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Abstract: In a previous work we presented DEWPAA: an improved version of the piecewise aggregate approximation 
representation method of time series. DEWPAA uses differential evolution to set weights to different 
segments of the time series according to their information content. In this paper we use a hybrid of bacterial 
foraging and genetic algorithm (CGA) to set the weights of the different segments in our improved 
piecewise aggregate approximation. Our experiments show that the new hybrid gives better results in time 
series classification. 

1 INTRODUCTION 

In the last two decades there has been an increasing 
interest in temporal data, namely, time series. A time 
series is a chronological collection of observations. 
This data type is encountered in many scientific and 
financial applications. The main feature of time 
series is their high-dimensionality. One of the 
common approaches to handle the problem of high-
dimensionality of time series is to transform them 
into another domain with a lower-dimensionality 
followed by an indexing mechanism, called a 
dimensionality reduction technique or a 
representation method, applied to this lower-
dimensional data. 

Several representation methods have been 
proposed to reduce the dimensionality of time series 
data. Of those we mention Discrete Fourier 
Transformation (DFT) (Faloutsos et al., 1994),  
Discrete Wavelet Transformation (DWT) (Chan and 
Fu 1999), Chebyshev Polynomials (CHEB) (Cai and 
Ng, 2004), Symbolic Aggregate approXimation 
(SAX) (Lin et al., 2003), Piecewise Linear 
Approximation (PLA) (Morinaka et al, 2001). 

The Piecewise Aggregate Approximation (PAA) 
(Keogh et al., 2000), (Yi and Faloutsos, 2000) is a 
time series representation method that has been used 
extensively for its simplicity and its low 
computational complexity.    

In (Muhammad Fuad, M.M., 2012) we applied 
differential evolution; a popular bio-inspired 
optimization algorithm, to set weights to different 
segments of PAA-represented time series, which 
reflect the information content of each segment. The 
weights were determined through an optimization 
process whose output is the weights that maximize 
the information content of the PAA representation. 
We showed how this modification improves the 
performance of PAA.  

Differential evolution, however, may suffer from 
stagnation; i.e. the inability of progressing towards 
global optima. It may also suffer from premature 
convergence.  

In this paper we propose solving the 
aforementioned optimization problem by applying 
an alternative optimizer which is a   hybrid of two 
bio-inspired optimization algorithms: genetic 
algorithm and bacterial foraging. We show how this 
hybrid yields better results than those obtained when 
using differential evolution.   

The rest of this paper is organized as follows: 
Section 2 presents related work. The hybrid 
algorithm is introduced in Section 3, and the 
comparison with the previous method is conducted 
in Section 4. We conclude this paper in Section 5.  
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2 RELATED WORK 

PAA is a simple, yet efficient, representation method 
of time series. PAA reduces the dimensionality of a 
time series S from n to N dimensions by segmenting 
the time series into equal-sized frames and mapping 
each segment to a point that represents the mean of 
the points that constitute that segment. The 
similarity measure given in the following equation:  
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is defined on the lower-dimensional space. This 
similarity measure is a lower bound of the Euclidean 
distance defined on the original space. In Figure 1 
we show an example of applying PAA to reduce the 
dimensionality of a time series from n=12 to N=3.  

The main drawback of PAA is that it is unable to 
faithfully represent the original time series due to the 
information loss that results from the technique PAA 
uses to reduce the dimensionality, as we showed in 
(Muhammad Fuad, M.M., 2012). In that paper we 
proposed weighting different segments of the PAA 
representation differently according to their 
information content. We proposed using an 
alternative similarity measure for PAA which we 
called the Weighted Piecewise Aggregate 
Approximation Distance (WPAAD):  
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The challenge here is to find an objective measure to 

determine the values of iw . 

In (Muhammad Fuad, M.M., 2012) we 
formulated the above problem as an optimization 
problem where the fitness function is the 
classification error and the optimization algorithm 

seeks to set the values of iw  that minimize the 

classification error. 
The optimizer we used in (Muhammad Fuad, 

M.M., 2012) was the differential evolution, and we 
called our method the Differential Evolutionary 
Weighted Piecewise Aggregate Approximation 
(DEWPAA).  

 

Figure 1: PAA dimensionality reduction. 

Differential Evolution (DE): DE is an evolutionary 
optimization algorithm that has the same 
computational steps as any other evolutionary 
algorithm. Its particularity is in the way the 
population members are perturbed, as DE uses a 
scaled difference of two other members added to a 
third to perform this operation.  

DE is particularly adapted to solve continuous 
optimization problems, and it has been successfully 
used to solve real-life optimization problems.   

DE starts by initializing a random population of 
vectors. After initialization DE, and for each 

member iT


 (the target vector), creates a donor 

vector D


as a weighted difference of two other 
vectors in the population added to a third one. In the 

next step DE generates a trial vector R


through a 
crossover operation.  

In the next step DE selects which of the trial 
vector or the target vector will survive in the next 
generation and which will die out. This selection is 

based on which of iT


and R


yields a better value of 

the fitness function.  
The above steps repeat for a number of 

generations or until a stopping criterion terminates 
the algorithm. 

3 CHEMO-INSPIRED GENETIC 
ALGORITHM 

Hybridization of different optimization algorithms 
has been extensively used to solve different 
optimization problems. In time series data mining 
different hybrid methods have been successfully 
used (Muhammad Fuad, 2014a, 2014b, 2014c). The 
main advantage that hybridization offers is that the 
resulting hybrid method benefits from the strengths 
of the two methods, or it avoids their weaknesses.  

In this work we use a hybrid of genetic algorithm 
and bacterial foraging proposed by (Das and Mishra, 
2013) to solve the problem we presented in Section 
2.  

3.1 The Genetic Algorithm 

The Genetic Algorithm (GA) is a famous 
evolutionary algorithm that has been applied to solve 
a variety of optimization problems. GA is a 
population-based global optimization algorithm 
which mimics the rules of Darwinian selection in 
that weaker individuals have less chance of 
surviving the evolution process than stronger ones. 
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GA captures this concept by adopting a mechanism 
that preserves the “good” features during the 
optimization process.  

In GA a population of candidate solutions (also 
called chromosomes) explores the search space and 
exploits this by sharing information. These 
chromosomes evolve using genetic operations 
(selection, crossover, mutation, and replacement). 

GA starts by randomly initializing a population 
of chromosomes inside the search space. The fitness 
function of these chromosomes is evaluated. 
According to the values of the fitness function new 
offspring chromosomes are generated through the 
aforementioned genetic operations. The above steps 
repeat for a number of generations or until a 
predefined stopping condition terminates the GA. 

3.2 Bacterial Foraging 

The foraging bahavior of the Escherichia coli (E. 
coli) bacteria has inspired a nature-inspired 
optimization algorithm called Bacterial Foraging 
(BF). The motivation behind this optimizing 
algorithm is that in order to perform social foraging, 
an animal needs communication capabilities. Over a 
period of time this animal gains advantages which 
exploit the sensing capabilities of the whole group. 
This helps the group to predate on a larger prey, or it 
enables the individuals to get better protection 
against predators (Kim et al., 2007). 

The basis of BF is that animals with poor 
foraging strategies tend to be eliminated by natural 
selection and they are either replaced by other 
individuals with  better foraging strategies or they 
are shaped into ones which have these desirable 
strategies (Passino, 2002). BF formulates this 
process as an optimization problem.  
The E. coli bacterium moves by means of a set of 
flagella, each driven as a biological motor. The two 
types of movements the E. coli bacteria perform are 
swimming and tumbling. The former takes place 
when the flagella rotate in the counterclockwise 
direction whereas the latter is achieved by rotating 
the flagella in the clockwise direction. Figure 1 
shows these two movement types. Together they are 
known as chemotaxis (which we will define more 
formally later in this section). The aim of 
chemotaxis is to help the bacterium approach or 
avoid nutrient or noxious substance gradients.  This 
chemotaxis progress can be destroyed by sudden 
environmental changes which cause the elimination 
and dispersal of a group of bacteria.  

 

Flagella rotating counterclockwise: swimming 

Flagella rotating clockwise: tumbling   
Figure 2: The swimming and tumbling movements.  

BF finds the minimum of a function 

  nbpf R ;  (nbp is the number of parameters) 

by applying four mechanisms; chemotaxis, 
swarming, reproduction, and elimination-dispersal.  

The position of each member of the population 
of Nb bacteria at the jth chemotactic step, kth 
reproduction step, and lth elimination-dispersal event 
is denoted by     b

i N,...,2,1i| l,k,jk,j,iP    

We now describe the four mechanisms we 
mentioned earlier in this section:  

 Chemotaxis: Let  l,k,ji  be the ith bacterium at 

the jth chemotactic step, kth reproduction step, and 
lth elimination-dispersal event, then the 
movement of the bacterium can be represented 
by:  
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where Δ is a vector in the random direction whose 
elements lie in the interval [-1, 1]. 

 Swarming: E. coli bacteria demonstrate a 
swarming behavior as they travel in rings which 
move up the nutrient medium when they are 
placed in the center of a semisolid matrix with a 
single nutrient chemo-effecter. When simulated  

Table 1: The symbols used in the description of bacterial 
foraging. 

Nb The number of bacteria in the population  

Nc The number of chemotactic steps 

Ns The swimming length 

Nre The number of reproduction steps 

Ned The number of elimination-dispersal events 

Ped The probability of elimination-dispersal  

C(i) The size of the step taken in the random 
direction determined by the tumble 
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 by a high level of succinate the bacteria release 
an attractant aspartate which helps them 
aggregate into groups and thus move as a swarm. 
The cell-to-cell signal in the swam can be 
represented by the following function:  

     

 

  

 



 

 









































b

b

b

N

i

nbp

m

i
mmrepellantrepellant

N

i

nbp

m

i
mm

N

i

i
cccc

h

d

lkjflkjPf

1 1

2

1 1

2

attractantattractant

1

exp.

exp.

),,,,,,





  

(4)

where the coefficients dattractant , ωattractant , hrepellant, 
ωrepellant are control parameters. 
The objective function   l,k,jP,fcc   is added 

to the original objective function to represent a 
time varying objective function in that if many 
cells come close together there will be a high 
amount of attractant and hence an increasing 
likelihood that other cells will move towards the 
group. This produces the swarming effect 
(Passino, 2002). 

 Reproduction: Through this process the least 
healthy bacteria die out and the healthier ones 
will replicate themselves. This guarantees that the 
size of the bacterial swam will remain constant. 

 Elimination and dispersal:  There might be a 
gradual or sudden change in the environment 
where the bacteria live. As a result, a small 
percentage of the bacteria in a certain region will 
be liquidated or a group might be dispersed into 
another location. This has two effects on 
chemotaxis: the first is destroying the 
chemotactic progress, the second is that the new 
bacteria might be placed at locations with a better 
food source, thus assisting chemotaxis. 

3.3 CGA 

GA has the advantage of quickly locating high 
performance regions of vast and complex search 
spaces, but they are not well suited  for fine-tuning 
solutions (Gendreau and Potvin, 2005), (Kazarlis et 
al., 2001). 

There have been several attempts to hybridize 
GA with other optimization algorithms. In (Mahfoud 
and Goldberg, 1995) the authors present the Parallel 
Recombinative Simulated Annealing (PRSA) which 
combines elements from the simulated annealing 
algorithm with others from GA. Another hybrid was 
presented in (Lee and Lee, 2005). This method 
hybridizes GA with Ant Colony Optimization 
(ACO).  

On the other hand, BF possesses a poor 
convergence behavior over multi-modal and rough 
fitness landscapes. Its performance is also heavily 
affected with the growth of problem dimensionality 
(Biswas et al., 2007).    

To take advantage of the two optimizers, (Kim et 
al., 2007) proposed a hybrid of GA and BF (called 
GA-BF). They validated their method on several test 
functions.  

In another paper (Das and Mishra, 2013) 
proposed another hybrid of GA and BF which they 
called the Chemo-inspired Genetic Algorithm 
(CGA). Their motivation is that chemotaxis actually 
contributes the most in the search process, so instead 
of taking the whole BF to hybridize with GA, they 
only integrate the chemotaxis step in the hybrid with 
GA. CGA has five major steps: selection, crossover, 
mutation, elitism and chemotaxis. In addition, CGA 
employs three mechanisms: a) adaptive step size b) 
squeezed search space c) fitness function criterion. 

4 EXPERIMENTS 

We conducted intensive experiments to compare 
CGA with DEWPAA. The experiments were the 
same as those conducted in (Muhammad Fuad, 
M.M., 2012) and (Muhammad Fuad, M.M., 2013); 
i.e. classification task experiments of time series. 
The aim of the experiments is to show that using 
CGA in the optimization process of determining the 
weights of the segments in equation (2) will result in 
a lower classification error than that of DEWPAA. 

As in (Muhammad Fuad, M.M., 2012), we 
computed the classification error using WPAAD for 
different compression ratios (1:8,1:12,1:16). We 
conducted our experiments using the UCR archive 
(Keogh et al., 2011), which is the same archive used 
to test DEWPAA.  

The two methods were tested on a classification 
task based on the first nearest-neighbor (1-NN) rule 
using leaving-one-out cross validation.  
Table 2 shows some of the results of our 
experiments. As we can see from the table, CGA 
outperforms DEWPAA on almost all the datasets 
tested and for the different compression ratios. 

5 CONCLUSIONS 

In this paper we used a hybrid of genetic algorithm 
and bacterial foraging (CGA) to calculate the 
weights   given   to   different   segments  of the time 
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Table 2: Comparison of the classification error between CGA and DEWPAA for different compression ratios. 

  Dataset       Method 
Compression Ratio  

1:8 1:12 1:16 

Lighting7 
CGA 0.329 0.342 0.356 

DEWPAA 0.370 0.397 0.427 

MedicalImages 
CGA 0.308 0.308 0.321 

DEWPAA 0.337 0.337 0.378 

Gun_Point  
CGA 0.06 0.06 0.06 

DEWPAA 0.053 0.067 0.087 

Coffee 
CGA 0.179 0.179 0.179 

DEWPAA 0.179 0.179 0.25 

Lighting2 
CGA 0.164 0.180 0.197 

DEWPAA 0.213 0.230 0.246 

MALLAT     
CGA 0.077 0.082 0.094 

DEWPAA 0.094 0.094 0.095 

FacesUCR  
CGA 0.238 0.238 0.238 

DEWPAA 0.238 0.316 0.366 

FISH 
CGA 0.194 0.194 0.194 

DEWPAA 0.194 0.229 0.240 

synthetic_control 
CGA 0.067 0.067 0.100 

DEWPAA 0.110 0.113 0.113 

CBF 
CGA 0.017 0.021 0.021 

DEWPAA 0.017 0.021 0.037 

ECG 
CGA 0.090 0.100 0.100 

DEWPAA 0.110 0.120 0.130 

Trace 
CGA 0.100 0.120 0.120 

DEWPAA 0.140 0.180 0.190 

 
series represented by the piecewise aggregate 
approximation representation method. The weights 
were obtained through an optimization process using 
chemo-inspired genetic algorithm (CGA) as 
optimizer and the fitness function is the 
classification error. Compared with differential 
evolution, another optimizer that we used in a 
previous work to solve the same optimization 
problem, CGA gives better results. 
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