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Abstract: This paper is a work in progress in which aims to combine the principles of population genetics and
continuous-time Markovian evolutionary models to estimate evolutionary rate matrices from the current ob-
served state of a single genome. A model is proposed in which sections of the genome which are not suscep-
tible to natural selection are considered to be a statistical ensemble of individual genomic sites. Each site is a
representative from a stationary distribution of allele frequencies 0≤ θ ≤ 1 within the population. Simulations
of this distribution via a finite-state Markov model based on a finite effective population size are compared
with the stationary solution to the continuum Fokker-Planck equation. Parameters of the evolutionary rate
matrix introduced via mutation rates within the Fokker-Planck equation are estimated for simulated data in a
number of exploratory examples.

1 INTRODUCTION

The rapidly reducing cost of high-throughput se-
quencing now allows for the acquisition of genome-
wide data profiling allele frequencies within pop-
ulations across large numbers of polymorphic
sites (Lynch, 2009). This paper is an exploratory anal-
ysis of the feasibility of estimating evolutionary rate
matrices solely from the current observed state of al-
lele frequencies within a genome.

The evolutionary rate matrix at a given genomic
site is known to depend strongly on the site’s con-
text, that is, the nucleotide content of its flanking
bases (Nevarez et al., 2010; Zhao and Boerwinkle,
2002). Herein we will assume the available data to
be sufficiently extensive that (1) individual mutation
rates can be fitted independently for each context, and
(2) that we can restrict ourselves to sites expected to
evolve via a “neutral” theory in which the effects of
natural selection can be ignored. Within these con-
straints, the assumed data consists of a set of 4 num-
bers(θA,θC,θG,θG) at any given site in the genome
giving the relative abundance 0≤ θa ≤ 1 of nucleotide
a ∈ {A,C,G,T} within the population at that site. For
the vast majority of sites this vector is observed to be
(immeasurably close to) one of(1,0,0,0), (0,1,0,0),
(0,0,1,0) or (0,0,0,1). Sites for which two or more
components are non-zero are referred to as single nu-
cleotide polymorphisms (SNPs), and for most SNPs
only two components are observed to be non-zero.

The nucleotides for whichθa is non-zero at a given
SNP are referrred to as alleles.

A similar approach to that set out here has also
been taken by Messer (Messer, 2009). However,
Messer’s approach differs in that he restricts the data
to alleles occurring with low frequency in the pop-
ulation, that isθ close to 0 or 1, in order to reduce
the effects of selection. In our approach we assume
the set of genomic sites can be reduced to those not
subject to selection and use the entire range of allele
frequencies.

2 THE MODEL

Our starting point is a discrete-time Markov model
which combines two fundamental ideas of population
genetics.

The first of these is the discrete stochastic model
of genetic drift (see for instance (Ewens, 2004), Chap-
ter 3), defined by a square, time-independent tran-
sition matrix pi j defined as follows: If, at a SNP
within the genome with two allelesA1 andA2, Y (τ)
is the number of individuals in a diploid population
of sizeN with the alleleA1 at time-step (or genera-
tion) τ = 1,2, . . ., then

Prob(Y (τ+1)= j|Y (τ)= i)= pi j, i, j = 0,1, . . . ,M,

whereM = 2N. The canonical model generally con-
sidered is the Wright-Fisher model (Wright, 1931) for
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This view of genetic drift readily generalises to
an alphabetL = {A,C,G,T} and a vector of random
variablesY(τ) = (YA,YC,YG,YT ) with a probability
distribution

Prob(Y(τ) = i) = φ(iA, iC, iG, iT ;τ),

where

∑
a∈L

ia = M, andia = 0, . . . ,M. (1)

In general, for an alphabet of sized, the vectorφ has
(M+d−1

d−1

)

components. We interpret this distribution
as the relative frequency of genomic sites at which
alleles are present at the population frequencyi/M.
Most of the components ofφ will be very close to
zero in practice as SNPs with more than two alleles
are extremely rare within the genome. Furthermore
since the vast majority of genomic sites are not SNPs,
the distribution will be heavily dominated by the com-
ponentsφ(M,0,0,0), φ(0,M,0,0), etc. The Wright-
Fisher model thus generalises to

Pij = Prob(Y(τ+1) = j|Y(τ) = i) =
(

M
jA jC jG jT

)(

iA
M

) jA( iC
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.

The second fundamental idea is that genomic mu-
tations are modelled via a site-independent Markov
transition matrix

Π(t) = exp(tQ)

where the elementsqab of Q, satisfying∑b∈L qab = 0,
represent the instantaneous mutation rate from allele
a to alleleb. Our ultimate aim is to estimateQ from
allele frequenciesθ within the population at each of
the sites within the restricted set of genomic sites de-
scribed in the Introduction.

To make contact with the above model of genetic
drift, it is instructive to re-visit the Wright-Fisher
model. Assuming a two-step process in which inheri-
tance is followed by mutation at each generation, the
transition matrix of the Wright-Fisher model becomes
((Ewens, 2004), Chapter 3)

Pi j =

(

M
j

)

ψ(i) j(1−ψ(i))M− j, (2)

where

ψ(i) =
i

M
(1− u)+

(

1−
i

M

)

v,

whereu is the probability of mutation from alleleA1
to alleleA2 andv the probability of mutation fromA2
to A1 in one generation. Hereu andv are assumed to
beO(1/M). If we scale the continuous time accord-
ing tot = τ/M, this corresponds to a mutation Markov
matrix over one generation of

Π(1/M) =

(

1− u u
v 1− v

)

+O(M−2),

where the first row and column correspond to alleleA1
and the second row and column correspond to allele
A2.

By making the analogous substitutions in the gen-
eralised Wright-Fisher model, and defininguab, a,b∈
L, to be the rate of mutation from allelea to alleleb
in one generation, one arrives at

Pij = Prob(Y(τ+1) = j|Y(τ) = i) =
(

M
jA jC jG jT

)

∏
a∈{A,C,G,T}

ψ(i,a) ja , (3)

where

ψ(i,a) =
ia
M

(

1− ∑
b 6=a

uab

)

+ ∑
b 6=a

ib
M

uba.

The off-diagonal elements of the instantaneous evolu-
tionary rate matrix are

qab = Muab.

The observed data, as described in the Introduction
are assumed to correspond to the stationary distribu-
tion of the matrixPij, thus allowing for an estimate of
the parametersqab.

3 TOY MODEL: 2-LETTER
ALPHABET

To explore the feasibility of estimating parameters of
the rate matrix from a data set, we begin with the
case of a 2-letter alphabet, described by the evolution
matrix Pi j defined by Equation (2). In this case the
only parameters of the model are the off-diagonal el-
ements of the continuous-time evolutionary rate ma-
trix, q12= Mu andq21= Mv and (twice the) effective
populationM. Figure 1 shows the stationary distribu-
tion

φ(i) = Prob(Y (τ = ∞) = i), (4)

obtained numerically for the parameter values stated
in the figure caption. The parametersq12 andq21 have
been chosen to some extent so the the distribution is
dominated by the end pointsi = 0 andM to mimic the
behaviour of real genomes in which the vast majority
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Figure 1: Numerical stationary distributionφ(i) of the
Wright-Fisher model with two-way mutations for the case
M = 100, q12 = 0.02 andq21 = 0.005 plotted on a linear
(top) and logarithmic (bottom) scale. Also shown in red
is the stationary solutionf (θ,∞) of the continuumM → ∞
Fokker-Planck equation with the end points of the distribu-
tion approximated as explained in the text. The extra factor
of M in the vertical axis scale set to enable a comparison
with the continuum stationary distribution.

of sites are not SNPs. This point is discussed further
below.

The effective population size of 100 in this nu-
merical simulation is of course unrealistically low,
and we next consider the limitM → ∞. There is a
well established literature on building partial differ-
ential equations, known as Fokker-Planck or forward
Kolmogorov diffusion equations, to describe the time
evolution of the probability density of allele frequen-
ciesθ for a given SNP. The continuum Fokker-Planck

equation for the probability densityf (θ, t) is obtained
by settingθ = i/M, t = τ/M and taking the limit
M → ∞ of the discrete model to obtain (Ewens, 2004)

∂ f
∂t

=−
∂

∂θ
(a(θ) f (θ, t))+

1
2

∂2

∂θ2 (b(θ) f (θ, t)), (5)

where, for the current model,

a(θ) =−q12θ+ q21(1−θ),

b(θ) = θ(1−θ).
Setting the time derivative to zero to obtain
the stationary distribution and normalising so that∫ 1

0 f (θ)dθ = 1 yields the well-known beta distribution

f (θ,∞) = B(2q12,2q21)θ2q21−1(1−θ)2q12−1. (6)

where

B(α,β) =
Γ(α+β)
Γ(α)Γ(β)

.

This function is superimposed over the finiteM solu-
tion over the range 1/M ≤ θ ≤ 1−1/M in Figure 1,
and clearly illustrates that the continuum limit is ap-
proached very rapidly. To obtain the end points plot-
ted atθ = 0 and 1 we used the approximations

Prob(Y (∞) = 0) ≈
∫ 1/M

0
f (θ,∞)dθ

≈
B(2q12,2q21)

2q21M2q21−1 , (7)

and

Prob(Y (∞) = M) ≈

∫ 1

1−1/M
f (θ,∞)dθ

≈
B(2q12,2q21)

2q12M2q12−1 . (8)

In summary, we see that the continuum limitM → ∞
is reached rapidly, the precise value ofM is in some
sense irrelevant, and that for practical purposes its role
is to provide a lower bound 1/M on the frequency of
a rare allele before a genomic site is deemed to be a
SNP.

4 PARAMETER ESTIMATION

We consider next the problem of estimating the pa-
rameters of the rate matrix for the toy model described
in the previous section.

4.1 Entire Population Surveyed

We start with the following artificially contrived sit-
uation concerning a hypothetical life form whose
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Table 1: Mutation rates ˆq12 and q̂21 estimated from syn-
thetic data generated from the two-letter alphabet model as-
suming the entire population ofM chromosomes is geno-
typed atnsite genomic sites.

M q12 q21 nsite q̂12 q̂21

100 0.02 0.005 103 0.0194 0.00462
104 0.0207 0.00519
105 0.0206 0.00504

100 0.05 0.005 103 0.0508 0.00485
104 0.0541 0.00488
105 0.0529 0.00509

200 0.02 0.005 103 0.0253 0.00607
104 0.0209 0.00517
105 0.0206 0.00509

genome is built from a two-letter alphabet: Suppose
we have a small monoecious, diploid population of
effective sizeM/2, and we are able to genotype the
entire population ofM chromosomes at a complete
set ofnsite independent genomic sites, each assumed
chosen to be a site not susceptible to selective pres-
sures. The data from which we are to estimate the rate
parametersq12 andq21 consist of a set of observed al-
lele frequenciesθ1,θ2, . . . ,θnsite each taking a value in
the set{0,1/M,2/M, . . . ,1}. For the vast majority of
these sites we will observeθ = 0 or 1, however it is
important to retain these non-SNP sites in the data.

Table 1 gives maximum likelihood estimates ˆq12
and q̂21 of mutation rates from synthetic data gener-
ated from the numerically determined stationary dis-
tribution of the Wright-fisher model with mutation,
namely Equation (4). The log likelihood is calculated
from these data using the continuum limit stationary
distribution, Equations (6) to (8).

4.2 Population Sampled

More realistically one expects the effective population
to be large, and that the data will consist of a relatively
small read coverage at each site obtained by sequenc-
ing a sample of the population. We will assume a
uniform read coveragenread acrossnsite independent
genomic sites, each assumed chosen to be a site not
susceptible to selective pressures.

In this case the data will consist of a set of num-
bersK1,K2, . . .Knsite of type A1 alleles, each taking a
value in the set{0,1, . . . ,nread}, observed at thensite
genomic sites. At any given site, conditional on the
population fractionθ of A1-type alleles at that site,
the observed number ofA1 allelesK will be a bino-
mial random variable:

K|θ ∼ bin(nread,θ),

whereθ has the beta distribution Equation (6). Thus

Table 2: Mutation rates ˆq12 and q̂21 estimated from syn-
thetic data generated from the two-letter alphabet model
with rate matrix parametersq12= 0.02,q21= 0.005 assum-
ing a sample of sizenreadis genotyped atnsite genomic sites.

nread nsite q̂12 q̂21

20 103 0.0203 0.00579
104 0.0188 0.00474
105 0.0191 0.00484

50 103 0.0204 0.00510
104 0.0200 0.00480
105 0.0200 0.00508

Table 3: Same as Table 2, except using rate matrix parame-
tersq12 = 0.002,q21 = 0.0005.

nread nsite q̂12 q̂21

20 103 0.00218 0.000527
104 0.00156 0.000406
105 0.00187 0.000458

50 103 0.00138 0.000352
104 0.00160 0.000409
105 0.00192 0.000474

the unconditional distribution ofK is beta-binomial
(see (Johnson et al., 1992), Chapter 6),

Prob(K = k) =

(

nsite

k

)

B(2q12+ k1,2q21+ nsite− k)
B(2q12,2q21)

.

Tables 2 and 3 give maximum likelihood estimates
of q̂12 and q̂21 for synthetic data generated from
the above beta-binomial distribution for realistic read
coveragesnread= 20 and 40, assuming the number of
independent genomic sites sampled isnsite= 103, 104

and 105.
In both examples above, we see that reasonable

estimates of mutation rates are obtained with exper-
imentally feasible values fornsite andnread, and that
the estimate generally improves slightly with the the
number of genomic sites observed.

5 FULL MODEL WITH
HASEGAWA-KISHINO-YANO
RATE MATRIX

Finally we demonstrate the form of the stationary so-
lution for the full model with a 4-letter alphabet for
the case of the Hasegawa-Kishino-Yano (HKY) rate
matrix (Hasegawa et al., 1985):

Q = α







. . . βπC πG βπT
βπA . . . βπG πT
πA βπC . . . βπT

βπA πC βπG . . .






,
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with the diagonal elements set so that each row sums
to zero. This is a 5 parameter model, which, for sim-
plicity we will reduce to a 3-parameter model by as-
suming symmetry between the nucleotidesA andT
and between the nucleotidesC andG, that is, we set
πA = πT andπC = πG.

The stationary distribution of the matrixPij de-
fined by Equation (3) for the HKY matrix with param-
etersα = 0.2, β = 0.5, πA = πT = 0.2 andπC = πG =
0.3 for an effective population sizeM = 30 is illus-
trated in Figure 2. Equation (1) implies that the argu-
ment of the stationary distributionφ(iA, iC, iG, iT ;∞)
lies on a simplex which, for a 4-letter alphabet, can
be represented as a tetrahedron. In Figure 2 the distri-
bution is represented by a small sphere at each set of
integer coordinates, the volume of each sphere being
proportional to the probability mass function at that
coordinate.

Figure 2: Stationary distribution of allele frequencies for the
HKY model with parametersα = 0.2, β = 0.5, πA = πT =
0.2 andπC = πG = 0.3. The corners labelledA, C, G and
T correspond to the coordinatesi = (1,0,0,0), (0,1,0,0),
(0,0,1,0) and(0,0,0,1) respectively, and the volume of the
sphere at each coordinate point is proportional to the prob-
ability mass function.

The distribution is dominated by the corners of the
tetrahedron, indicating that the majority of genomic
sites are not SNPs. Edges of the tetrahedron corre-
spond to 2-allele SNPs, the interiors of the four faces
correspond to 3-allele SNPs and the interior volume
of the tetrahedron corresponds to 4-allele SNPs. As
is observed in real genomes, 3- and 4-allele SNPs are
extremely rare. For illustrative purposes the parame-
ter α has been chosen larger than what one might ex-
pect in nature by a couple of orders of magnitude to
ensure the SNP probabilities are visible in the figure.
The stationary distribution along the edges for each
of the six possible 2-allele Figure 3 SNPs is plotted in

Figure 3.
In the above example, the small effective popu-

lation sizeM = 30 was chosen to enable a numeri-
cally tractable solution. For more realistic values ofM
the size of the matrixPij grows asymptotically asM4.
However, this does not present a problem as is should
be feasible to develop a continuum Fokker-Planck
equation analogous to Equation (5) with a tactible so-
lution analogous to Equations (6) to (8) from which
to calculate a log-likelihood.

6 DISCUSSION AND
CONCLUSIONS

We have proposed an approach to estimating mutation
rates from observed allele frequencies across a popu-
lation at any set of independent genomic sites which
are believed not to be susceptible to the effects of nat-
ural selection. Our numerical estimates based on the
canonical textbook Wright-Fisher model of popula-
tion genetics suggest that reasonable estimates of mu-
tation rates can be obtained from as few as∼ 104 such
sites.

The next step in this analysis is the technical prob-
lem of extending the continuum Fokker-Planck equa-
tion from the 2-letter genomic alphabet described in
Section 3 to an analogous equation defined over the
higher dimensional simplex relevant to the 4-letter
genomic alphabet described in Section 5, and solv-
ing to find the steady state solution. This should be
straightforward, at least for the Wright-Fisher model,
and will enable maximum likelihood estimates of evo-
lutionary rate matrices specified by parameterisations
such as the HKY model. Going beyond Wright-Fisher
to deal with species which are not diploid and mo-
noecious will presumably not present insurmountable
challenges provided the appropriate functionsa(θ)
andb(θ) analogous to those occurring in Equation (5)
can be modelled.

An issue not addressed here at any level of rigour
is that of context-dependence. As mentioned in the
introduction, neutral mutation rates at a given site are
known to be subject to the nucleotide content of flank-
ing bases. We have assumed that the set of indepen-
dent sites used to estimate rates are simply chosen to
share the same context. However, this ignores the fact
that the flanking bases may themselves mutate, and
do so over timescales similar to the mutation rates we
seek to estimate. We end on a note of caution that
developing a non-local model which takes this into
account may prove to be a formidable mathematical
problem.
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Figure 3: Distribution along each of the edges of the tetrahedron in Figure 2 illustrating the stationary distribution of allele
frequencies in 2-allele SNPs within a population generatedfrom the HKY model.
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