Geometric Encoding, Filtering, and Visualization of Genomic Sequences

Helena Cristina da Gama Leitão¹, Rafael Felipe Veiga Saracchini² and Jorge Stolfi³

¹Institute of Computing, Federal Fluminense University, Niterói, Brazil
²Department of Simulation and Control, Technical Institute of Castilla y León, Burgos, Spain
³Institute of Computing, State University of Campinas, Campinas, Brazil

Keywords: Bio-sequence Analysis, Signal Analysis, Visualization, Filtering, Multi-scale.

Abstract: This article describes a three-channel encoding of nucleotide sequences, and proper formulas for filtering and downsampling such encoded sequences for multi-scale signal analysis. With proper interpolation, the encoded sequences can be visualized as curves in three-dimensional space. The filtering uses Gaussian-like smoothing kernels, chosen so that all levels of the multi-scale pyramid (except the original curve) are practically free from aliasing artifacts and have the same degree of smoothing. With these precautions, the overall shape of the space curve is robust under small changes in the DNA sequence, such as single-point mutations, insertions, deletions, and shifts.

1 INTRODUCTION

In bioinformatics, fragments of DNA (or RNA) are commonly represented as sequences of letters from the alphabet $B = \{A, T, C, G\}$, denoting the four nucleotides that may appear in DNA. However, some advanced sequence processing methods require arithmetical operations on the elements, like averaging and interpolation. For these methods, we describe a representation of the four nucleotides as points of three-dimensional space \mathbb{R}^3, and procedures for the filtering and downsampling the resulting point chains, suitable for multiscale analysis, that avoid aliasing artifacts.

We also show that these point sequences can be interpolated to produce a smooth curve in \mathbb{R}^3, whose general shape is substantially preserved by mutation, insertion, or deletion of short sequences. These curves can be rendered or displayed interactively to help the visual detection of similar subsequences.

2 RELATED WORK

The numerical encoding of DNA sequences for signal processing is an old idea. Already in 1989 by E. A. Cheever et al. (Cheever et al., 1989) described an algorithm for rapid comparison of two discrete signals using cross-correlation via the fast Fourier transform (FFT). In numerical coding DNA sequences, it is important to mention the work by Anastassiou (Anastassiou, 2002) that maps the basis for vertices of a tetrahedron, similar to that used in this work. The method presented by Cristea (Cristea, 2002), maps directly codons and aminoacids into a tetrahedron, proposing alternative forms of this representation in a complex(2D) and linear encoding. This technique allowed the analysis of the genome from nucleotide to aminoacid level.

In 2011, L. Ravichandran et al. (Ravichandran et al., 2011) proposed a query-based alignment method for biological sequences that first maps sequences to time-domain waveforms before processing the waveforms for alignment in the time-frequency plane. In 2014, J. A. T. Machado et al. (Machado et al., 2011) applied time-frequency analysis by wavelet decomposition to human DNA and protein sequences.

Multiscale analysis of DNA sequences was reviewed by A. Futschik et al. (Futschik et al., 2014) and T. A. Knijnenburg et al. (Knijnenburg et al., 2014), and applied by them to multiscale segmentation of the sequences. Both groups worked on a single-channel numerical signal z extracted from the sequence. Knijnenburg et al. (Knijnenburg et al., 2014) defined z as the physical distance from each point of the sequence to a functional genomic element, and applied to it a multiscale segmentation algorithm by K. L. Vicken et al. (Vicken et al., 1997). Futschik et al. (Futschik et al., 2014) instead defined z as the $G+C$ content, and used multi-scale statistical
3 TETRAHEDRAL ENCODING

Like D. Anastassiou (Anastassiou, 2002), we encode each DNA letter by a distinct vertex of a regular tetrahedron \(T^3 \) in \(\mathbb{R}^3 \). However we position the tetrahedron so that all vertex coordinates are \(+1\) or \(-1\), namely:

\[
\begin{align*}
A & \rightarrow (+1, +1, -1) \\
T & \rightarrow (+1, -1, +1) \\
C & \rightarrow (-1, +1, +1) \\
G & \rightarrow (-1, -1, -1)
\end{align*}
\]

See figure 1.

We will use the words *datum* for each element \(x^{(k)}[j] \) of such an encoded sequence (a point of \(\mathbb{R}^3 \)), and *sample* for each of its three coordinates. For a discussion of alternative encodings, see section 6.

Figure 1: The tetrahedron \(T^3 \) whose corners encode the letters of the DNA alphabet \(\mathcal{B} \).

3.1 Multiscale Analysis of DNA

In multi-scale signal analysis, a given discrete numerical sequence \(X \) is transformed into a hierarchy of discrete signals \(x^{(0)}, \ldots, x^{(m)} \); where \(x^{(0)} \) is the original sequence \(X \), and each subsequent signal \(x^{(k)} \) with \(k \geq 1 \) is a downsampled version of the previous one \(x^{(k-1)} \), with some step \(\delta^{(k)} \geq 1 \) (usually 2). With the encoding described in section 3, multiscale analysis can be applied to DNA sequences as well, by treating each channel as a numeric discrete signal. See figure 2.

3.2 The Space-curve Representation

Each level \(x^{(k)} \) of the multi-scale hierarchy of a DNA sequence is a sequence of points \(x^{(k)}[0], \ldots, x^{(k)}[n-1] \) in three-dimensional space. These points can be interpolated with a cubic spline for any real argument \(t \) in the range \([0, n-1] \), to yield a smooth curve \(x^{(k)}(t) \) in three-dimensional space. This curve can be plotted with arbitrary 3D rendering methods or viewed with interactive 3D visualization tools. See figure 3.

Figure 2: Multiscale versions of a DNA sequence with 250 nucleotides, encoded as corners of \(T^3 \), filtered and downsampled as described in section 4.2 and 4.3. The three channels are plotted in red, green, and blue, respectively.

Figure 3: Three-dimensional plot of a DNA segment from a Drosophila sp. genome, originally with 250 nucleotides, filtered by the \(w^{(1)} \) filter of table 1, with no downsampling, and then with the \(w^{(2)} \) filter, downsampled with step \(\delta^{(2)} = 2 \). The beads along the curve are the actual datums; the connecting lines were reconstructed by cubic interpolation. The entire curve was magnified by the scale factor \(s = 1.440 \) relative to the origin (the center of the tetrahedron) for clarity.

For \(k = 0 \), the curve intersects itself at a tetrahedron vertex at every integer \(t \), and therefore is quite uninformative; but for \(k \geq 1 \) self-intersections are rare, and the general shape of the curve conveys useful information, as we shall see. At successive stages, the curve becomes necessarily simpler, losing the smaller details (and being trimmed at each end) while retaining the larger ones. See figure 4.
The sequences obtained by averaging pairs of consecutive samples and downsampling with step 2 would be \(x^{(1)} = (1, 1, 1, 1, 1)\) and \(y^{(1)} = (2, 0, 2, 0, 2, 0)\).

4.2 Convolution Filtering

In order to avoid aliasing, we apply a smoothing convolution filter to each sequence \(x^{(k-1)}\) before downsampling it to \(x^{(k)}\). The filtering from scale \(k - 1\) to scale \(k\) is defined by a kernel radius \(L^{(k)}\) and a table \(w^{(k)}\) of kernel weights \(w^{(k)}[r]\) where \(r\) is defined for \(r \in \{-L^{(k)}, \ldots, L^{(k)}\}\). The downsampling is defined by the sampling step \(\delta^{(k)}\) and a sampling offset \(S^{(k)} \geq L^{(k)}\). Namely,

\[
x^{(k)}[r] = \frac{\sum w^{(k)}[r] x^{(k-1)}[\delta^{(k)} j + S^{(k)} - r]}{\sum w^{(k)}[r]}
\]

where the index \(r\) ranges from \(-L^{(k)}\) to \(+L^{(k)}\).

Formula 4 is to be applied for all indices \(j\) such that all indices in the right-hand side are valid. Therefore the length of the resulting sequence will be

\[
n^{(k)} = n^{(k-1)} - (S^{(k)} + L^{(k)} + 1) / \delta^{(k)} + 1;
\]

unless \(n^{(k-1)} < S^{(k)} + L^{(k)} + 1\), in which case \(x^{(k)}\) is empty \((n^{(k)} = 0)\) by definition. The offset \(S^{(k)}\) should preferably be chosen so that the new sequence is as long as possible and approximately centered in the original.

4.3 Filtering Kernels and Steps

In the examples given in this paper, we use \(\delta^{(1)} = 1\) (no downsampling) after the first filtering and \(\delta^{(k)} = 2\) for subsequent stages \(k \geq 2\). The filter kernel we use is \(n^{(k)}[r] = W^{(k)}[r] / D^{(k)}\), where \(W^{(k)}\) and \(D^{(k)}\) are given in table 1. The power spectra of these two kernels are shown in figure 5.

These filtering kernels were chosen so that all signals \(x^{(k)}\) with \(k \geq 1\) have about the same degree of smoothing. See figure 6. We define the degree of smoothing \(U^{(k)}\) recursively by \(U^{(0)} = 0\), and \(U^{(k)} = (U^{(k-1)} + V^{(k)}) / (\delta^{(k)})^2\) for all \(k \geq 1\); where \(V^{(k)}\) is the variance of the filtering kernel \(w^{(k)}\), interpreted as a probability distribution on the indices \(-L^{(k)}, \ldots, L^{(k)}\).
5 ROBUSTNESS

If one uses proper filtering before subsampling, the resulting curve $x^{(k)}$ is robust under mutations of the original sequence by replacement, insertions or deletions of short nucleotide sequences. This claim is illustrated in figures 7 and 8.

Table 1: Elements of the filtering kernels used in the examples. The last line $V^{(k)}$ is the variance of the kernel $w^{(k)}$, viewed as a probability distribution on the indices with mean 0.

<table>
<thead>
<tr>
<th></th>
<th>$k=1$</th>
<th>$k \geq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L^{(k)}$</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>$D^{(k)}$</td>
<td>35440</td>
<td>61364</td>
</tr>
<tr>
<td>$W^{(k)}[0]$</td>
<td>9992</td>
<td>9992</td>
</tr>
<tr>
<td>$W^{(k)}[\pm 1]$</td>
<td>7786</td>
<td>9193</td>
</tr>
<tr>
<td>$W^{(k)}[\pm 2]$</td>
<td>3680</td>
<td>7161</td>
</tr>
<tr>
<td>$W^{(k)}[\pm 3]$</td>
<td>1055</td>
<td>4722</td>
</tr>
<tr>
<td>$W^{(k)}[\pm 4]$</td>
<td>183</td>
<td>2636</td>
</tr>
<tr>
<td>$W^{(k)}[\pm 5]$</td>
<td>19</td>
<td>1245</td>
</tr>
<tr>
<td>$W^{(k)}[\pm 6]$</td>
<td>1</td>
<td>498</td>
</tr>
<tr>
<td>$W^{(k)}[\pm 7]$</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>$W^{(k)}[\pm 8]$</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>$W^{(k)}[\pm 9]$</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>$W^{(k)}[\pm 10]$</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>$V^{(k)}$</td>
<td>2.00</td>
<td>6.00</td>
</tr>
</tbody>
</table>

Figure 7: Effect of a single-nucleotide substitution on the filtered space curves of the same 250-nucleotide DNA sequence of figure 4, at scales $k=1$ (left) and $k=3$ (right). The red curve $x^{(k)}(t)$ is derived from the original sequence, the green curve $y^{(k)}(t)$ is derived from the mutated one. For clarity, the curves were magnified by the indicated factor s, and the parts where the two curves coincide were made transparent.

Figure 8: Effect of a single-nucleotide insertion on the filtered space curves of the same 250-nucleotide DNA sequence of figure 4, at scales $k=1$ (left) and $k=3$ (right), with the same conventions as in figure 7.
In figure 8, note that the final segment of the modified sequence $y^{(0)}$ has its datum shifted by one position relative to the original sequence $x^{(0)}$. That becomes a shift by 1 position in $y^{(1)}$, and by 0.25 positions in $y^{(3)}$. Nevertheless, as can be seen in the figure, the interpolated curves still coincide, even in that part.

6 COMPARISON WITH OTHER ENCODINGS

We claim that our three-channel encoding is better suited for multi-scale analysis than other alternatives that have been considered.

6.1 Why Not a Single-channel Encoding?

An obvious alternative is to encode each letter by a single distinct number — say, map A, T, C, G to $0, 1, 2, 3$ respectively. However, with this encoding, certain sequences consisting of very distinct bases would map to the same averaged code when filtered — a coincidence that has no biological justification. For example, if $X = (\text{AGAGAG} \ldots)$ and $Y = (\text{TCTCTC} \ldots)$ we would have $x = (0, 3, 0, 3, 0, 3, \ldots)$ and $y = (1, 2, 1, 2, 1, 2, \ldots)$, which would produce approximately the same sequence $(1.5, 1.5, \ldots)$ when filtered with a moderately wide kernel.

6.2 Why Not a Two-channel Encoding?

Another problem of this encoding is that the strength of the Fourier spectrum of a pattern depends on which nucleotides it uses. For example, the sinusoidal components with period 2 in the sequences X and Y above have amplitudes 3.0 and 1.0, respectively, even though the patterns are basically the same (an alternation of two letters).

The same problems will inevitably occur if we were to map each base to a two-component vector or a complex number, as proposed by E. A. Cheever et al. (Cheever et al., 1989) and used by L. Pessoa et al. (Pessöa et al., 2004). In these works, each base is represented by a complex number: $A, T, C,$ and G are mapped to $+1, -1, +i,$ and $-i$ respectively, where $i = \sqrt{-1}$ is the imaginary unit. For example, with $X = (\text{ATATAT} \ldots)$ and $Y = (\text{GGCGGC} \ldots)$ we would have $x = (+1, -1, +1, -1, +1, -1, \ldots)$ and $y = (+i, -i, +i, -i, +i, -i, \ldots)$, and both would become very close to $(0, 0, \ldots)$ when filtered with a moderately wide kernel.

6.3 Why Not a Four-channel Encoding?

Another obvious alternative would be to use a four-channel encoding where each letter is mapped to a cardinal vector of \mathbb{R}^4, that is, where coordinate j of $x[i]$ is 1 if and only if $X[i]$ is the j-th letter of the allowed alphabet. Namely,

\[
\begin{align*}
A & \rightarrow (1, 0, 0, 0) \\
T & \rightarrow (0, 1, 0, 0) \\
C & \rightarrow (0, 0, 1, 0) \\
G & \rightarrow (0, 0, 0, 1)
\end{align*}
\]

However, note that the sum of all four coordinates will be always 1, not only for the individual codes but also for any average of codes. Thus the four-channel codes actually lie on a three-dimensional subspace of \mathbb{R}^4, meaning that the encoding is redundant.

Indeed, the four-channel codes of the DNA letters are the corners of a regular three-dimensional tetrahedron T^4 in \mathbb{R}^4, and any weighted average of those codes is a point of T^4. Indeed, there is a simple one-to-one mapping from a point $x' = (x'_1, x'_2, x'_3)$ of \mathbb{R}^3 to a point $x'' = (x''_1, x''_2, x''_3, x''_4)$ of \mathbb{R}^4 that maps T^3 to T^4. Namely,

\[
\begin{align*}
x''_1 &= (x'_1 + x'_2 + x'_3 + 1)/4 \\
x''_2 &= (x'_1 - x'_2 + x'_3 + 1)/4 \\
x''_3 &= (x'_1 - x'_2 - x'_3 + 1)/4 \\
x''_4 &= (x'_1 + x'_2 - x'_3 - 1)/4
\end{align*}
\]

Note that $x''_1 + x''_2 + x''_3 + x''_4$ is always 1. It can be verified that the following projection of \mathbb{R}^4 to \mathbb{R}^3 is a one-to-one mapping of T^4 to T^3 that is the inverse of the above mapping:

\[
\begin{align*}
x'_1 &= +x''_1 + x''_2 - x''_3 - x''_4 \\
x'_2 &= +x''_1 - x''_2 + x''_3 - x''_4 \\
x'_3 &= -x''_1 - x''_2 + x''_3 + x''_4 \\
x'_4 &= -x''_1 + x''_2 + x''_3 - x''_4
\end{align*}
\]

Therefore, we conclude that the 4-channel encoding above contains exactly the same information as our proposed 3-channel encoding.

7 CONCLUSIONS

We described a three-channel encoding of DNA sequences that is adequate for multi-scale analysis – specifically, for filtering and anti-aliased resampling – and also for visualization of the results as smooth curves in three-dimensional space.

We found that the tetrahedral encoding of genomic sequences described in this paper is convenient for visualization of genomic sequences of moderate length (a few hundred nucleotides), especially after filtering and subsampling. We also found that, with correct
filtering, the three-dimensional shape of the subsampled sequence is fairly insensitive to simple mutations or insertions of short nucleotide sequences.

REFERENCES

