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Abstract: M5L, a Web-based fully automated Computer-Aided Detection (CAD) system for the automated detection 
of lung nodules in thoracic Computed Tomography (CT), is based on a multi-thread analysis with two 
independent CAD subsystems, the lung Channeler Ant Model (lungCAM) and the Voxel-Based Neural 
Analysis (VBNA), and on the combination of their results. The lungCAM subsystem is based on a model of 
the capabilities that ants show in nature in finding structures, defining shapes and acting according with 
local information. The VBNA subsystem is based on a multi-scale filter for spherical structures in searching 
internal nodules and on the analysis of the intersections of surface normals in searching pleural nodules. The 
M5L performance, extensively validated on 1043 CT scans from 3 independent datasets, including the full 
LIDC/IDRI database, is homogeneous across the databases: the sensitivity is about 0.8 at 6-8 False Positive 
findings per scan, despite the different annotation criteria and acquisition and reconstruction conditions. A 
prototype service based on M5L is hosted on a server operated by INFN in Torino. Preliminary validation 
tests of the system have recently started in several Italian radiological institutes. 

1 INTRODUCTION 

Lung cancer is one of the main public health issues 
in developed countries, accounting for about 19% 
and 28% of cancer-related deaths in Europe (Parkin, 
2010) and the United States of America (American 
Cancer Society, 2009), respectively, with a 5-year 
survival rate of only 10–16%  (Jemal, 2010). Lung 
cancer most commonly manifests itself as non-
calcified pulmonary nodules. Computed 
Tomography (CT) has been shown to be the most 
sensitive imaging modality for the detection of small 
pulmonary nodules: therefore low dose high 
resolution CT-based screening trials are regarded as 
a promising technique for detecting early-stage lung 
cancers (Henschke, 1999). Recent results obtained 
by the National Lung Screening Trial (NLST), 
involving 53454 high-risk patients, show a 20% 
reduction of mortality when the screening program 
was carried out with the helical CT, rather than with 

a conventional chest X-ray (NLST, 2011). The 
design and operation of large scale lung cancer 
screening programs is now being considered, with 
the goal of maximizing their effectiveness and 
minimizing their cost. The identification of early-
stage pathological objects in low dose high 
resolution CT scans is a very difficult task for 
radiologists, taking into account also the big (300-
400) number of noisy slices to be analyzed. To 
support radiologists, researchers started the 
development of CAD methods to be applied to CT 
examinations (Camarlinghi, 2012; van Ginneken, 
2010; Golosio, 2009; Gori, 2007; Li, 2003; Messai, 
2010; Retico, 2009; Li, 2008). Several studies (Das, 
2006; Brochu, 2007; Matsumoto, 2008) reported an 
improvement in the sensitivity of radiologists when 
assisted by CAD systems, in addition to a relevant 
time saving. Other studies (Brown, 2005; Sahiner, 
2009) observe that the increase in detection rate is 
associated to an increase in the number of false-

213
E. Fantacci M., Bagnasco S., Camarlinghi N., Fiorina E., Lopez Torres E., Pennanzio F., Peroni C., Retico A., Saletta M., Sottocornola C., Traverso A.
and Cerello P..
A Web-based Computer Aided Detection System for Automated Search of Lung Nodules in Thoracic Computed Tomography Scans.
DOI: 10.5220/0005280102130218
In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS-2015), pages 213-218
ISBN: 978-989-758-070-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



positive findings. In addition, CAD systems act as 
detection rates equalizers between observers of 
different levels of experience (Brown, 2005). This 
paper aims at validating the M5L CAD, which 
combines the lungCAM and VBNA subsystems, on 
the largest and most heterogenous dataset available, 
so as to evaluate its readiness for application as a 
support for screening programs and clinical practice.  

2 MATERIALS AND METHODS 

2.1 The Datasets 

Among the required features of a system for clinical 
and screening applications is the capability to 
provide a performance independent of the dataset 
source: for that reason, two public research datasets 
were analyzed, collected both from screening 
programs and from clinical practice.  

The Lung Image Database Consortium (LIDC) 
and Image Database Resource Initiative (IDRI) 
(Armato, 2011) provide the largest publicly 
available collection of annotated CTs: 1018 CT 
scans in the LIDC/IDRI database are publicly 
available since 2011. LIDC/IDRI is a multi-center 
and multi-manufacturer database, which includes a 
heterogeneous set of cases, with data taken at 
different collimation, voltage, tube current and 
reconstructed slice thickness. It therefore provides a 
general sample which is likely to realistically 
represent the input from a large scale multi-center 
screening program as well as clinical practice. In 
order to capture the inter-reader variability the 
LIDC/IDRI consortium provides, for each CT scan, 
four annotations made by different expert 
radiologists, obtained with a two phase reading 
modality. The LIDC/IDRI annotations contain 
nodules with diameter between 3 and 30 mm. The 
contours of nodules were marked and each nodule 
was classified by every reader on a 1−5 scale and 
with nine subjective characteristics: subtlety, 
internal structure, calcification, sphericity, margin, 
lobulation, spiculation, texture, malignancy. The 
central position of nodules with diameter <3 mm and 
non-nodules/anomalies with diameter > 3mm was 
also recorded. 

The ANODE09 (van Ginneken, 2010) dataset 
consists of 55 anonymized CT scans provided by the 
Utrecht University Medical Center and originates 
from the NELSON study, the largest lung cancer 
screening trial in Europe. 5 CT scans are made 
available together with the radiologist annotations 
and can be used for training a CAD system; 50 scans 

can only be used for a blind validation. Most of the 
database was randomly selected; however some CTs 
with a large number of nodules were deliberately 
included. Data were acquired with low-dose 
exposure settings: 30 mA at 120 (140) kV for patient 
weighting less (more) than 80 kg. Axial images were 
reconstructed as a set of 2D 512x512 matrix images 
with an average thickness of about 0.7 mm. The 
ANODE09 annotation protocol foresees the labeling 
of relevant nodules for structures with a diameter 
larger than 4 mm. 

2.2 The LungCAM CAD 

The lungCAM structure is a standard approach: the 
preprocessing stage (equalization and lung volume 
segmentation) is followed by a search for Regions 
Of Interest (ROIs), an analytical filter and a neural 
classifier. Before starting the actual analysis, CT 
scans in DICOM standard format are preprocessed 
to reduce the noise contribution: each 2D slice is 
analyzed with a Savitzky-Golay filter (Rajagolopan, 
2003) that provides noise reduction without loss of 
resolution. From then on, every step of the 
lungCAM algorithm is intrinsically 3-dimensional. 

2.2.1 Lung Segmentation 

The lung segmentation (De Nunzio, 2011) proceeds 
according to four main steps: analysis of the CT 
Hounsfield Unit level distribution and evaluation of 
the intensity threshold to be applied in the following 
stages; 3D region growing of the lung volume with 
the detected threshold; wavefront algorithm for the 
definition of the lung surface on the inner side and 
the removal of the trachea and the main bronchi; 
morphological closing with a cylinder from the out- 
side in order to include pleural nodules and close the 
holes left by vessels. A check on the training/testing 
and validation datasets confirmed that none of the 
radiological findings were rejected at this stage. 

2.2.2 ROI Hunting 

The segmentation algorithm is performed with the 
Channeler Ant Model (CAM) (Cerello, 2010), based 
on Virtual Ant Colonies and conceived for the 
segmentation of complex structures with different 
shapes and intensity range in a noisy 3D 
environment. The CAM exploits the natural 
capabilities of Virtual Ant Colonies to modify the 
environment and communicate with each other by 
pheromone deposition. The ant life cycle is a 
sequence of atomic time steps, during which the 
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behavior is determined by a set of rules that control 
the pheromone release, the movements and the 
variations of the ant energy, a parameter related to 
breeding and death. The lung internal structures are 
segmented by iteratively deploying ant colonies in 
voxels with intensity above a pre-defined threshold 
(anthills). Ants live according to the model rules 
until the colony extinction: the pheromone 
deposition generates pheromone maps. Each voxel 
visited by an ant during the life of a colony is 
removed from the allowed volume for future ant 
colonies. New ant colonies are iteratively deployed 
in unvisited voxels that meet the anthill requirement. 
By an iterative thresholding of pheromone maps a 
list of ROI candidates is obtained. ROIs with a 
radius larger than 10 mm are post-processed in order 
to disentangle nodules attached to internal lung 
structures like vessels and bronchi. The CAM is 
iteratively deployed in the right and left lungs, 
separately, as a segmentation method for the vessel 
tree and the nodule candidates. The first ant colony 
segments the vessel tree, starting from an anthill in 
the vicinity of its root. The segmented object is then 
removed from the original image and the coordinates 
of all its voxels are stored as a single Region Of 
Interest (ROI). In the remaining image, iteratively, 
any voxel with intensity above a predefined 
threshold (-700 HU) is a new anthill and a colony 
deployed from there generates a pheromone image. 
When no more voxels meet the condition to become 
an anthill, the information provided by the global 
pheromone map is analyzed. The pheromone map 
analysis is also iterative: each voxel with a 
pheromone content above a minimum accepted 
value is used as a seed for a region growing with an 
adaptive threshold which is iteratively lowered until 
a minimum growth rate of the region is reached. 
Every grown region with a radius in the 0.8 − 25 
mm range is considered as a nodule candidate. 
About 20% of relevant pulmonary nodules are seg- 
mented together with a vascular structure they are 
connected to. If features were evaluated for the 
whole ROI, these nodules would typically be 
rejected by further filtering and classification. In 
order to address the problem a dedicated algorithm 
module was developed. All the structures obtained 
from the pheromone map analysis with radius larger 
than 10 mm are further analyzed in order to identify 
and disentangle spherical-like sub-structures. The 10 
mm value was empirically set based on the 
minimum size for attached structures that causes a 
relevant change in the ROI feature values. Each 
voxel that belongs to the structure being analyzed is 
averaged with the neighbors inside a sphere of 

radius R. Then, the average map is thresholded 
again, resulting in a thinner object. Structures with a 
diameter smaller than R disappear (e.g., thin vessels 
attached to the nodules). However also the nodules 
shrink. In order to recover the nodule original size, 
the neighbors of each remaining voxel in the average 
inside a sphere of radius R/2 with value above 4/3 of 
the threshold in the original map are restored as part 
of the structure. The procedure is repeated three 
times, with spheres of increasing radius (R = 1.5, 
2.5, 3.5 mm) that generate sub-structures of 
increasing size. The output voxels of the three 
iterations are combined in logical OR to generate a 
final nodule candidate output mask, which is then 
treated as a ROI for further analysis. 

2.2.3 Filtering and Classification 

The choice of a suitable set of ROI features is a key 
to the success of the filtering and classification 
stages. Ideally, any computable quantity which is 
expected to show a different pattern for true nodules 
and false candidates would be a useful feature. 
However, the use of a large number of features on a 
small training dataset could bias the classifier and 
cause a loss of generality. The choice to select a 
small number of features for the neural classifier 
training aims at optimizing the generality and 
keeping the performance stable as the validation 
dataset size increases. A set of features was selected 
for the nodule candidate analysis, according to the 
following criteria: 3D spatial features which are 
invariant to rotation and translation and can 
disentangle spherical-like structures from ROIs 
originating from vessel parts or lung walls; features 
based on the voxel HU intensity, so as to capture 
density patterns; the fraction of ROI voxels attached 
to the walls of the lung volume is crucial in 
distinguishing internal and juxta-pleural nodules, 
which are characterized by a different shape; 
therefore, its use allows the classification of both the 
subsamples with the same neural network. The list 
of features is reported in Table 1. The average 
number of ROIs after the nodule hunting, depending 
on the number of slices, ranges between several 
hundreds to few thousands per CT scan, a number 
far too large to be used as input for a neural network 
classifier. The vast majority of findings is easily 
rejected with an analytical filter based on 
correlations between the radius, the sphericity and 
the fraction of voxels connected to the lung mask. In 
addition to the sphericity-related selection, two other 
filtering conditions were applied to the nodule 
candidates: the fraction of voxels connected to lung 
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surface is required to be less than 0.6 and the Radius 
must be larger than 1.2 mm. Irregular structures are 
filtered with these criteria. The CT equalization and 
filtering procedure dramatically reduces the average 
number of FP findings per scan, from about 1000 to 
about 50, a value which is appropriate as input for 
training and running a neural classifier. The filtering 
process also reduces the pre-classification sensitivity 
to about 75 − 90%, depending on the input dataset. 

Table 1: List of features extracted from the nodule output 
mask. Features labeled with the asterisk were not used in 
the classification stage. 

Geometrical features Intensity-related features 
Center of gravity Xi=x,y,z(*) Average 
Radius (mm) Average outside mask 
Sphericity Std. Deviation 
Skewness of distance from Xi Std. Deviation outside mask 
Kurtosis of distance from Xi Maximum 
Volume (mm3) (*) Entropy 
Fraction of voxels connected to 
the pleura 

Entropy outside mask 
 

A feed forward neural network (FFNN) was 
selected as nodule candidate classification method. 
The training sample was made of 5 and 69 CTs from 
the ANODE09 and LIDC/IDRI databases, 
respectively. The training was carried on in cross-
validation mode. The FFNN configuration was 
defined as follows: 13 input neurons, 1 hidden layer 
with 25 neurons and 1 neuron in the output layer, 
representing the probability of the finding to be 
relevant. 

2.3 VBNA CAD 

The VBNA CAD system deals differently with 
internal and juxtapleural nodules, by means of two 
dedicated procedures: CADI for internal and CADJP 
for juxtapleural nodules (Camarlinghi, 2012; Retico, 
2008; Retico, 2009; Camarlinghi, 2011). Both are 
three-step procedures. The first step consists in the 
lung segmentation; the second step consists in the 
ROI (Region Of Interest) hunter and performs the 
candidate nodule selection; the third step consists in 
the FP reduction. For the last step, an original 
procedure, the Voxel-Based Neural Approach is 
implemented to reduce the number of FPs in the lists 
of internal and juxtapleural candidate nodules. 

2.3.1 Segmentation 

The aim of the segmentation algorithm implemented 
in our analysis is to allow a conservative 
identification of the internal region of the lung 
parenchyma. In this region we apply the algorithm 

for internal nodule detection. The 3-dimensional 
segmentation algorithm is based on four main steps. 
Once the scans have been isotropically resampled, to 
separate the low-intensity lung parenchyma from the 
high-intensity surrounding tissue (fat tissue and 
bones), the voxel intensities are thresholded at a 
fixed value; then, in order to discard all the regions 
not belonging to the lungs, the biggest connected 
component not crossing the boundary of the volume 
is considered. Vessels and airways are not in 
included in the segmented lung at this stage since 
their volume is outside the segmented lung volume. 
To include them without modifying the pleura 
surface morphology, i.e. without modifying the 
shape of pleura irregularities (including juxtapleural 
nodules), a combination of morphological operators 
is applied. In particular, a sequence of the dilation 
and the erosion operators with spherical kernels rd 
and re, with re > rd, is implemented. Finally, the 
logical OR operation between the so obtained mask 
and the original lung mask provides the final mask 
P, where the vessels and the airway walls are filled 
in, while maintaining the original shape of the lung 
border. The identified lung mask is used for CADI, 
whereas its boundary is used for CADJP. 

2.3.2 ROI Hunting for Internal Nodules 

In the CADI, the internal nodules are modeled as 
spherical objects with a Gaussian profile, following 
the approach proposed in (Li, 2003). To detect this 
kind of objects (Retico, 2008), a dedicated dot-
enhancement (DE) filter is implemented. The filter 
determines the local geometrical characteristics of 
each voxel by using the eigenvalues of the Hessian 
matrix. To enhance the sensitivity of this filter to 
nodules of different sizes, a multi-scale approach has 
to be followed. This approach combines the DE 
function with Gaussian smoothing at several scales 
with the prescriptions given in (Li, 2003). Local 
maxima of the matrix filtered by the dot-
enhancement are the internal candidate nodule 
locations.  

2.3.3 ROI Hunting for Juxta-Pleural 
Nodules  

In the CADJP (Retico, 2009), in order to identify 
juxtapleural candidate nodules, pleura surface 
normals are constructed and each voxel is assigned a 
score proportional to the number of normals 
intersecting in it. Normals are evaluated using the 
triangular mesh representing the pleura surface, 
obtained applying the marching cube algorithm on 
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the lung mask. In particular, the normal to each 
triangle is calculated by using the vector product 
between the triangle edges; then, the normals to each 
mesh vertex are evaluated averaging all the triangle 
normals of the neighboring triangles. Since the 
evaluation of the normal intersections in the real 3D 
space is a complex and computationally intensive 
operation, it is implemented in the voxel space. This 
means that each voxel is associated a score 
proportional to the number of normals passing 
through it. To deal with noise, cylinders with 
Gaussian profile are considered instead of segments 
(Paik, 2004). This information is collected in the 
score matrix S(x,y,z). The local maxima of the 3D 
matrix S(x,y,z) are the juxtapleural candidate nodule 
locations. 

2.3.4 Classification 

In order to classify the candidate nodule findings 
obtained in the previous step, an original procedure, 
the Voxel-Based Neural Approach (Gori, 2007), 
performs the reduction of the number of FPs in the 
lists of internal and juxtapleural candidate nodules. 

First, a ROI including voxels belonging to the 
candidate nodule is defined from each location 
provided by the previous step. The basic idea of the 
VBNA is to associate with each voxel of a ROI a 
feature vector defined by the intensity values of its 
3D neighbors (in this case 5 x 5 x 5 intensity values) 
and the eigenvalues of the gradient matrix and of the 
Hessian matrix. In the firsta version of VBNA, che 
classification procedure was perfoermed by means 
of a FFNN. Now support vector machines (SVM), 
by which have been obtained better resukts, are 
implemented for the classification procedure. Other 
classification methods have not yet already been 
tested. The training sample was made of 69 CTs 
from the LIDC/IDRI database. At the end of this 
step, each ROI is assigned a degree of suspicion 
averaging the score of all the voxels belonging to it.  

2.4 Subsystems Combination: the M5L 
CAD 

Each CAD subsystem can be improved in the future, 
working on specific weaknesses. However, one 
quick and effective way to improve the overall 
performance is to combine the results, as 
demonstrated in (van Ginneken, 2010) for the 
ANODE09 challenge participants. The outputs of 
the two CAD subsystems described are evaluated 
and combined following the same procedure adopted 
for the ANODE09 study (van Ginneken, 2010). The 

resulting CAD system is referred to as M5L. The 
findings of each CAD subsystem must be considered 
in terms of their degree of suspicion p, which is the 
final output of the procedure of candidate nodules 
classification for the two separate subsystems.  

In order to combine findings from different CAD 
subsystems, a normalization of the finding 
probabilities is needed (Niemeijer, 2011). This 
operation is carried out by associating a new value 
f(p) to each finding with degree of suspicion p. The 
new degree of suspicion f(p) is evaluated according 
to the performance obtained by the corresponding 
CAD system on the validation set, i.e., evaluating 
for each finding with probability p the function 
corresponding to TP/(FP+TP+1), where TP(FP) is 
the number of true (false) positives obtained by 
considering all the CAD findings with pi>=p. Of 
course, this procedure requires to know the 
annotations and the performance of each CAD 
system on a selected set of data. The f(p) values can 
therefore be considered as the score related to the 
probability that a finding in the validation set with 
likelihood p or higher represents a true nodule. The 
function f(p) is computed for every finding from 
every subsystem. All findings are then checked 
against a “matching condition” defined by a 
preselected clustering distance.  

3 RESULTS 

The results have been evaluated in terms of FROC 
(Free-response Receiver Operating Characteristic) 
curves. In fact, Receiver Operating Characteristic 
(ROC) methodology is widely used in evaluating 
medical imaging modalities but has several 
drawbacks when the detection task, e.g., nodule 
detection, involves localizing the abnormality, while 
FROC methodology offers a more natural 
framework to describe observer performance in such 
studies and has other advantages (Chakraborty, 
1989). 

Figure 1 shows the results obtained for the 
lungCAM and VBNA separate subsystems and for 
the combined M5L on the 949 scans of the LIDC 
test dataset (949 scans). To obtain the combined 
M5L result the following matching criterion has 
been used: a CAD finding is considered a true 
positive if its Euclidean distance from the center of 
the lesion annotated by the radiologists is less than 
1.5 times the radius of the annotated lesion. The 
M5L sensitivity at 8 FP/scan reaches 80% which, 
given the size and heterogeneity of the dataset, is 
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quite remarkable. In the case of ANODE09 the 
FROC curves are shown in Figure 2. 

 

Figure 1: FROC curves of the lungCAM and VBNA 
subsystems ad of their M5L combination on the LIDC test 
validation dataset (949 CT scans). 

 

Figure 2: FROC curves of the lungCAM and VBNA 
subsystems ad of their M5L combination on the 
ANODE09 test validation dataset (50 CT scans). 

4 CONCLUSIONS 

The results, obtained on a database so large and 
heterogeneous, are very satisfactory. One of the 
main purposes of this work was to show that, even 
without changing parameters and making 
optimizations, the performance is satisfactory. In 
fact we applied a previous training configuration to a 
much larger and heterogeneous dataset (the full 
LIDC/IDRI). In view of a future application of the 
M5L CAD in screening programs or clinical 
practice, the optimization can be achieved by 
iteratively using training samples of increasing size. 
Furthermore, demonstrating a generalization 
capability is, at the present development stage, even 
more important than optimizing the sensitivity on a 

selected dataset. The M5L CAD has been already 
implemented in a cloud computing environment 
(Berzano, 2012) and is now available for the 
radiologists of our collaboration as experimental 
web service for clinical tests. 
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