
Towards an Explicit Bidirectional Requirement-to-Code Traceability
Meta-model for the PASSI Methodology

Mihoub Mazouz1, Farid Mokhati2 and Mourad Badri3
1Department of Mathematics and Computer Science, University of Oum El Bouaghi, Oum El Bouaghi, Algeria

2Department of Mathematics and Computer Science, University of Oum El Bouaghi, LAMIS Laboratory,
Oum El Bouaghi, Algeria

3Department of Mathematics and Computer Science, Glog Laboratory, University of Quebec, Trois-Rivières, Canada

Keywords: Multi-agent System, Traceability, PASSI.

Abstract: Traceability plays an important role in the development of computing systems, specifically, the complex
ones. It provides several benefits to stakeholders and developers during the different phases of the systems
development life cycle, including verification & validation and maintenance. Unfortunately, there are very
few works in literature addressing the concept of traceability in multi-agent systems development
methodologies. Having an incremental and iterative process, the well-known PASSI (Process for Agent
Societies Specification and Implementation) methodology needs an explicit traceability in order to facilitate
the understanding of the MAS under development and to better manage the changes occurring during the
development process. In addition, it can lead to a requirement-based verification & validation. In this paper,
we propose a new traceability meta-model for the PASSI methodology by introducing explicit traceability
links of functional requirements through the various phases of the development life cycle.

1 INTRODUCTION

Tracing systems artifacts is a good factor to support
various activities in the development process of
computing systems (Spanoudakis, G, and A.
Zisman., 2004). The introduction of traceability
links between requirements and other systems
artefacts can help the developer to better understand
and manage the changes of any artifact on other
artefacts that are connected thereto. It also gives a
better development process visibility, as it facilitates
the maintenance and verification & validation
activities (Kannenberg et al., 2009). Integrating
traceability in the development processes increases
the quality of developed systems (Spanoudakis, G,
and A. Zisman., 2004). The agent paradigm has
demonstrated its effectiveness in modeling and
design of complex systems. Several methodologies
are now available in the literature to guide
developers in the development of agent-oriented
systems (e.g., PASSI (Cossentino, M., 2005,
Cossentino, M. and V. Seidita, 2014), Gaia
(Cernuzzi, L., et al., 2004), Prometheus (Winikoff,
M. and L. Padgham, 2004), Tropos (Giorgini, P., et
al., 2004).

Castro et al. reported in (Andréa C., et al., 2002)
that the success in the development of the next
generation of agent-oriented systems would be made
thanks to the adoption of requirements traceability.
Unfortunately, few works (Pinto, R., et al., 2007,
Cysneiros G. and A. Zisman., 2007a, Cysneiros G.
and A. Zisman., 2007b, Andréa C., et al., 2002,
Castro, J., et al., 2003, Cysneiros, G. and A. Zisman,
2008, Pinto, R, et al., 2005) being adopted the
traceability concept for multi-agent systems (MAS)
development methodologies and associated tools
exist. Introducing explicit traceability links between
the different artifacts composing a system during the
different phases of development facilitates the
development process.

In this paper, we propose a new traceability
meta-model for the well-known PASSI methodology
(Cossentino, M., 2005). Traceability information are
added to the specifications of the various system
artifacts produced during the development process,
allowing a bidirectional requirement-to-code
traceability from the identification of the functional
requirements in the domain requirement description
phase to the deployment of agents that will achieve
these requirements in the last phase of PASSI

203Mazouz M., Mokhati F. and Badri M..
Towards an Explicit Bidirectional Requirement-to-Code Traceability Meta-model for the PASSI Methodology.
DOI: 10.5220/0005249102030209
In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART-2015), pages 203-209
ISBN: 978-989-758-073-4
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

process, deployment configuration.
The remainder of this paper is organized as

follows. In Section 2, we give an overview of major
related work. In Section 3, we give a brief
description of the PASSI methodology. We
introduce, in Section 4, the proposed traceability
meta-model for the PASSI methodology. In Section
5, a case study is showed. Finally, Section 6 gives
some conclusions and future work directions.

2 RELATED WORK

Over the last years, very few works (Pinto, R., et al.,
2007, Cysneiros G. and A. Zisman., 2007a,
Cysneiros G. and A. Zisman., 2007b, Andréa C., et
al., 2002, Castro, J., et al., 2003, Cysneiros, G. and
A. Zisman, 2008, Pinto, R, et al., 2005) addressing
traceability in MAS development methodologies
have emerged in literature. G. Cysneiros et al.
(Cysneiros G. and A. Zisman., 2007a, Cysneiros G.
and A. Zisman., 2007b, Cysneiros, G. and A.
Zisman, 2008) address the Prometheus
methodology. The authors proposed a rule-based
approach supporting traceability and verification of
completeness of artefacts represented in the
Prometheus design models and JACK code
specification. They have identified some types of
traceability relationships between Prometheus
design models artefacts and JACK code. The
proposed rules allow the generation of traceability
relationships after the models are built in an
automatic way, which may neglect many
relationships.

The other works (Pinto, R., et al., 2007, Andréa
C., et al., 2002, Castro, J., et al., 2003, Pinto, R, et
al., 2005) address the Tropos methodology. The
authors have proposed an agent-oriented traceability
reference model and showed how it can be used in
the context of Tropos.

We present, in this paper, a new and explicit
bidirectional Requirement-to-Code traceability for
the PASSI methodology. Compared to the other
approaches quoted above, the creation of traceability
links we propose is performed when building PASSI
models, covering the whole PASSI Process.

3 THE PASSI METHODOLOY

3.1 Description

PASSI (Process for Agent Societies Specification

and Implementation) (Cossentino, M., 2005,
Cossentino, M. and V. Seidita, 2014), is a step-by-
step requirement-to-code methodology for designing

Figure 1: The PASSI design process. (Cossentino, M.,
2005).

and developing agent-oriented systems. The process
model of PASSI is iterative/incremental and
includes five models, each model includes one or
more phases (see Figure 1). The five models of
PASSI are:
 System Requirements Model: It is composed of

four phases: 1) Domain Requirements Description,
as a use case diagram, the functional requirements
of the system are described. 2) Agents
Identification, where the agents making up the
system to be developed are identified as packages
including their proper functionalities. 3) Roles
Identification, where the roles played by agents in
the different scenarios of the system are identified
in a series of sequence diagrams exploring the use
cases identified in the first phase. 4) Tasks
specification, where an activity diagram is used to
specify the plan of each agent.

 Agent Society Model: It is composed of four
phases: 1) Domain Ontology Description, where
the agent knowledge is described by an ontology
(in terms of Concept, Predicate, Action) and
represented as a class diagram. 2) Communication
Ontological description, where a class diagram is
used to represent all agents, all interactions
between them with the precision of the semantics
of each communication between agents (ontology
element, content language and the interaction
protocol). 3) Roles Description, where roles
already identified in the Role Identification phase
for each agent (a package here) are represented by
classes, each one is responsible for its own tasks
(class operations). 4) Protocols Description,

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

204

AUML sequence diagrams are used to describe all
non-standard protocols.
 Agent Implementation Model: It is composed

of two phases: 1) Agent Structure Definition,
class diagrams are used to describe the system
architecture, 2) Agent Behaviour Description,
where activity diagrams or state-machines can be
used to describe the system behaviour. These two
phases are views of two different abstraction
levels: a) society, i.e. multi-agent abstraction
level; b) single agent abstraction level.

 Code Model: It is composed of two phases: 1)
Code-Reuse, in this phase, design patterns
already exist can be used directly, 2) Code
Production, where the skeleton of the source
code of the system is automatically generated by
the PTK (a Rational Rose plug-in that offers a
support for PASSI) and a manual completion of
the generated code is then achieved by the
developer.

 Deployment Model: It is composed of one
phase: Deployment Configuration, where
deployment diagram is used to describe the
allocation of agents to different processing units
and any constraints on agent migration and
mobility.
As illustrated by Figure 1, the PASSI process

includes a test activity divided into two different
levels: 1) single-agent test: when a framework built
on top of JADE is implemented (Caire, G, et al.,
2004). The most framework classes are “Test” class
for testing a specific task of an agent and
“TestGroup” class for testing all tasks composing a
specific agent. 2) society test: at this level,
integration verification is carried out together with
the validation of the overall results of the current
iteration (Cossentino, M., 2005).

3.2 The MAS Meta-Model of PASSI

The meta-model adopted for PASSI MAS is divided
into three areas (Cossentino, M. and V. Seidita,
2014):
 Problem domain: where the elements

describing the requirements that will be achieved
by the future system are included. These
elements are directly connected to the System
Requirements Model.

 Agency domain: where the elements describing
the multi-agent society in terms of environment
(defined by a set of ontological elements) and the
social aspect of agents (interaction between

them) are included. The items of this area are
connected directly to the Agent Society Model.

 Solution domain: where the elements describing
the architectural solution (respecting the
architecture of FIPA) of the problem in terms of
agent classes, task class, agent code and task
code are included. The elements of this area are
connected directly to the two models: Agent
Implementation and Code.

3.3 Traceability in PASSI

In (Cossentino, M. and V. Seidita, 2014), the authors
have mentioned dependencies between the different
artefacts produced during the PASSI process and
how the diagrams are constructed from the
preceding ones. These dependencies represent
implicit links between artefacts, i.e. links which
exist between artefacts having the same name, for
example, between Task and Agency_Task, between
Agent and Agency_Agent. However, no explicit
traceability links were adopted to follow functional
requirements since their identification in the Domain
Requirements Description phase until the
deployment of agents carrying out these
requirements in Deployment Configuration phase.
The lack of these traceability links causes some
difficulties in the development of MAS using PTK.
In fact, if the developer decides, using PTK, to
change the name of task (Agency_Task) the
corresponding task (Task) in Tasks Specification
phase remains with the first name, which needs
another modification. This takes more time. In the
next section, we propose an explicit traceability
links for the PASSI methodology, where it will be
possible to follow the requirements during the whole
PASSI development process. This will facilitate
changes management.

4 EXPLICIT TRACEABILITY
FOR PASSI

We introduce, in this section, a new traceability
meta-model (Figure 2) for supporting explicit
bidirectional Requirement-to-Code Traceability for
the PASSI methodology. To create traceability links
between the different artefacts, some information
has to be added to the specifications of these
artefacts in order to ensure traceability in both
backward & forward directions: 1) a unique
identifier "id" (ID according to the XML DTD
syntax); 2) a name, and 3) a reference (s) (IDREF /

Towards�an�Explicit�Bidirectional�Requirement-to-Code�Traceability�Meta-model�for�the�PASSI�Methodology

205

Figure 2: Requirement-to-Code Traceability Meta-model for PASSI.

Table 1: Functional requirement & Agent Life cycle.

System Requirements
Model

Agent Society Model Agent Implementation Model
Code

Model T
es

t

Deployment
Model

D
.R

.D
.

A
.I

d.

R
.I

d.

T
.S

p.

D
.O

.D
.

C
o.

O
.D

.

R
.D

.

P.
D

.

M
.A

.S
.D

.

M
.A

.B
.D

.

S.
A

.S
.D

.

S
.A

.B
.D

C
.R

.

C
.P

.

A
ge

nt
T

es
t

D
.C

.

F
u

n
ct

io
n

al
R

eq
-

ui
re

m
en

t

F
un

ct
io

nn
al

it
y

R
ol

eS
pe

ci
fi

cS
c-

en
ar

io
i

T
as

k_
j

/ /

A
ge

nc
y_

T
as

k_
j

/

Im
pl

em
en

ta
ti

on
_

T
as

k_
j

Im
pl

em
en

ta
ti

on
_

T
as

k_
j

Im
pl

em
en

ta
ti

on
_

T
as

k_
j

S
ta

te

M
ac

hi
ne

_j
:1

..k

P
at

te
rn

_j

T
as

k_
C

od
e_

j

T
es

t_
j

/

A
ge

n
t

R
ol

e
1.

.*

P
la

n

/

A
ge

nc
y_

A
ge

nt

A
ge

nc
y_

A
ge

nt

/

Im
pl

em
en

ta
ti

on

_A
ge

nt

Im
pl

em
en

ta
ti

on

_T
as

k
1.

.*

Im
pl

em
en

ta
ti

on

_A
ge

nt

S
ta

te
M

ac
hi

ne

P
at

te
rn

A
ge

nt
_C

od
e

T
es

tG
ro

up

N
od

e

.
IDREFS according to the XML DTD syntax)
towards the precedent element(s) and / or towards
the following element(s). Each functional
requirement identified in the domain requirement
description is assigned to a specific agent as a
functionality (agentREF attribute) in the agents
identification phase. One or more
RoleSpecificScenario (composed of one or more
“Role”) explore(s) each Functionality (use case) in
the Roles Identification phase. From each Role,
several Tasks are identified in the tasks specification
phase and so on until the Test phase. By creating
traceability links, the developer can know, at any
given moment, the origin of a Task class (the
functional requirement from which is identified) in

the single agent structure definition phase, and what
is the Test according to it.

The creation of traceability links is supposed to
be performed by the developer thanks to a new tool
(under development) that can replace the official
PTK by adding support for traceability introduced
for PASSI with other improvements.

After identifying functional requirements in the
first phase and during the Roles Identification phase,
the developer will have to associate each functional
requirement to a specific scenario
(RoleSpecificScenario) thanks to a GUI and the
links which will be created in both forward and
backward directions.

The developer will need during each phase to

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

206

relate system artefacts.
Table 1 shows the life cycle of two PASSI

elements: Functional Requirement and Agent. These
two elements (and others) have to be followed up to
the PASSI process end. For example, each “agent”
(identified in Agent Identification phase) has to be
linked to a “plan” (described in Tasks Specification
phase), and so on (Agency_Agent,
Implementation_Agent,, Implementation_Tasks,
StateMachine, Pattern, Agent_Code, TestGroup)
until the “Node” element (identified in deployment
configuration phase). All these artefacts have to be
linked one to each other in the two directions.

5 CASE STUDY

In order to illustrate the use of the meta-model we
propose, we have selected a case study based on the
“Juul Møller Bokhandel A/S” problem designed in
(Cossentino, M., 2005) as an agent-oriented system
using the PASSI methodology. Among the
functional requirements that are presented in the
Domain Requirements Description diagram, the
« Provide Books » one (Figure 3).

Figure 3: A portion of the domain requirements
description diagram (Cossentino, M., 2005).

The functional requirement “Provide books”
becomes a functionality assigned to the agent
“PurchaserManager” in the agents identification
phase (figure 4).

The scenario “Announcement of the need of a
book purchase” (Figure 5) then explores the
functionality mentioned above. Several agent roles
participate in this scenario: PurchaseMonitor,
PurchaseManager, PurchaseAdvisor, Purchaser and
StoreUI. From each agent role, several tasks are
identified like “ReceivePurchaseRequest” and
“AskForAdvice” for the “BooksProvider” role

(Figure 6).

Figure 4: A portion of the agents’ identification diagram
(framed in bold, the functionality is assigned to the
PurchaseManager Agent) (Cossentino, M., 2005).

Figure 5: Roles identification diagram “Announcement of
the need of a book purchase” scenario (framed in bold, the
BooksProvider agent role) (Cossentino, M., 2005).

Figure 6: Tasks specification diagram for the agent
“Purchase Manager” (framed in bold, the two tasks related
to the “BooksProvider” role) (Cossentino, M., 2005).

Figure 7 shows a part of the traceability model
(instance of the meta-model we proposed) for the
functional requirement “providebooks”. naturally,

Towards�an�Explicit�Bidirectional�Requirement-to-Code�Traceability�Meta-model�for�the�PASSI�Methodology

207

Figure 7: A part of «Provide Books» Functional Requirement-To-Code traceability model.

all the concepts that appear in the obtained
traceability model (figure 6) are included in the
traceability meta-model we have proposed.

6 CONCLUSION AND FUTURE
WORK

Traceability is an important activity in the
development of high quality computing systems. In
this paper, we presented our attempt to introduce an
explicit traceability links between artefacts produced
during all the PASSI process. The existence of these
links adds the ability to follow system’s artefacts,
particularly, the functional requirements during all
the PASSI development phases. This will allow a
better management of changes. As future work, we
plan to: improve the traceability model proposed in
this paper and develop a supporting tool with other
additions to PTK.

REFERENCES

Cossentino, M. (2005). From Requirements to Code with
the PASSI Methodology. In Agent-Oriented
Methodologies, B. Henderson-Sellers and P. Giorgini
(Editors). Idea Group Inc., Hershey, PA, USA.

Pinto, R., et al. (2007). A Traceability Reference Model
for Agent Oriented Development. Proceedings of the
Third Workshop on Software Engineering for Agent
oriented Systems. João Pessoa. pp. 27-38. .

Cysneiros G. and A. Zisman. (2007a). Tracing
AgentOriented Systems. In Proc. of the Grand
Challenge Traceability Symposium, USA.

Cysneiros G. and A. Zisman. (2007b). Traceability for
Agent-Oriented Design Models and Code, 19th

International Conference on Software Engineering and
Knowledge Engineering (SEKE 2007), USA.

Andréa C., et al. (2002). Towards Requirement
Traceability in TROPOS. WER 2004: 189-200.

Castro, J., et al. (2003). Requirements Traceability in
Agent Oriented Development. Software Engineering
for Large-Scale Multi-Agent Systems. A. Garcia, C.
Lucena, F. Zambonelli, A. Omicini and J. Castro,
Springer Berlin Heidelberg. 2603: 57-72.

Cossentino, M. and V. Seidita (2014). PASSI: Process for
Agent Societies Specification and Implementation.
Handbook on Agent-Oriented Design Processes. M.
Cossentino, V. Hilaire, A. Molesini and V. Seidita,
Springer Berlin Heidelberg: 287-329.

Cysneiros, G. and A. Zisman (2008). Traceability and
completeness checking for agent-oriented systems.
Proceedings of the 2008 ACM symposium on Applied
computing. Fortaleza, Ceara, Brazil, ACM: 71-77.

Kannenberg et al. (2009). Why Software Requirements
Traceability Remains a Challenge. CrossTalk: The
Journal of Defense Software Engineering.

Spanoudakis, G, and A. Zisman. (2004). Software
traceability: A roadmap, Handbook of Software
Engineering and Knowledge Engineering, vol. 3, pp.
395–428.

Pinto, R, et al. (2005). Support for Requirement
Traceability: The Tropos Case. 19th Simpósio
Brasileiro de Engenharia de Software (SBES'05).
Brasil.

Cernuzzi, L., et al. (2004). The Gaia Methodology.
Methodologies and Software Engineering for Agent
Systems. F. Bergenti, M.-P. Gleizes and F.
Zambonelli, Springer US. 11: 69-88.

Winikoff, M. and L. Padgham (2004). The Prometheus
Methodology. Methodologies and Software
Engineering for Agent Systems. F. Bergenti, M.-P.
Gleizes and F. Zambonelli, Springer US. 11: 217-234.

Giorgini, P., et al. (2004). The Tropos Methodology.
Methodologies and Software Engineering for Agent
Systems. F. Bergenti, M.-P. Gleizes and F.
Zambonelli, Springer US. 11: 89-106.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

208

Caire, G, et al. (2004). Multi-agent systems
implementation and testing. In Fourth International
Symposium: From Agent Theory to Agent
Implementation.

Towards�an�Explicit�Bidirectional�Requirement-to-Code�Traceability�Meta-model�for�the�PASSI�Methodology

209

