (Konolige and Agrawal, 2008)
may improve the result thanks to a suitable keypoint
tracking strategy, implemented as follows.

Figure 3: From left to right, two consecutive sub-mosaics
from the mosaic of Fig. 1(right). The reference image
frames Ik1 on which successive frames are concatenated (see
text) are highlighted by boxes. No color correction or blend-
ing have been applied.

Given a threshold et = 1:5 px the enriched set of
matches Mk�1;k is computed, considering all the key-
point matching pairs and not only the filtered subset
given in input to the RANSAC (see Sect. 2.2). With
an abuse of notation for indicating homogeneous nor-
malized coordinates, we have

Mk�1;k = f(xk�1;xk) : xk�1 2 Ik�1;
xk 2 Ik;k xk�Hk�1;kxk�1 k< etg

(4)

where matches are selected according to the nearest
neighbour approach (Lowe, 2004) on the homogra-
phy reprojection error. This allows to track more
keypoints across non-consecutive frames since longer
tracks can be built.

In order to handle loop-closure, a robust global
keypoint tracking map is also implemented, see
Fig. 4. Under the assumption of an almost planar sur-
face, an initial frame location map T 0 : fIkg!R2 for
each frame Ik in the video sequence is computed us-
ing the average displacement between corresponding
matches

T 0(Ik) = T 0(Ik�1)+
1
N å

Mk�1;k

(xk�xk�1) (5)

The process is started from T 0(I0) = 0, where the
summation is on the match pairs (xk�1;xk) 2 Mk�1;k
and N = jMk�1;kj (blue line on Fig. 4(a)). Further it-
erations i are introduced to progressively update the
map T i, as in the case of the Self-Organizing Map
learning method (Haykin, 1998). In detail, given the

VISAPP�2015�-�International�Conference�on�Computer�Vision�Theory�and�Applications

514



(a) (b)
Figure 4: The frame location map (a) corresponding to the
mosaic in (b). The first and last iterations T 0 and T are
plotted as blue and red lines, respectively, and no blending
and color correction have been applied to the mosaic. The
zoomed region in (a) shows the minimum path Aa;b and the
best path Ba;b between two frames Ia and Ib. The maximum
allowable edge distance is er. (Best viewed in color.)

set of frames Iw in a radius er from Ik

Ji
k = fIw : k T i(Ik)�T i(Iw) k� erg (6)

where er is set as for Eq. 1, T i is updated to T i+1 as
follows

T i+1(Ik) = T i(Ik)+
di

L å
Ji

k

gk;w

N å
Mk;w

(xk�xw) (7)

where the outer summation is on the frames Iw 2 Ji
k,

L = jJi
kj, the inner summation as for Eq. 5 and Mk;w

is defined analogously to Mk�1;k (see Eq. 4). The
value 0 < d < 1 is an exponential decay going with
the iteration i to limit the iterations and gk;w is a
Gaussian weight on the distance k T i(Ik)�T i(Iw) k.
When di ’ 0 no further updates are needed, and the
final map T is obtained (from blue to red lines as it-
erations proceed in Fig. 4(a)). Note that the planar
displacement approximation of the map cannot han-
dle scale variations, so that there is no perfect cor-
respondence between Fig. 4(a) and Fig. 4(b). Nev-
ertheless, this does not interfere with the final key-
point tracking. The graph G = (V;E) is associated
to the map T , where the set of nodes is V = fIkg,
i.e. the frames of the sequence, and an edge Ek;z be-
tween vertexes Ik and Iz with an associated weight
k T (Ik)� T (Iz) k exists only if 9 i such that Iz 2 Ji

k.

A keypoint xw on frame Iw is tracked to the key-
point xz in the frame Iz following the chain of matches
(xw;xk1);(xk1 ;xk2); : : : ;(xkm ;xz) according to the best
path B between the frame Iw and Iz on the graph G.
For any match pair in the chain it must hold that
(xki ;xk j) 2Mki;k j . The best path Ew;k1 ;Ek1;k2 ; : : :Ekm;z
must concatenates short weight edges, since matches
from distant frames are more unstable and error
prone. Furthermore, the best path length must be
short because very long paths accumulate errors.

We computed the best path B from a frame Ik
to a frame Iw by an extended version of the Floyd-
Warshall all-shortest-paths algorithm (Cormen et al.,
2009). Hereafter, both a path and its length with be
referred with the same symbol. In the first step we
compute the minimum path length A between all the
frames in G, using the standard algorithm updating
rule at each iteration 0� i� jV j, i.e.

Ai
a;b =

(
Ai�1

a;c +Ai�1
c;b if Ai�1

a;c +Ai�1
c;b < Ai�1

a;b
Ai�1

a;b otherwise
(8)

where Ai
a;b is the shortest path length at iteration i be-

tween frames Ia and Ib, and A0
a;b = Ea;b. Denoting the

shortest path length at the last iteration by Aa;b = AjV ja;b,
this is used as follows to bound the length of the best
path Bi

a;b using a factor f = 2. Defining the auxiliary
values Ci

a;b representing the maximum edge weight in
the path between Ia and Ib, the update rule for the last
step are

Bi
a;b =

8><>:
Bi�1

a;c +Bi�1
c;b if Bi�1

a;c +Bi�1
c;b < f Aa;b and

max(Ci�1
a;c ;Ci�1

c;b )<Ci�1
a;b

Bi�1
a;b otherwise

(9)
and

Ci
a;b =

8><>:
max(Ci�1

a;c ;Ci�1
c;b ) if Bi�1

a;c +Bi�1
c;b < f Aa;b and

max(Ci�1
a;c ;Ci�1

c;b )<Ci�1
a;b

Ci�1
a;b otherwise

(10)
initialized as for the previous step as B0

a;b = C0
a;b =

Ea;b, the edge in the best path are updated accordingly.
An example of the best path between two frames is
given in Fig. 4(a).

Denoting the best path at the last iteration with
Ba;b = BjV ja;b, referring to Sect. 2.2, the robust matches
between two sub-mosaics Si; j and Sw;z are obtained
by trying to track on the best path Bs;t each of the
keypoints xi; j of any keyframe Is 2 Ki; j to a keypoint
xz;w of any keyframe It 2 Kw;z. The obtained robust
matches Mz;w

i; j = f(xi; j;xz;w)g across the sub-mosaics
are used to compute the homography Hz;w

i; j and finally
merge the sub-mosaics as explained in the next sec-
tion.
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Note that for computing the RANSAC given in-
lier set Mz;w

i; j an error threshold 5 times greater than
that used in the other RANSAC inlier set Mk;w is em-
ployed. This is done to partially relax the planar sur-
face assumption, which is unreal in concrete cases,
and allow larger surface deformations.

2.4 Hierarchical Sub-mosaic Merging

Sub-mosaics are merged incrementally according to
their overlap, following a hierarchical clustering al-
gorithm. In particular, defining by S0 = fSi; jg the
initial cluster partition, at each step 0 � i < jS0j, we
try to merge all the possible pairs (Si; j;Sw;z), with
Si; j;Sw;z 2 Si, using the robust homography Hz;w

i; j com-
puted as in Sect. 2.3, to which the reference homog-
raphy H̃z;w

i; j described next is applied. Denoting by S�i; j
the area of the sub-mosaic Si; j according to the ref-
erence homography H̃z;w

i; j and in similar way for S�w;z,
only the sub-mosaic pair with the minimal overlap er-
ror Rw;z

i; j

Rw;z
i; j = 1�

S�i; j \S�w;z
S�i; j [S�w;z

(11)

is effectively merged in the next cluster partition Si+1,
until no more merges can be done. The reference ho-
mography H̃z;w

i; j between two sub-mosaics is computed
by trying to minimize the distortion of all the frames
in Ki; j and Kw;z in the merged mosaic. In particular,
considering the pair (Si; j;Sw;z), we define the auxil-
iary merged mosaics S1 and S2 obtained respectively
using the first frames Ii 2 Ki; j and Iw 2 Kw;z as ref-
erences (see Fig. 5 (top and middle rows)). In the
first case the homography Hz;w

i; j is used to map points
of Sz;w onto the reference frame Ii, while in the other
case the inverse (Hz;w

i; j )
�1 maps points of Si; j onto Iw.

Both S1 and S2 are aligned according to the robust
matches (xi; j;xz;w) 2 Mz;w

i; j (see Sect. 2.3). In partic-
ular, S1 and S2 are translated so that the new origins
are in their centroids and rotated according to the ro-
tation R of the best similarity transform obtained by
the least-square solution (Zhang and Liu, 2014), i.e.

x̃1 = x1� å
Mw;z

i; j

xi; j (12)

x̃2 = C

0@x2� å
Mw;z

i; j

xw;z

1A (13)

C =
1

a2 +b2

�
a b
b a

�
(14)

where x̃1 and x̃2 are the aligned new point coordinates
for points x1 2 S1 and x2 2 S2 respectively. The values

Figure 5: The auxiliary mosaics S1 (green frames, top row)
and S2 (red frames, middle row) obtained using respec-
tively as reference frames Ii 2 Ki; j (green filled frame) and
Iw 2 Kw;z (red filled frame) from Si; j (lighter color) and
Sw;z (darker color) are aligned to find the best reference ho-
mography (bottom row). Four pairs of corresponding ran-
dom sampled points (x1

i ;x
2
i ) are used to generate the mid-

points xa
i on which computing the reference homography

H̃z;w
i; j (bottom row, blue frames). The error P is given by

accounting for the distortion of each resulting (blue) frame.
(Best viewed in color).

a and b are computed on lest-squares according to the
similarity transform

xi; j =

24 a b c1
b a c2
0 0 1

35xw;z (15)

with an abuse of notation for homogeneous coordi-
nates and a;b;c1;c2 2 R (see Fig. 5 (bottom row,
green and red frames) for an example).

The reference homography H̃z;w
i; j is chosen by

RANSAC, looking for the “average” homography
which minimizes the error P (see Fig. 5 (bottom row,
blue frames)). Given four corresponding randomly
sampled non-collinear points xi

1 and xi
2 on S1 and

S2 respectively, 1 � i � 4, and the associated mid-
points xi

a =
1
2 (x

i
1 +xi

2), the “average” homography is
given by the homography H1

a mapping x1
i to xa

i . Un-
der the assumption of n�m rectangular frames, for
each frame Ik 2 Ki; j [Kw;z, we compute a distortion
error P on the quadrilateral Ĩk, obtained by applying
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H1
a to the image of Ik on S1

P = max
Ik2Ki; j[Kw;z

(PO +PN +PA +Pa) (16)

Figure 6: Configuration for computing the error P when
projecting the image frame Ik to Ĩk through the mosaic ho-
mography H (see text). Corresponding vertex pairs are
(vi; ṽi) for 1� i� 4.

Considering the four quadrilateral sides of length
li of Ĩk in consecutive order, under the assumption that
n > m with l1; l3 corresponding to the side of length
n on Ik and in similar way l2; l4 to m (see Fig. 6), we
define the different errors composing P. In particular,
PO measures the error on the ratio between the oppo-
site sides of Ĩk:

PO = 2� 1
2

�
min(l1; l3)
max(l1; l3)

+
min(l2; l4)
max(l2; l4)

�
(17)

while PN measures the error on the ratio between con-
secutive sides of Ĩk:

PN = 1�
min(r; m

n )

max(r; m
n )

(18)

where

r = min
�

l1
l2
;

l2
l3
;

l3
l4
;

l4
l1

�
(19)

The error PA gives the error ratio between the frame
area nm and the area of its image AĨk

PA = 1�
min(AĨk ;nm)

max(AĨk ;nm)
(20)

while Pa measures the angular error

Pa = (max(cos12;cos23;cos34;cos41))
5 (21)

cosab being the absolute value of the cosine between
the two sides la and lb. An example of resulting mo-
saic obtained by merging sub-mosaics according to
the best reference homography H̃z;w

i; j of Fig. 5 is shown
in Fig. 7. Finally, as post-processing step on the fi-
nal merged mosaic, multi-band blending (Brown and
Lowe, 2007) and color correction using an extension
of the Reinhard’s method (Reinhard et al., 2001) are
applied.

Figure 7: The initial sub-mosaics Si; j;Sw;z (top) and the re-
sulting mosaic (bottom) according to the computed refer-
ence homography H̃z;w

i; j of Fig. 5. In both cases no post-
processing color correction or blending have been applied.

(a) (b)
Figure 8: Snapshots of the two test video sequences. In the
case the video sequence (a) the shaded area containing a
fixed robot arm has been cropped. (Best viewed in color.)

3 EXPERIMENTAL RESULTS

We tested the proposed pipeline on two underwa-
ter video sequences which together with the software
code are freely available online1. Snapshots of video
frames are shown in Fig. 8, in the case of the first
video, the image area of the frame including the robot
arm was cropped. To remove redundant data, the orig-
inal 25 fps videos were downsampled to 5 fps. The
corresponding output mosaics are shown in Fig. 9.
As it can be noted, the resulting mosaics are good,
with no evident misalignment glitches or strong frame
deformations. Underwater scenes are very challeng-
ing, due to their high intensity changes and repeated
patterns, which make the feature tracking difficult, so

1http://www.math.unipa.it/fbellavia/dl/mosaic.zip
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(a) (b)
Figure 9: Output mosaics corresponding respectively to the video sequences of Fig. 8(a)-(b). (Best viewed in color).
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that the quality of the results strengthen the validity of
the feature track map computation of Sect. 2.3.

As it can be seen from the output mosaics, the pro-
posed method is effective in choosing the reference
mosaic homography (see Sect. 2.4). Note that, us-
ing the first image frame as reference, in the case of
Fig. 8(a) would lead to very distorted images, as can
be observed even from corresponding initial merged
sub-mosaics (see Fig. 5 (top and middle rows, green
and red frames)). Indeed, the proposed method al-
lowed us to get in a completely automatic way as
good-looking mosaics as those obtained with strong
expert user intervention.

4 CONCLUSIONS

This paper proposes a new approach to compute the
best reference mosaic homography that minimizes the
frame distortions in the case of planar mosaics. For
this purpose, a full hierarchical mosaicing pipeline
was designed, with particular attention to underwa-
ter mosaicing applications that, due to the scene com-
plexity, require robust feature tracking schemes as the
one proposed in this paper. Experimental results show
the validity of our method, yielding to high quality
unsupervised mosaics.

Future work will include more evaluation tests as
well incorporating in the pipeline new stitching algo-
rithms (Zaragoza et al., 2014; Zhang and Liu, 2014)
to replace the standard 7-point homography compu-
tation, with the aim to improve results in the case of
strong 3D content.
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