Implementation and Analysis of Dutch-style Sealed-bid Auctions

Computational vs Unconditional Security

Sriram Krishnamachari¹, Mehrdad Nojoumian¹ and Kemal Akkaya²

¹Department of Computer Science, Southern Illinois University Carbondale, Illinois, U.S.A.
²Department of Electrical and Computer Engineering, Florida International University, Florida, U.S.A.

Keywords: Privacy-preserving Auction, Sealed-bid Auction, Unconditional Security, Computational Security.

Abstract: Designing a sealed-bid auction protocol is a challenging problem in the field of applied cryptography. In the last couple of decades, numerous protocols have been proposed in the literature where each one has its own property in terms of the security model, communication and computation complexities. To the best of our knowledge, there has been no study to implement and compare a similar class of sealed-bid auction protocols. This paper therefore implements and evaluates five different Dutch-style sealed-bid auction protocols, of which three protocols are computationally secure and two protocols are unconditionally secure. It mainly focuses on the computational cost of the initialization and verification phases of these privacy-preserving protocols.

1 INTRODUCTION

Due to privacy concerns, utilizing sealed-bid auction protocols has been in the center of attention by software engineers, however, the main issue is the efficiency of these protocols in a real-world setting. Generally speaking, an auction is a mechanism in which a group of bidders (buyers) compete to buy a product. Then, the auctioneer (seller) sells the item to the bidder who has proposed the highest bid. There exist different types of auction mechanisms in the literature. We briefly review some of them.

An English auction is the most common auction. In this type of auction, the bidders continuously bid for a higher price and the auction ends once a single offer is proposed as the final highest price. On the other hand, in a Dutch-style auction, the auctioneer continuously reduces the price of the item until a bidder agrees to buy the item for that specific price. Two other popular mechanisms are first-price and second-price auctions. In the former case, the bidder who proposes the highest price wins and pays the amount that he has offered. In the latter case, the bidder who proposes the highest price wins, however, he pays the amount of the second-highest price.

In a sealed-bid auction of any type, the bidders seal their bids by using closed envelopes, that is, a cryptographic technique, and then they submit these envelopes to the auctioneer. At the end of the auction, only the auction outcomes (the winner and the selling price) are revealed and all the losing bids are kept private. The main motivation for constructing sealed-bid auction protocol is to protect the losing bids since they can be used by the auctioneer (seller) to maximize his revenue in the future auctions for similar items.

From a computational perspective, there are two types of schemes: computationally secure protocols and unconditionally secure protocols. In the former case, the adversary has limited computational capability, i.e., he cannot solve well-known mathematical problems such as factoring two large integers or discrete logarithm. In the latter case, the adversary has unlimited computational power. Furthermore, the adversary might be passive or active. In the former case, the participants follow the protocol, however, they may attempt to learn the secret, e.g., the losing bids. In the latter case, the participants not only try to learn the secret but also deviate from the protocol.

1.1 Motivation and Contribution

As we stated, various sealed-bid auction protocols have been constructed under different assumptions and with various properties. However, there exists no study to demonstrate the implementation complexity and performance analysis of a similar class of secure auction protocols. Our paper therefore aims at evaluation of five different Dutch-style sealed-bid auction protocols. Note that this type of auction was selected for our experiment since it is widely used by sellers.
Our major goal is to compare the selected protocols in terms of the computational complexity, i.e., initialization and verification times. We demonstrate how these measurement parameters vary once the assumption, security or adversarial model change. To perform a reasonable and fair comparison, the schemes are chosen from the same class of secure auction protocols. Furthermore, to have comparison across different settings, three computationally secure protocols (Sakurai and Miyazaki, 1999; Sako, 2000; Suzuki et al., 2000) and two unconditionally secure constructions (Nojoumian and Stinson, 2010; Nojoumian, 2012) are selected. Among these candidates, (Sakurai and Miyazaki, 1999) uses an undeniable signature scheme. (Sako, 2000) applies a public key encryption scheme. (Suzuki et al., 2000) employs a collision intractable hash function, and (Nojoumian and Stinson, 2010) utilizes a multicomponent commitment scheme. Note that if multiple protocols have been proposed in a paper, the most efficient method has been chosen for our evaluation.

Each candidate is evaluated with various price ranges, modulus sizes, and number of bidders and auctioneers. The evaluation shows that the initialization and verification times of unconditionally secure protocols are significantly larger than that of the computationally secure schemes. The analysis demonstrates how our measurement parameters vary across protocols when we modify the price range, the modulus size, and the number of bidders and auctioneers.

2 LITERATURE REVIEW

(K.Franklin and K.Reiter, 2006) proposes the first sealed-bid auction protocol. This paper utilizes verifiable secret sharing and verifiable signature sharing schemes in a distributed setting to construct a computationally secure protocol. In the opening phase, all the bids are opened to determine the winner, i.e., the bids are only kept private while the auction is running.

(Sakurai and Miyazaki, 1999) provides a computationally secure Dutch-style sealed-bid auction protocol by using an undeniable signature scheme. Later, (Sako, 2000) proposes a much faster Dutch-style sealed-bid auction protocol by using a public-key encryption scheme. This protocol is computationally secure and it does not require the existence of the bidders during the opening phase. The next computationally secure protocol for Dutch-style sealed-bid auctions is proposed in (Suzuki et al., 2000). This construction utilizes a hash chain scheme.

On the other hand, (Nojoumian and Stinson, 2010) and (Nojoumian, 2012) provide three unconditionally secure Dutch-style sealed-bid auction protocols \(^1\). The authors utilize a multicomponent commitment scheme where multiple committers and verifiers are involved in the scheme. These protocols are executed only by the bidders without the existence of any auctioneers.

There exist other types of first-price secure auction protocols. Brandt (Brandt, 2006) presents a computationally secure first-price auction protocol where the bidders use zero knowledge proofs to verify the auction outcomes. This protocol preserves privacy as long as one bidder is honest. (Michael Harkavy, 1998) also proposes a computationally secure first-price auction protocol that requires multiple auction servers in a distributed setting. This construction is later improved in (Kun Peng and Viswanathan, 2002) for its shortcomings in terms of the verifiability. The improved version uses a commonly accessible bulletin board such that all the parties can verify the auction outcomes. (Zheng et al., 2007) provides a secure auction protocol based on public key cryptography and one-way collision-free hash functions. (Kun Peng and Dawson, 2005) constructs a protocol that prevents attacks to the existing secret sharing-based protocols by using a homomorphic secret sharing scheme.

For other kinds of auctions, we can refer to the following schemes: (Kikuchi, 2002) proposes a verifiable \((M + 1)\)\(^{\text{th}}\)-price auction protocol using verifiable secret sharings. (David C. Parkes and Thorpe, 2009) provides a cryptographic combinatorial clock-proxy auction protocol. In this scheme, the bidders bid in two phases for a bundle of items such that no one can decrypt any values until all bids are submitted; (Helger Lipmaa and Niemi, 2002) presents a protocol for a sealed-bid Vickery auction that is computationally secure. They use a homomorphic auction scheme which requires the seller to participate in the auction along with the auctioneer; finally, (Suzuki and Yokoo, 2002) provides a computationally secure combinatorial auction protocol in which multiple items with interdependent values are sold simultaneously. In this scheme, the bidders can bid on any combination of the items.

3 SEALED-BID AUCTIONS

In an open auction, the bids are not kept private. As a result, auctioneers or a group of bidders may collude or use the past losing bids to maximize the auction revenue. Consider the following example as an open auction for a land. The auctioneer sets the starting price of the land as $35,000. Assume that the

\(^1\)For other type of unconditionally secure auction protocols, see (Nojoumian and Stinson, 2014).
actual value of the land is $80,000. While the auction is running, a group of bidders may collude with the auctioneer such that they repeatedly bid a price slightly higher than the current highest price to maximize the auction revenue, e.g., they may stop bidding at $90,000 to sell the land $10,000 higher than its actual value. Furthermore, the auctioneer or a group of bidders may record the losing bids in order to use them in the future auctions for similar items. For instance, in the land example, suppose that the auctioneer observes that the average of the losing bids had been $42,000 in the previous auction. Since the auctioneer learns the average of the evaluations, he can set the starting price to $42,000 or a higher price in the future auctions for a similar land. This way the auctioneer would be able to maximize his revenue.

On the other hand, in a sealed-bid auction, the bidders seal their bids by a cryptographic method and then submit their evaluations to the auctioneer. During the opening phase, the winner is identified and the selling price is determined without revealing the losing bids. This process neither allows the auctioneers and/or bidders to collude nor it reveals any information about the bidding trend. Note that the sealed-bid technique can be utilized for any type of auctions. To construct a sealed-bid auction of any kind, the following essential properties must be achieved:

- **Correctness**: the auction process must provide correct outcomes, i.e., winner and selling price.
- **Privacy**: the losing bids must not be revealed to the auctioneer and the other participating bidders.
- **Verifiability**: all parties who may exchange money must be able to verify the auction outcomes.
- **Fairness**: bidders should not modify/deny the bids that they have submitted, a.k.a, *non-repudiation*.

For instance, if a second-price secure auction is not verifiable, the auctioneer may ask the winner to pay a price that is slightly higher than the second-highest bid. Since the bids are sealed, the winner cannot verify the actual value of the second-highest bid.

In a Dutch-style sealed-bid auction, the auctioneer initiates the auction with some parameters. In the bidding phase, the bidders choose their evaluations from the maximum price and it is decreased step by step until a bidder claims as the winner. At this stage, the winner’s bid is opened for verification. Moreover, the losers must prove that their bids have been less than the winning price without opening their bids.

The Dutch-style auction keeps the losing bids secret on its own. However, its sealed-bid version provides additional property. That is, the bidders decide ahead of time and propose their valuations independent of whatever information they may gain during the auction. This property prevents any kind of collusion since the bidders cannot learn any information about the other bids while the auction is running.

Next, we briefly review our selected protocols.

3.1 Undeniable Signature Scheme

(Sakurai and Miyazaki, 1999) proposes the first Dutch-style sealed-bid auction protocol. They use a public bulletin board to implement the auction. All the auction results are published on the bulletin board so that each bidder can verify every step of the auction. This protocol utilizes an *undeniable signature scheme*, proposed by (Michels and Stadler, 1997). In an undeniable signature scheme, a prover has to convince the verifier for the equality or inequality of two discrete logarithms. In fact, the undeniable signature scheme is used to comply with the required auction properties, as we discussed earlier. This protocol also employs a registration authority to certify the bidder’s public key. Note that in this construction p and q must be two large prime numbers.

3.2 Public-key Encryption Scheme

(Sako, 2000) proposes a Dutch-style sealed-bid auction protocol based on ElGamal public key cryptosystem (ElGamal, 1985). In this protocol, each bidder is required to post his bid in the form of an encrypted message and then the auctioneer processes these messages to define the auction outcomes. The protocol utilizes a probabilistic encryption of a bid in such a way that the bid is not decrypted unless it is the winning bid. The proposed scheme can be run either by a single or multiple auctioneers. For the sake of simplicity, we implemented the single auctioneer model. The scheme considers a set of L possible bid values, i.e., $V = \{v_1, \ldots, v_L\}$. It also employs a set of encryption functions $\{E_v\}$ and a set of decryption functions $\{D_v\}$ for $v \in V$. The cipher text is an encryption $E_v(M_v)$ where M_v is a predefined message.

3.3 Hash Chain Scheme

The protocol proposed in (Sako, 2000) overcomes the computational complexity problem of (Sakurai and Miyazaki, 1999), however, it has a shortcoming. In its multiple-auctioneer model, a malicious auctioneer
can reveal the losing bids. (Suzuki et al., 2000) provides a Dutch-style sealed-bid auction protocol that overcomes this issue. In this protocol, a distributed decryption method is used in a multiple-auctioneer setting. The protocol employs hash functions to create hash chains for encryption and decryption.

3.4 Multicomponent Commitment

(Nojoumian and Stinson, 2010; Nojoumian, 2012) proposes a couple of unconditionally secure Dutch-style sealed-bid auction protocols. These constructions do not require any auctioneer to participate in the bidding and opening phases. A trusted initializer first initiates the auction and then he leaves the scheme. During the initialization phase, each bidder B_1, \ldots, B_n receives some information from the initializer. In the opening phase, bidders determine the auction outcomes on their own. In this setting, η and κ denote the minimum and maximum prices respectively, i.e., $\theta = \kappa - \eta + 1$ denotes the number of prices. Bidders are connected through point-to-point secure channels. During the bidding phase, each bidder B_i commits to his bid $\beta_i \in [\eta, \kappa]$. In the opening phase, the winner reveals his bid and the losers prove that their bids had been less than the winning price. All the computations are performed in Z_q. The prime q must be large enough such that n^2/q be very small.

4 EVALUATION AND ANALYSIS

The implementation of the selected Dutch-style sealed-bid auction protocols was performed using Microsoft Visual Studio and also the Crypto++ library. For the sake of simplicity, we used a common graphical user interface for auctioneers and bidders. The bulletin board in (Sakurai and Miyazaki, 1999) was implemented as a table with bidders’ identifications in rows and auction parameters in columns.

We selected all the cryptographic modules from Crypto++ except for the construction of the polynomials in protocols (Nojoumian and Stinson, 2010; Nojoumian, 2012), for each polynomial $g(x) = a_0 + a_1 x^1 + \cdots + a_{n-1} x^{n-1}$ of degree $n-1$, we simply generated n random numbers $a_0, a_1, \ldots, a_{n-1}$ in the finite field Z_q and then we submitted the array to the related bidder. Moreover, the Diffie-Hellman library in Crypto++ was used to generate large prime numbers for the protocols in (Sakurai and Miyazaki, 1999; Sako, 2000). This library also provides generator α of subgroup Z_q (of order q) that is used in (Nojoumian and Stinson, 2010; Nojoumian, 2012).

Note that initialization and verification times not only consider the computational cost but also capture the communication overhead of the protocols. To evaluate the auction protocols for various rounds, the bidders were allowed to bid from the least element in the price set to 100%, 75%, 50% and 25% of the price set. For instance, in a price set of 100 elements, a bidder could bid from P_1 to P_{100}, P_{75}, P_{50} or P_{25} respectively. We will call this as price range hereafter.

We faced some challenges when we implemented (Nojoumian and Stinson, 2010; Nojoumian, 2012). For instance, the point-to-point channels among bidders required $n-1$ ports for every single bidder, i.e., $n(n-1)$ ports for n bidders on a single computer. Furthermore, since the bidders conducted the auction on their own, the opening phase had to be synchronized. Therefore, a notify-and-receive technique was implemented to resolve this issue (i.e., each bidder announces his completion of one round and then he waits until all the bidders accomplish this phase). The same notify-and-receive method was adopted for the opening phase of (Suzuki et al., 2000).

Note that the notify-and-receive technique led to an increased verification time. However, even with this extra delay, we could relatively estimate the verification time. This means that evaluating the test cases in an auction system with ideal synchronized channels would certainly give more accurate verification time for these protocols but the real implementation of synchronized channels had been a big challenge and still under debate among software engineers.

Generally speaking, the model of synchronous channels might be (a) the sender sends a message and all the receivers are guaranteed to get the message within a period p, where the length of p is a constant known to everyone from the start of the protocol, or even a stronger model in which (b) the sender sends a message and all the receivers get the message at exact time t so that each receiver cannot rush and change its behavior in the sending slot after seeing the incoming messages. Neither is, of course, a very realistic channel, which is why it is better to make protocols that work in asynchronous network models.

Our evaluations were conducted on a computer with an Intel i7-2600 CPU @ 3.4GHz processor and 16GB RAM. The protocols were tested with common price set P consisting of 41 elements. They were also evaluated with three combinations of bidders (i.e., 25, 50 and 75) and various modulus sizes (i.e., 128, 256, 512 and 1024). However, unconditionally secure protocols were only tested with 25 and 50 bidders since they were computationally intensive. Finally, the protocol in (Suzuki et al., 2000) was verified with different number of auctioneers (i.e., 5, 10, 15 and 20).
4.1 Computational Protocols

In this section, evaluation and analysis of the computationally secure protocols (Sakurai and Miyazaki, 1999; Sako, 2000; Suzuki et al., 2000) are shown. As we mentioned earlier, the initialization and verification times are our measurement metrics.

The result shows an amplification in initialization time when the modulus size is increased in (Sakurai and Miyazaki, 1999). The initialization time is significantly amplified when we switch to 1024 bits. This was expected as generating large primes for larger modulus is more time-consuming. We executed the initialization procedure a thousand times for each modulus size and then we calculated the average of the timing for each modulus size, shown in Figure 1. Note that the number of bidders as well as the price range have no impact on the initialization time.

![Figure 1: Initialization Time: (Sakurai and Miyazaki, 1999).](image)

As shown in Figure 2, the verification time is measured for two modulus sizes, 128 bits (top) and 512 bits (bottom). This time varies when the price range, modulus size and number of bidders are changed. It is minimized (almost 203 ms) when these parameters are 100%, 128 bits and 25 respectively. On the other hand, it is maximized (63 secs) when these parameters are 25%, 1024 bits and 75. The longer verification time is mainly attributed to the presence of bidders in the opening phase as the auctioneer and bidders exchange many messages to define the outcomes.

While the evaluation result of (Sakurai and Miyazaki, 1999) shows a significant change in the verification time for various price ranges, modulus sizes and number of bidders, (Sako, 2000) does not exhibit a significant variation in the verification time for similar changes in the auction parameters. This variation can be justified by the presence of bidders during the opening phase. In (Sako, 2000), the computation load is fully on the auctioneer and the bidders do not participate in the opening phase whereas in (Sakurai and Miyazaki, 1999) the bidders partic-

![Figure 2: Verification Time: (Sakurai and Miyazaki, 1999).](image)

The verification time is plotted in Figure 4: 128 bits (top) and 512 bits (bottom). It is minimized (almost 2 ms) when the parameters are 100%, 128 bits and 25 respectively and it is maximized (3 secs) when these parameters are 25%, 1024 bits and 75.

![Figure 3: Initialization Time: (Sako, 2000).](image)

![Figure 4: Verification Time: (Sako, 2000).](image)
The proposed protocol in (Suzuki et al., 2000) employs multiple auctioneers to define the outcomes. As a result, the number of auctioneers has an impact on the verification time, however, the initialization time is not affected by this number. Furthermore, since the generation of the encryption and decryption functions as well as predefined messages directly correlate to the price set, the initialization time varies with the size of this set in addition to the modulus size.

The measurement of the initialization time for two price sets of 41 and 200 elements illustrates only a difference of 30 ms. This means that the variation in the number of elements in the price set does not drastically affect the initialization time. For this reason, we plotted the initialization time in the same way as of the previous protocols, as shown in Figure 5.

![Initialization Time: (Suzuki et al., 2000)](image1)

The verification time varies with the number of auctioneers as well as the price range, modulus size and the number of bidders; similar to the other two protocols. For the sake of simplicity, we fixed the modulus size to 128 bits and changed the other parameters, as shown in Figure 6: 5 auctioneers (top) and 20 auctioneers (bottom). The verification time is minimized (almost 80 ms) when we consider 100% of the price range, 5 auctioneers and 25 bidders. On the other hand, it is maximized (7 secs) when these parameters are 25%, 20 and 75 respectively.

![Verification Time: (Suzuki et al., 2000)](image2)

4.2 Unconditional Protocols

In this section, evaluation and analysis of the unconditionally secure protocols (Nojoumian and Stinson, 2010; Nojoumian, 2012) are demonstrated. In these constructions, the initialization cost is measured based on the interactions between the initializer and the bidders. Furthermore, since these protocols do not require the existence of an auctioneer during the opening phase, the verification cost is measured based on the interactions among the bidders. As we stated earlier, part of the complexity cost is due to the implementation of the notify-and-receive technique.

Although the verification time varies with the price range, modulus size and the number of bidders, we restricted our test cases to 128 bit modulus and 25 and 50 bidders due to a high computational cost of these protocols, as shown in Figure 8. In this setting, the verification time is minimized to 6 secs with 100% price range, 128 bits modulus and 25 bidders. On the other hand, it is maximized to 3 mins when these parameters are 25%, 128 and 50 respectively.

In the second protocol, named EVNR, the initialization time is also proportional to the size of the price
set, modulus size and the number of bidders, however, the number of commitments is optimized by a logarithmic factor, i.e., $\lambda = \lceil \log_2 \theta \rceil$ where λ denotes the required number of commitments and θ denotes the number of prices. As such, the number of polynomials (to be generated for each bidder) is reduced drastically. This improves the initialization time as well as the verification time. With a similar approach as of the previous protocol, Figure 9 compares the initialization time for various modulus sizes with 41 prices and 25 bidders. As shown, this time varies from 1 to 6 seconds for various modulus sizes, which is a significant improvement compared to the VNR protocol.

Similarly, we restricted our test cases to 128 bit modulus and 25 and 50 bidders due to a high computational cost, shown in Figure 10. In this setting, the verification time is minimized to 3 seconds with 100% price range, 128 bits modulus and 25 bidders. On the other hand, it is maximized to 48 seconds when these parameters are 25%, 128 and 50 respectively. This is a major improvement compared to the VNR protocol.

4.3 Computational vs Unconditional

Figures 11 and 12 show the initialization and verification times of all protocols. To make the result visible on a single plot, we use a logarithmic scale of ms.

Among the computationally secure protocols, the initialization time of PES is higher than the other two protocols, however, its verification time is much lower. Within the unconditionally secure protocols, EVNR is executed much faster. Overall, the unconditionally secure protocols take more time in both phases, however, they can be run without any auctioneers and they provide a higher level of security.

Table 1 summarizes a sample of our test cases. It also demonstrates the initialization time for 1024 bits modulus and the verification time for 50% price range, 128 bits modulus and 50 bidders.
5 CONCLUSION

Our motivation to analyze the complexity of sealed-bid auction protocols led us to the implementation of various computationally and unconditionally secure constructions. As we stated earlier, the unconditionally secure protocols are more expensive, however, they provide a higher level of security. On the other hand, the computationally secure protocols are faster but they rely on computational assumptions. Therefore, selecting an appropriate sealed-bid auction protocol is a trade-off between the level of security and the time complexity.

It is also worth mentioning that we selected the Dutch-style auction for our experiments since it is widely used in real-world settings. As our future work, we intend to perform a similar analysis for second-price and combinatorial auctions.

REFERENCES

