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Abstract: The detection of strong statistical bias in metabolic networks is of much interest for highlighting potential 
selective preferences. However, previous approaches to this problem have relied on ambiguous 
representations of the coupling among chemical reactions or in physically unrealizable null models, which 
raise interpretation problems. Here we present an approach that avoids these problems. It relies in a 
bipartite-graph representation of chemical reactions, and it prompts a near-comprehensive examination of 
statistical bias in the relative frequencies of topologically related metabolic structures within a predefined 
scope. It also lends naturally to a comprehensive visualization of such statistical relationships. The approach 
was applied to the metabolic network of Saccharomyces cerevisiae, where it highlighted a preference for 
sparse local structures and flagged strong context-dependences of the reversibility of reactions and of the 
presence/absence of some types of reactions. 

1 INTRODUCTION 

The detection of over- or under-represented local 
structures (motifs and anti-motifs, respectively) in 
biological networks has attracted much interest as a 
way of detecting potential selective constraints 
(Milo et al., 2002, Aittokallio and Schwikowski, 
2006, Barabasi and Oltvai, 2004). The implicit 
rationale is that over-representation with respect to 
expectation from a prescribed null model is likely to 
be a consequence of natural selection for 
maintenance of the motif, driven by functional 
advantages provided by its dynamic properties. 
However, it is hard to conceive physically realizable 
and biologically plausible null models of metabolic 
networks. Null models generated by the 
randomization procedures considered in previous 
publications (Shellman et al., 2013) are not 
physically realizable, as they violate atom 
conservation. The meaningfulness of statistical over-
representation with respect to such unrealistic null 
models is therefore questionable (Artzy-Randrup et 
al., 2004). As a more reasonable alternative, Milo et 

al. (Noor et al., 2010) consider randomly generated 
networks such that all the allowed reactions could in 
principle be catalyzed by known enzyme activities 
considered at the third level of the E.C. 
classification. However, the extent to which 
networks generated in this way are legitimate “no-
selection” null models is debatable. Enzymes are 
products of natural selection and expensive to 
maintain. So, the fact that an enzyme exists to 
catalyze a given reaction is already an indication that 
such a reaction has selective advantages for at least 
some organisms. Further, this procedure is liable to 
knowledge bias. 

The representation of metabolic connectivity 
structures in motif analysis can also be problematic. 
Previous analyses (Shellman et al., 2013) defined 
structures as graphs where each metabolite A is 
connected to another one B by a directed edge if 
there is a reaction converting A to B. However, such 
metabolite connectivity structures are ambiguous 
and difficult to interpret and relate to dynamics and 
function. This is so because the same structure may 
correspond to very different reaction structures.  
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Here we present an approach to systematically 
highlight and visualize strong statistic preferences in 
local metabolic connectivity structures without 
requiring an artificial null model. In order to avoid 
the ambiguity problems discussed in the previous 
paragraph, structures are represented as directed 
bipartite graphs, with reaction and metabolite nodes 
(Aittokallio and Schwikowski, 2006). The approach 
consists in first constructing a topological hierarchy 
of structures of increasing complexity. Then, 
comparisons among the frequencies of structures 
differing by a single structural element (one reactant 
or product of one reaction, a reaction connecting two 
metabolites, or the reversibility of one reaction) can 
be properly performed using such framework. We 
illustrate its application to the set of structures 
formed by 3 metabolites and 2 or 3 reactions in the 
metabolic network of Saccharomyces cerevisiae. 

2 METHODS 

2.1 Definitions 

We denote by “topological structure”, abbreviatedly 
“structure”, a specific pattern of interconnections 
between the two types of nodes of the metabolic 
network: metabolites and reactions. Isomorphic 
representations obtained from each other by 
relabeling metabolites and/or reactions are 
considered as the same structure.  

Two structures are said to be directly related if 
the most complex one can be obtained from the 
simplest one by addition of just one of the following 
structural components: (i) a reactant or product to a 
reaction; (ii) the reverse of a reaction; (iii) a third 
reaction converting one metabolite into one other. 

The simplest of two directly related structures is 
denoted as “parent”, and the other, derived from it 
by the addition of a structural element, is referred as 
its “child”. Each structure may have multiple parents 
and children. We denote by “offspring” of a 
structure the set of all of its children, grand-children, 
etc. 

We denote by “instance” any concrete realization 
of a given structure in a metabolic network, i.e., an 
actual set of metabolites and reactions connected as 
defined in the structure. 

2.2 Scope 

All the structures considered in the present paper are 
formed by three metabolites connected through two 
or three (possibly reversible) reactions. Further, the 

third reaction must connect a reactant-product pair 
not connected by any of the other reactions (Figure 
1). Reactions in instances of each structure may 
have additional reactants or products not represented 
in the structure, but reversibility in the structure 
implies reversibility of a corresponding reaction in 
the instances. 

A)

B)

Figure 1: Examples of structures of three metabolites and 
two or three reactions: (A) considered in this work, (B) 
excluded. 

2.3 Structure Enumeration 

The three simplest structures include two reactions, 
each with a reactant and a product. All other 
structures were iteratively constructed from these 
three seed structures through the stepwise addition 
of any of the following three structural components: 
(i) a new reactant or product (from the structure) to a 
pre-existing reaction; (ii) the reverse of a pre-
existing reaction; (iii) a third reaction converting one 
metabolite in the structure into another. At each step, 
structures were checked for isomorphism and 
inclusion in the structural scope defined in section 
2.2. 

The procedure above generates a layered 
network of topological relationships among 
structures (Figure 2). The nodes in this network are 
the 149 non-isomorphic topological structures, 
arranged in 8 generations, from the sparsest (i.e., 
with the fewest structural components) structures to 
the densest. The edges join directly related structures 
as defined in section 2.1. 

Importantly, the topology of this network is 
uniquely determined by the topological relationships 
of the structures and independent of the properties of 
concrete metabolic networks. It therefore provides a 
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convenient and sound reference to represent the 
local-topology characteristics of the metabolism of 
different microorganisms and assess their affinities 
and particularities through topological oriented 
statistical descriptors. 

2.4 Instance Counting in a Metabolic 
Network 

The approach was applied to a reconstruction 
(Forster et al., 2003) of the S. cerevisiae metabolic 
network, which includes 1058 reactions (335 
reversible and 723 irreversible) and 991 metabolites. 
Each reversible reaction was replaced by a pair of 
unidirectional reactions, making a total of 1393 
unidirectional reactions. 

We determined the following statistics in this 
metabolic network. 

2.4.1 Naked Frequency 

We define the naked frequency of structure i, ே݂ሺ݅ሻ, 
as the number of instances matching the structure 
but not any of its offspring. 

2.4.2 Embedded Frequency 

We define the embedded frequency of structure i, ா݂ሺ݅ሻ, as the total number of instances of the 
structure, whether or not embedded in any of its 
offspring. The value of ா݂ሺ݅ሻ is obtained by adding ே݂ሺ݅ሻ and the naked frequencies of all of structure i’s 
offspring. 

The embedding ratio of structure i into its child j, ܧሺ݅, ݆ሻ = ா݂ሺ݆ሻ/ ா݂ሺ݅ሻ measures the propensity of 
structure i to be embedded into its child j and 
respective offspring. 

The independence ratio ܴሺ݅ሻ = ே݂ሺ݅ሻ/ ா݂ሺ݅ሻ 
measures the tendency of structure i to appear in its 
“naked” form, rather than embedded in any of its 
offspring structures. 

2.4.3 Metabolite Coverage 

We define the metabolite coverage of structure i, ܥெ௧ሺ݅ሻ, as the fraction of metabolites in the network 
that appear as nodes in all instances of structure i, 
considering only exact matches as for the 
computation of naked frequencies. 

2.4.4 Children Information 

We define the children information of structure n,  ∆ܪሺ݊ሻ,	as (eq. 1): 

ሺ݊ሻܪ∆  = ௫ሺ݊ሻܪ − ሺ݊ሻܪ == ଶ݈݃− ൬ 1ܰሺ݊ሻ൰− ቌ− ே݂ሺ݅ሻ ଶ݈݃ ே݂ሺ݅ሻቍ, 		∀݅ ∈ ℎሺ݊ሻ (1)ܥ

where ܥℎሺ݊ሻ is the set of all the children of structure ݊. The value of ∆ܪሺ݊ሻ is null if all children are 
equally frequent, and high if the distribution of 
children frequencies is very uneven. 

3 RESULTS AND DISCUSSION 

Some of the statistics above were graphically 
represented in Figures 2 and 3. The analysis of these 
statistics highlights the following remarkable 
features about the local structure of the metabolic 
network: 

1. Although most structures have instances in the 
network, 22 of the 149 structures do not (e.g., 
76, 92, 110). The latter are usually very dense 
(Figure 2). 

2. Sparse structures tend to be more frequent 
than denser ones (Figures 2, 3). This is 
expected for embedded frequencies because 
simpler structures can a priori be matched by 
more instances than more complex structures 
for combinatorial reasons. However, sparser 
structures also tend to have higher naked 
frequencies, which may highlight a selective 
preference. The avoidance of denser structures 
may stem from the fact that maintaining 
multiple enzymes for converting among 
similar substrates (other than metabolic 
currencies) would spend cellular biosynthetic 
resources without bringing significant 
advantages. 

Most structures that have high ܴ values are 
dense. This is in part because these structures 
can have few denser offspring. However, some 
sparse structures have high ܴ (e.g., B → C + A, 
B → A + C), and some relatively dense structures 
(e.g., A Φ C + B, B Φ C, C + B Φ A) have very 
low R. Although there is a significant negative 
correlation between ܴ and the  number  of  
offspring  of  the  structures (ρSpearman= –0.20, p< 
0.02) this correlation is low. Therefore, the 
number of offspring explains only a minor 
portion of the variation in ܴ. 

High values of ா݂ may stem from the following two 
distinct situations. First, there may be many disjoint 
instances    of   the   structure.   Second,   there   may 
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Figure 2: Network of topological relationships among the structures, and statistics for the metabolic network of S. 
cerevisiae. Nodes at each generation are ordered by naked frequency. Node diameter is proportional to ݃ܮሺܥெ௧ሺ݅ሻሻ. Node 
hue represents ܴሺ݅ሻ(scale at the bottom right corner). Edge colours represent relationships: blue, addition of 
reactant/product to unidirectional (dark) or bidirectional (light) reaction; orange, addition of reaction; green, addition of 
reverse reaction. Edge thicknesses are proportional to ܧሺ݅, ݆ሻ. Dashed edges: ሺ݅, ݆ሻ ൏ 0.05. Dotted edges connect to 
structures that lack instances in the metabolic network. 
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Figure 3: Relationship between naked frequency, 
embedded frequency and relative structure density. 
Relative structure density was computed as ேಶೞିସଵସ , with 
NEdges the number of edges connecting metabolite and 
reaction nodes. Structures to the left of the dashed line 
have a ratio ܴሺ݅ሻ ≤ 0.1and ா݂ሺ݅ሻ > 1000. These 
structures are frequent and occur preferentially embedded 
in offspring structures. 

be a combinatorial explosion such that part of the 
metabolites and reactions forming the structure are 
shared among many of the instances and the rest of 
the structure can be matched by many other 
metabolites and reactions in the metabolic network. 
The very high ா݂ values of most instances are due to 
the second factor. Thus, when only overlaps by up to 
one metabolite (and no reactions) are allowed, 
structure 16 (B → A, C → A + B), which ranks 12th 
in terms of ா݂, becomes the one with highest naked 
frequency (12). However, the embedded frequencies 
with overlaps restricted to no more than one 
metabolite are strongly correlated to ா݂ (ρSpearman= 
0.90), which is simpler to compute. 

There is also a strong correlation between ா݂ and ܥெ௧ (ρSpearman= 0.91). But remarkably, although 
seed structures 13 (B → A, B → C) and 31 (A → B, 
C → B) have higher embedded frequency, their 
respective children 2 and 3, resulting from addition 
of one reverse reaction have higher metabolite 
coverage. This is explained by a greater overlap 
among instances for structures 13 and 31 than for 
structures 2 and 3.  

Structures with low R and high ா݂ are those that 
occur frequently when embedded in more complex 
structures but not in isolation. A more detailed 
analysis of the statistics for some of these structures 

highlights the following remarkable features of the 
local structure of the metabolic network in point. 

1. In 96% of the (total) instances of structure 18 
(B → A + C, C → A + B) the latter reaction is 
reversible (structure 19 and offspring), and in 
95% of the instances there is also a C → B 
reaction (structure 56 and offspring). On the 
other hand, structure 18 is rarely embedded in 
offspring that also contain a B → A or a A → 
B reaction. 

2. In turn, in 96% of the instances of structure 56 
the reaction C → A + B is reversible (structure 
60 and offspring), but structure 56 is rarely 
embedded in offspring containing either a 
reaction of the form C + A → B or a second 
reaction of the form C → A + B. 

3. In 93% (51%) of its occurrences, structure 19 
is associated to a B → C (respectively C → B) 
reaction, but it is rarely associated to reactions 
A → B, B → A, A → C or C → A. 

4. 91% of the instances of structure 17 (A → B + 
C, B Φ C) contain also a A → B reaction. 

5. In 93% of the occurrences of the cycle A → B 
→ C → A (structure 85 and offspring) at least 
one of the steps is reversible. 

The computation and ranking of children 
information provide another means of flagging 
unexpected bias. The analysis of the results allowed 
determining interesting features of the local structure 
of the metabolic network: 

1. Structure 40 (A → B + C, C → B, C → A) has ∆ܪ = 2.0 bit. The structure has seven 
children, three of which are obtained by 
adding a reversible reaction. The child with 
the first reaction reversible, structure 44, is 
clearly dominant, representing 85% of the 
instances of all children. 

2. Structure 11 (A Φ B + C, C → B) has ∆ܪ = 
1.9 bit. Of its seven children, four are obtained 
by adding a 3rd reaction: C → A, A → C, A → 
B or B → A. Structure 44 is obtained by 
adding the first reaction and comprises 82% of 
the instances of all the children. 

3. Structure 21 (B + C → A, C → A) has ∆ܪ= 
1.8 bit. Of its 8 children, six are obtained by 
adding a new reaction. Adding the reaction C 
→ B leads to structure 111, which comprises 
72% of the children’s instances. 

4 CONCLUSIONS 

The approach to characterize statistical trends in the 
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local structure of metabolic networks presented in 
this article shows several desirable features. 

First, it represents local topological structures as 
bipartite and directed graphs, which permits an 
unambiguous description of the chemical reaction 
patterns involved. 

Second, it presents a comprehensive enumeration 
of the structures within a prescribed scope and 
highlights the topological relationships among 
structures, facilitating a comprehensive examination 
of statistical trends. 

Third, it prompts a comprehensive visualization 
of structure statistics and of statistic relationships 
among topologically related structures (e.g. Figure 
2). This will facilitate direct comparisons among the 
local-topological characteristics of the metabolic 
networks of distinct organisms and organelles, 
which can be put in relation to their environments 
and functions. 

Fourth, the approach to detecting potential 
selective constraints does not hinge on null models 
based on physically meaningless random networks. 
It emphasises not so much the absolute frequencies 
of the structures as the relative frequencies among 
topologically related structures. Therefore it puts in 
relief the local-context dependence of the 
presence/absence of additional reactions, 
reversibility, etc. We presented above several 
statistics that help detecting strong bias. 

Applied to the S. cerevisiae metabolic network, 
the approach highlights a preference for sparse 
structures. It also highlights some very strong 
context-dependence of the reversibility of reactions 
and of the presence/absence of some types of 
reactions. The underpinnings of these trends deserve 
further investigation as a way to reveal functional 
(e.g. dynamic) properties underlying an evolutionary 
preference for some reaction-coupling 
configurations, with the potential to guide synthetic 
biology and metabolic engineering approaches. 

Ongoing algorithmic developments include the 
expansion of the topological scope of the analysis 
and strategies to efficiently navigate the network of 
topologically related structures towards highly 
represented complex structures. 
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