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Abstract: The use of near-infrared (NIR) band gives us additional invisible information to discriminate objects and
enables us to recognize objects more clearly under low light conditions. To acquire color and NIR bands
together in a single image sensor developed from a conventional color filter array (CFA), we use a multi-
spectral filter array (MSFA) in the RGB-NIR sensors and design a color interpolation algorithm to fill the
information about the multi-spectral (MS) bands from the subsampled MSFA image. Aliasing in the MSFA
image caused by the subsampled bands is minimized by balancing the energy of the bands. A panchromatic
(PAN) image is generated by filtering the low-pass kernel to the MSFA image. This PAN image without
chrominance signals, which contains the most high-frequency in the MSFA image, is used to reconstruct the
MS images by solving the least square cost function between the PAN and MS images. The experiments show
that the proposed algorithm estimates the high-resolution MS images very well.

1 INTRODUCTION

Security camera safety issues are increasing because
many accidents and events take place abruptly. Espe-
cially at night, it is difficult to see and discriminate
objects in dark areas. General digital cameras pre-
vent a spectrum longer than 700 nm such as a near-
infrared (NIR) band by using an infrared cutoff fil-
ter (IRCF) in front of the image sensors to preserve
color information. However, a NIR band is invisible
to the human eye and it provides additional informa-
tion about objects in low light conditions. From these
reasons, a NIR band is useful in fields such as vi-
sion, digital photography, and remote sensing (Zhang,
1999)(Schaul et al., 2009).

In the first study, to acquire three color bands to-
gether in one sensor, a conventional color filter array
(CFA) was designed by the sub-sampled periodic pat-
terns to reduce the cost and size of the sensors. To
interpolate the missing color values, the method to re-
construct the color images with a frequency selective
technique using luminance and chrominance was pre-
sented in (Alleysson et al., 2005). Based on an ex-
tension of the conventional CFA, to acquire several
bands together, a multi-spectral filter array (MSFA)
was described in (Lu et al., 2009). From this MSFA,
the binary tree-based demosaicking method was pro-

posed in (Miao et al., 2006). Also, multi-spectral de-
mosaicking by upsampling using an adaptive kernel
was introduced in (Monno et al., 2011). To reduce
the demosaicking artifacts, vector based median filter-
ing was presented in (Wang et al., 2013). To acquire
color and NIR images using a single sensor, Zaharaet
al. designed a CFA pattern and demosaicing matrices
in (Sadeghipoor et al., 2011). Also, a CFA that ac-
quired color and a NIR image was designed by solv-
ing the spatial domain optimization problem in (Lu
et al., 2009).

To acquire visible and invisible bands together, we
use the RGB-NIR sensor presented in (Koyama et al.,
2008). Theis sensor consist of four multi-spectral
(MS) bands : red (R), green (G), blue (B), and NIR
according to the MSFA pattern, as depicted in Fig.
1. Each four bands are sub-sampled within one quar-
ter of the sensor. However, to acquire the NIR band
in an image sensor, the IRCF has to be removed. This
produces a color shift problem because color informa-
tion as well as the NIR band is absorbed in the sensor.
To solve this problem, a multi-layer decomposition
method was explained in (Park et al., 2012).

In this paper, a least square based multi-spectral
color interpolation algorithm for RGB-NIR sensors
is presented. To minimize aliasing in the MSFA
image, the energies of the MS bands are balanced.
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Figure 1: The RGB-NIR sensor pattern.

A panchromatic (PAN) image without chrominance
is generated from the MSFA image. The high-
frequency of each MS image is retrieved using the
high-frequency of the estimated PAN image with the
least square minimization process. Experiments show
that the proposed algorithm produces high quality re-
sults.

2 PROPOSED ALGORITHM

To obtain high-resolution R, G, B, and NIR images,
we designed the algorithm as shown in Fig. 2. A two-
step algorithm to reconstruct full resolution images is
proposed. This paper is based on the assumption that
the high-frequencies of the MS bands are highly cor-
related according to the spectral sensitivity described
in (Koyama et al., 2008). First, the energies of the
bands are balanced according to the band energy anal-
ysis process and the PAN image is obtained by filter-
ing a low-pass kernel to the MSFA image. Second,
the high-frequency of the MS bands is estimated us-
ing the high-frequency of the generated PAN image
by finding the solution of the least square function.

2.1 Panchromatic Image Generation

Let m[n1,n2] represent the MSFA image with size
N1×N2, a pixel location of horizontal directionn1 =
0, · · · ,N1−1 and vertical directionn2 = 0, · · · ,N2−1,
as the pattern illustrated in Fig. 1. Let R, G, B, and
NIR bands bemb[n1,n2]whereb∈ {1,2,3,4}, respec-
tively. The MSFA image is as follow,

m[n1,n2] =
1
4

m1[n1,n2](1+(−1)n1 )(1+(−1)n2 )

+
1
4

m2[n1,n2](1− (−1)n1 )(1+(−1)n2 )

+
1
4

m3[n1,n2](1+(−1)n1 )(1− (−1)n2 )

+
1
4

m4[n1,n2](1− (−1)n1 )(1− (−1)n2). (1)
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Figure 2: Overall block diagram of the proposed algorithm.

The four bands are acquired with sub-sampled in the
MSFA image as,

m[n1,n2] =
1
4
(m1[n1,n2]+m2[n1,n2]

+m3[n1,n2]+m4[n1,n2])

+
1
4
(m1[n1,n2]−m2[n1,n2]

−m3[n1,n2]+m4[n1,n2])(−1)n1+n2

+
1
4
(m1[n1,n2]−m2[n1,n2]

+m3[n1,n2]−m4[n1,n2])(−1)n1

+
1
4
(m1[n1,n2]+m2[n1,n2]

−m3[n1,n2]−m4[n1,n2])(−1)n2. (2)

To see the Fourier spectrum of the MSFA image in
the Fourier domain, the MSFA image is decomposed
as a PAN signalmP and three chrominance signals,
mC1, mC2, andmC3. In terms of the signal decompo-
sition to matrix notation, the relationship between the
PAN signal and three chrominance signals, and the R,
G, B, and NIR bands is,






mP
mC1

mC2

mC3






=

1
4







1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1













m1
m2
m3
m4






.

(3)
Using the signal decomposition as (3), (1) is rewritten
as

m[n1,n2] = mP[n1,n2]+mC1 [n1,n2](−1)(n1+n2)

+mC2[n1,n2](−1)n1 +mC3[n1,n2](−1)n2 . (4)
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Noting that−1= exp( jπ) and taking the Fourier
transform to (4), the MSFA image is rewritten as

M(u,v) = MP(u,v)+MC1(u−π,v−π)
+MC2(u−π,v)+MC3(u,v−π). (5)

This means that the Fourier spectrum of three chromi-
nance signalsMC1(u,v), MC2(u,v), andMC3(u,v) are
modulated at the frequencies(π,π), (π,0), and(0,π).
According to the spectral sensitivity of the sensor in
(Koyama et al., 2008), the NIR pixel is designed to ab-
sorb only the NIR band but the other color is also ab-
sorbed actually. In other words, all bands contain sim-
ilar information. Also, basically, the color bands R,
G, and B are highly correlated as mentioned in (Gun-
turk et al., 2002). Based on this, we suppose that the
high-frequencies of the R, G, B, and NIR bands are
highly correlated. Therefore, the aliasing invading the
PAN signal from the chrominance signals is removed
by balancing the energies of the bands because each
chrominance signal is composed of two plus signals
and two minus signals as discussed in (3).

We decompose the MS bands as low- and high-
frequency as

Mb(u,v) = Ml
b(u,v)+Mh

b(u,v), (6)

whereb∈ {1,2,3,4}. The mean values of the bands
are calculated as

µb = E(mb[n1,n2]). (7)

The maximum mean valueµmax is determined among
the mean values of the four bands. Using this, the
gain of each band is calculated according to the ra-
tio between the maximum mean value and the mean
value of each band as

gb =
µmax

µb
, (8)

whereb∈ {1,2,3,4}. Applying the gains to each MS
band, the modifiedbth MS bandM′

b[n1,n2] is com-
puted as

M′
b(u,v) = gbMb(u,v), (9)

whereb∈ {1,2,3,4}. The mean values of the bands
are adjusted to a similar magnitude. This makes the
high-frequency of the bands similar as

g1Mh
1(u,v) = g2Mh

2(u,v)

= g3Mh
3(u,v) = g4Mh

4(u,v). (10)

By using this process, the high-frequency of the
chrominance signals are eliminated. That is to say,
the chrominance signals invading the PAN signal are

minimized.

M′
C1
(u,v) =

1
4

M
′ l
1 (u,v)−

1
4

M
′ l
2 (u,v)

−
1
4

M
′ l
3 (u,v)+

1
4

M
′ l
4 (u,v)

M′
C2
(u,v) =

1
4

M
′ l
1 (u,v)−

1
4

M
′ l
2 (u,v)

+
1
4

M
′ l
3 (

l u,v)−
1
4

M
′ l
4 (u,v)

M′
C3
(u,v) =

1
4

M
′ l
1 (u,v)+

1
4

M
′ l
2 (u,v)

−
1
4

M
′ l
3 (u,v)−

1
4

M
′ l
4 (u,v). (11)

The three modified chrominance signals are obtained
and the energy balanced MSFA signalm′[n1,n2] is ac-
quired as

m′[n1,n2] = m′
P[n1,n2]+m′

C1
[n1,n2](−1)(n1+n2)

+m′
C2
[n1,n2](−1)n1 +m′

C3
[n1,n2](−1)n2 . (12)

With one PAN signal and three chrominance sig-
nals in the MSFA image overlapping, there is a trade-
off between the signals when extracting one signal
from the MSFA image. Therefore, we have to de-
termine the adequate cutoff frequency of the low-pass
kernel to acquire the PAN signal from the MSFA im-
age. According to (Fang et al., 2012a), the majority
of the spectrum energy of a typical signal is highly
concentrated at a lower frequency, and the Lapla-
cian probability density function is a good model
to approximate the magnitude of the Fourier spec-
trum. Generally, the Fourier spectrums of the PAN
and chrominance signals are approximated with the
Laplacian model with each mean and variance. The
cutoff frequencies are determined by matching two
probability density functions between the Laplacian
model of the PAN signal from(0,0) and the Laplacian
models of the chrominance signal from(0,π), (π,0),
and (π,π). In other words, the cutoff frequency of
the low-pass kernelhc[n1,n2] used to extract the PAN
image can be determined. The process of conducting
a convolution with a low-pass kernelhc[n1,n2] to the
energy balanced MSFA signalm′[n1,n2] can be writ-
ten as

m̂P[n1,n2] = m′[n1,n2]∗hc[n1,n2]. (13)

The PAN image is generated without chrominance
signals containing the most high-frequency in the
MSFA image, as illustrated in Fig. 3. The MSFA
images are shown in Figs. 3(a) and (d). From this, the
MSFA images with balanced energy are depicted in
Figs. 3(b) and (e). By applying the low-pass kernel to
the MSFA images with balanced energy in Figs. 3(b)
and (e), the PAN images are generated as in Figs. 3(c)
and (f).
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(a) (b) (c)

(d) (e) (f)

Figure 3: (a), (b), and (c) are parts of theSample1image.
(d), (e), and (f) are parts of theSample2image. (a) and (d)
MSFA pattern image. (b) and (e) Energy balanced MSFA
pattern image. (c) and (f) Generated PAN image from (b)
and (e), respectively.

2.2 HR Image Estimation

In this section, we estimate the high-resolution MS
images by using the PAN image generated in the pre-
vious section. We denote the PAN imagemP[n1,n2]
and the MS imagesmb[n1,n2] by P andMb in aN×1
lexicographical order whereN = N1 × N2, respec-
tively. According to the formation of the synthetic
PAN image (Zhang, 1999), the PAN images can be
generated by a weighted sum with the coefficients of
their MS images. The PAN image acquirement pro-
cess can be represented as follows:

P =
NB

∑
b=1

αbBMb+w, (14)

where the blur matrixB is an assumed linear blur
model andw refers to the Gaussian random noise.NB
represents the number of the spectral bands. Thebth
band coefficient of each bandαb according to the pix-
els is obtained through regression analysis using the
relationship between the MS bands.

The low-frequency regions are important since
they express the characteristics of the objects in the
scene. Also, aliasing occurs mostly in high-frequency
regions in the images. And we assume that each
high-frequency of MS bands is highly correlated. For
this reason, in this paper, we focused on the high-
frequency reconstruction of the MS images. There-
fore, the high-frequency of the MS images is esti-
mated using the high-frequency of the PAN image.
The PAN and MS images are decomposed into low-
and high-frequency as

P = Pl +Ph,

Mb = Ml
b+Mh

b. (15)

Using the high-frequency signals only, (14) is rewrit-
ten as follows,

Ph =
NB

∑
b=1

αbBMh
b+w. (16)

The estimatedbth band MS image is denoted by
M̂b. Also, the generated PAN image is denoted by
P̂. Both the PAN image and the MS images from
the MSFA image estimated in the previous section are
used. In other words, the PAN imageP̂ whose original
expression is ˆmP[n1,n2] and the MS images from the
energy balanced MSFAm′[n1,n2] are used to estimate
the high-resolution MS images. To minimize the dif-
ference between the high-frequencyof the PAN image
and those of the MS images, the least square problem
is expressed as

M̂h
b = argmin

Mh
b

||P̂h−
NB

∑
b=1

αbBMh
b||

2. (17)

Since the square error function (17) is convex,
finding the minimization is equivalent to finding the
zero value of its gradient. To find the minimization
solution, the conjugate gradient descent method (Lu-
enberger and Ye, 1984) is applied. Then, the high-
frequency of the MS images is estimated in iterations
as follows,

M̂h(n+1)
b = M̂h(n)

b + ε(n){BT(P̂h−αbBM̂h(n)
b )}, (18)

whereε andn refer to the iteration step and the iter-
ation number, respectively. Estimating the MS bands
in (18) refers to the fact that the high-frequency of
the MS images are substituted by the that of the PAN
image. The iteration ends when the relative differ-

ence energy||P̂h−
NB

∑
b=1

αbBM̂h(n)
b ||2 between the high-

frequency of the PAN imagêPh and those of the es-

timated MS band images withnth iterationM̂h(n)
b is

smaller than the given threshold. The energy of high-
frequency of the PAN image||P̂h||2 is used to normal-
ize the relative difference energy. Finally, iteration
ends when it satisfies the following condition,

||P̂h−
NB

∑
b=1

αbBM̂h(n)
b ||2

||P̂h||2
< T, (19)

where T represents the specified threshold value.
From (19), the high-frequency of the MS images are
estimated. These images contain the high-frequency
from the PAN image. As a result, thebth band high-
resolution MS image is obtained as

M̂b = M̂h
b+Ml

b. (20)
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Figure 4: Rate of convergence for theSample3image ac-
cording to the step size.

The high resolution MS images are estimated by com-
bining the low-frequency of the original MS images
and the estimated high-frequency of the MS images.
By estimating the high-frequencies of the MS images
only, the high-frequency details of MS images are im-
proved and the low-frequencies of the original MS
images are preserved.

3 EXPERIMENTAL RESULTS

The results of the proposed algorithm are compared
both objectively and subjectively with the results of
the bilinear interpolation method and the BTES (Miao
et al., 2006). First, the images acquired by the RGB-
NIR sensors are used,Sample1, Sample2, Sample3,
and Sample4, along with a resolution chart and ob-
jects with details. The R, G, B, and NIR bands of
these images are sub-sampled by the MSFA pattern
in Fig. 1. We tested the performance of the proposed
algorithm by measuring the high-frequency energy
(HFE) in (Fang et al., 2012b). Also, we obtained sev-
eral original images using CCD sensors with change-
able R, G, B, and NIR filters (Sample5, Sample6,
Sample7, andSample8) and measure the color-peak
signal-to-noise ratio (CPSNR) of the resulting im-
ages. We generated the MSFA pattern image accord-
ing to the pattern in Fig. 1 because each pixel con-
tains the intensity values of the four bands (R, G, B,
and NIR).

In the experiments, we assumed the variance of
the blur kernel is 0.2 with a low blur condition and
set the iteration step sizeε at 0.5 in (18). The esti-
mated MS images converged about 40 iterations when
T is 10−3 in (19). Thebth band coefficientαb is 1/4
equivalent for all bands. To decompose signals as
low- and high-frequency, we use wavelet filters like
the low-pass filter[1,2,1]/4 and the high-pass filter

(a) (b)

(c) (d)

(e) (f)

Figure 5: Part of theSample1image. (a) Color result of the
bilinear interpolation. (b) Color result of the BTES method.
(c) Color result of the proposed algorithm. (d) NIR result
of the bilinear interpolation. (e) NIR result of the BTES
method. (f) NIR result of the proposed algorithm.

[−1,2,−1]/4. The initial value of the iterative esti-
mation method is the results of the bilinear interpola-
tion method.

The rate of convergence to the minimized solution
of the cost function is compared according to the it-
eration step sizesε which are 0.5, 0.25, and 0.125.
Fig. 4 describes the convergence of the iterations fol-
lowing the relative difference energy. The rate of con-
vergence whenε is 0.5 is faster than that whenε are
0.25 and 0.125. From this, the proposed algorithm
converges to find a solution.

3.1 Images Captured by RGB-NIR
Sensors

The results of the proposed algorithm and other meth-
ods are shown for subjective image quality compar-
ison. The results of the algorithms using the im-
ages captured by the RGB-NIR sensors are shown in
Figs. 5-8. Figs. 5(a)-(d) and Figs. 6(a)-(d) show
that the results obtained by the bilinear interpolation
and the BTES methods contain aliasing artifacts such
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Part of theSample2image. (a) Color result of the
bilinear interpolation. (b) Color result of the BTES method.
(c) Color result of the proposed algorithm. (d) NIR result
of the bilinear interpolation. (e) NIR result of the BTES
method. (f) NIR result of the proposed algorithm.

as false colors and zipper effects in the resulting im-
ages. However, the results of the proposed algorithm
in Figs. 5(e) and (f) and Figs. 6(e) and (f) show that
the image resolution improved greatly when using the
proposed algorithm. In Figs. 7(a)-(d), the edges of
the images are corrupted. However, Figs. 7(e) and
(f) show that the proposed algorithm produces cor-
rect edges without any aliasing artifacts. While it is
hard to recognize the letters in Figs. 8(a)-(d), Figs.
8(e) and (f) show the resulting edges to be well con-
nected with clear letters. Finally, the amount of false
colors and zipper effects in the high-frequency details
decreased.

To objectively measure the improvement of the
high-frequency details, the high-frequency energy
(HFE) value is used in (Fang et al., 2012b). An im-
age with a larger HFE is generally sharper. In this
paper, this means that image resolution improved and
the high-frequencydetails are reconstructed well. The
image is convolved with two filters,hk, with k = 1,2.
The two filters are high-pass filters[1,−2,1] applied
in horizontal (k = 1) and vertical (k = 2) directions.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Part of theSample3image. (a) Color result of the
bilinear interpolation. (b) Color result of the BTES method.
(c) Color result of the proposed algorithm. (d) NIR result
of the bilinear interpolation. (e) NIR result of the BTES
method. (f) NIR result of the proposed algorithm.

Then, the HFE for thebth band imagemb[n1,n2] is

given by
2
∑

k=1
||(hk ∗mb)[n1,n2]||1/2. The average HFE

of the image is calculated as,

HFEb =

N1−1
∑

n1=0

N2−1
∑

n2=0

2
∑

k=1
||(hk∗mb)[n1,n2]||1/2

N1N2
. (21)

We applied the HFE measurement to four images. Ta-
ble 1 shows the HFE values of the resulting images for
the fourSampleimages. The HFE values of the im-
ages produced by the proposed algorithm are higher
than those of the other results. That is, the edges
and high-frequency details of each image are recon-
structed well.

3.2 Simulated Images

The results of the algorithms with the original image
are illustrated in Fig. 9. We show the color images
among the R, G, B, and NIR bands. Figs. 9(b) and
(c) show that the edges are not connected well with
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Part of theSample4image. (a) Color result of the
bilinear interpolation. (b) Color result of the BTES method.
(c) Color result of the proposed algorithm. (d) NIR result
of the bilinear interpolation. (e) NIR result of the BTES
method. (f) NIR result of the proposed algorithm.

the false colors. However, by the proposed algorithm,
the edges and high-frequency details in Fig. 9(d) are
reconstructed well without leaving aliasing artifacts
such as false colors.

To show a comparison of the objective image
quality measurements, the CPSNR (in dB) is used as
a performance measurement. We apply the CPSNR to
four MS bands,

CPSNR’= 10log10(
2552

MSE
), (22)

where

MSE=

NB

∑
b=1

N1−1
∑

n1=0

N2−1
∑

n2=0
||mb[n1,n2]− m̂b[n1,n2]||

2

NBN1N2
.

(23)
Table 2 lists the CPSNR’ values of the algorithms
when applied to the four test images. In all instances,
the proposed algorithm outperforms the other algo-
rithms since high-frequency information is well re-
constructed by the proposed least square method with
the PAN image.

(a)

(b)

(c)

(d)

Figure 9: Part of theSample5image. (a) Original image. (b)
Result of the bilinear interpolation. (c) Result of the BTES
method. (d) Result of the proposed algorithm.

4 CONCLUSIONS

In this paper, we presented a multi-spectral color in-
terpolation algorithm for the RGB-NIR sensor that
acquires invisible NIR band and visible color bands.
This made objects clearer in dark conditions. The en-
ergies of the bands were compared and balanced sim-
ilarly. From the balanced MSFA image, a PAN image
was generated using a low-pass kernel with a high
cutoff frequency. Our algorithm estimated the high-
frequency of the MS images from the PAN image con-
taining the high-frequency details without aliasing.
The proposed algorithm can be adapted for any type
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Table 1: HFE Performance Comparison For Four MSFA
Images.

Bilinear BTES Proposed

Sample1

R 5.76 6.77 9.16
G 5.14 5.96 9.14
B 4.07 4.65 9.16

NIR 4.79 5.54 9.14

Sample2

R 3.06 3.46 5.55
G 3.92 4.43 5.56
B 2.45 2.69 5.54

NIR 2.61 2.87 5.54

Sample3

R 7.54 8.99 13.51
G 8.84 10.10 13.61
B 8.26 9.63 13.56

NIR 7.10 8.15 13.45

Sample4

R 9.24 10.64 17.98
G 10.39 12.05 17.99
B 9.95 11.51 17.99

NIR 8.41 9.67 17.97

Table 2: CPSNR’ (in decibels) Performance Comparison
For Four Color Images.

Bilinear BTES Proposed
Sample5 22.80 23.18 24.16
Sample6 22.93 23.12 25.12
Sample7 21.79 21.71 24.44
Sample8 21.84 21.38 24.10

of sub-sampled regular patterns because the method
of reconstructing the high-frequency of the MS im-
ages is not related to any specific patterns.
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