
Towards Traceability Modeling for the Engineering of Heterogeneous
Systems

Nasser Mustafa and Yvan Labiche
Carleton University, Department of Systems and Computer Engineering, Ottawa, ON, Canada

Keywords: Heterogeneous, Traceability, Generic, Characterization, Traceability Requirements.

Abstract: Capturing traceability information among artifacts allows for assuring product quality in many ways such as
tracking functional and non-functional requirements, performing system validation and impact analysis.
Although literature provides many techniques to model traceability, existing solutions are either tailored to
specific domains (e.g., Ecore modeling languages), or not complete enough (e.g., lack support to specify
traceability link semantics). This paper examines the current traceability models and identifies the
drawbacks that prevent from capturing some traceability information of heterogeneous artifacts. In this
context, heterogeneous artifacts refer to artifacts that come from widely different modelling notations (e.g.,
UML, Simulink, natural language text, source code). Additionally, the paper proposes traceability model
requirements that are necessary to build a generic traceability model. We argue that the proposed
requirements are sufficient to build a traceability model oblivious of the heterogeneity of the models which
elements need to be traced. We also argue that our proposed requirements can be adopted to create a generic
traceability model that provides flexibility and can accommodate new ways of characterizing and imposing
constraints on trace links or systems artifacts. The proposed requirements incorporate the ideas from many
existing solutions in literature, in an attempt to be as complete as possible.

1 INTRODUCTION

Traceability in its simplest form is the ability to
describe and follow the life of software artifacts
(Winkler and Pilgrim 2010). Traceability is often
required for quality assurance (Pinheiro 2004), to
certify or qualify system and software products. One
important challenge when implementing traceability
requirements is to relate multiple artifacts that can
come from diverse disciplines, which are not
necessarily software related, such as electronic,
mechanical, and hydraulics. As a result, artifacts to
be traced by traceability links are typically created
using different modeling languages, different tools.
In this context, we use the term model in the widest
sense of the word, and the notion of model includes
(but is not restricted to) diagrams, plain language
texts, equations, and source codes.

As an example, consider the engineering of a full
flight simulator, which artificially re-creates an
aircraft and the environment in which it flies and is
used for pilot training. A full flight simulator
typically includes software (e.g., simulating specific
hardware components, simulating missions), visuals

and audio (e.g., audio rendering of sound inside the
flight deck, video rendering of a typical airport),
mechanical systems (e.g., to provide accurate force
feedback to the pilot, to provide motion for the
entire flight deck simulator), communication
systems (e.g., air traffic). It can contain software
systems simulating cockpit instruments or the same
cockpit instruments (e.g., a flight management
system) as the ones actually used in the aircraft. The
traceability problem arise when a system
encompassing widely different domains of expertise,
such as the full flight simulator case in which many
heterogeneous models need to be related to one
another. These models are heterogeneous primarily
because they tend to be specific to the many
disciplines that are involved in the design of the
system. For instance, one would have a model for
mission simulation that can be used to create
specific scenarios for training purposes; one model
would be a Simulink hydraulic actuation system; one
model would be a simulation model of a hardware
component; one (graphical) model would be used to
represent take-off and landing characteristics (e.g.,
visuals, air traffic data) of typical airports; one

321Mustafa N. and Labiche Y..
Towards Traceability Modeling for the Engineering of Heterogeneous Systems.
DOI: 10.5220/0005246103210328
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 321-328
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

model would record the requirements for the whole
system and the requirements for its many parts
(hardware and software); one model would record
data about verification and validation objectives and
activities; one model would record faults and
failures. These models are also heterogeneous
because they are not typically specified using a
common notation and semantic, i.e., a common
metamodel. For instance, some software elements
can be specified with the UML, some system levels
characteristics can be modeled with SysML, some
hardware elements can be modeled with Simulink
models.

Another traceability problem arise in traceability
management since it is a fluid activity in the sense
that not all traceability requirements are necessarily
known upfront when traceability links are first
recorded. For instance, one may not know precisely
from the outset the granularity of the artifacts that
need to be traced to one another; one may discover,
down the road that additional artifacts need to be
traced; one may discover down the road that artifacts
from new models need to be traced.

The traceability problems mentioned above led
us to investigate the existing traceability models for
a generic traceability solution. Our search in the
literature showed that the existing solutions lack
some modeling elements that prevent from
delivering a generic traceability solution oblivious of
the heterogeneity of the models which elements need
to be traced.

The contribution of this paper is to define
requirements for a generic traceability model, and
identify the drawbacks of the existed solutions based
on the identified requirements.

The rest of the paper will be structured as
follows: Section 2 introduces important traceability
concepts necessary for our discussion; Section 3
identifies the requirements and characteristics of a
generic traceability model; Section 4 reviews the
literature and identifies the current traceability
models; Section 1 provides our analysis of the
current traceability models and their drawbacks, and
section 6 concludes the paper.

2 TRACEABILITY CONCEPTS

Traceability has originated in Software Engineering
particularly, in Requirement Engineering and has
permeated Model Driven Development (MDD) and
System Engineering. According to the IEEE
dictionary (IEEE 1990) traceability is “the degree to
which a relationship can be established between two

or more products of the development process,
especially products having a predecessor-successor
or master-subordinate relationship to one another”.
This definition applies to traceability in Software
and System Engineering. In Requirement
engineering, Gotel and Finkelstein (Gotel and
Finkelstein 1994) defined Requirement Traceability,
or traceability for short, as “the ability to describe
and follow the life of a requirement, in both forward
and backward direction, to its subsequent
deployment and use, and through periods of ongoing
refinement and iteration in any of these phases”
(Gotel and Finkelstein 1994). They extended this
definition to define other traceability types such as
pre-requirement specification (pre-RS), which refers
to “the aspects of a requirement's life prior to its
inclusion in the requirement specification”, and post-
requirement specification (post-RS), which refers to
“the aspects of requirement’s life that result from its
inclusion in the requirement specification”.
Additionally, traceability between artifacts can be
classified into horizontal or vertical traceability.
Horizontal traceability implies tracing artifacts
produced during different phases of development
such as tracing artifacts from the analysis phase to
the design phase, or tracing artifact between two
different models such as a spread sheet produced
during initial discussions with customers and a
software requirements document produced during
requirement elicitation (Spanoudakis and Zisman
2005). Vertical traceability, means tracing artifacts
within a model or a phase (e.g., tracing two
requirements during the analysis phase)
(Spanoudakis and Zisman 2005).

In MDD, the notion of traceability is restricted to
the situation where models are transformed from
other models (Amar, Leblanc and Coulette 2008):
elements of the input model trace to elements of the
output model. Another definition used in MDD,
which is closer to the Requirement Engineering
definition, defines traceability as “any relationship
that exists between artifacts involved in the software
engineering life cycle” (Aizenbud-Reshef, Nolan,
Rubin et al. 2006).
The definitions of horizontal and vertical traceability
can be problematic when we include the type of
artifacts being traced (i.e. have similar or different
types), and the models boundaries (i.e., whether the
artifacts are within the same phase or model or
across different models). Mason (Mason 2002)
argued that the definitions of vertical and horizontal
traceability in software engineering do not fit the
system engineering context. He extended the
definition of vertical and horizontal traceability by

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

322

Table 1: Vertical/Horizontal traceability combinations.

Vertical/
Horizontal

Micro Macro

Intra Within system
description and
within system levels
of decomposition

Within system
description and
across system levels
of decomposition

Inter Across system
description and
within system levels
of decomposition.

 Across system
description and
across system levels
of decomposition.

introducing the micro and macro terms to
differentiate traceability within and across
decomposition levels such as system, sub-system,
and components. In addition, he introduced the intra
and inter terms to differentiate traceability within
and across system descriptions (i.e., system
interacting with another system), respectively.
Consequently, he introduced new combinations of
the notions of vertical and horizontal traceability
types (Table 1). For instance, Intra-Macro Vertical
traceability means the ability to navigate or describe
the relationship between artifacts of different types
within system descriptions and across system levels
of decomposition. These new terms introduced new
subtypes that can be applied to vertical and
horizontal trace links.

In order to implement traceability in software
systems the concepts of trace, trace artifact, and
trace link are typically defined. A trace is composed
of a single source artifact, single target artifact, and
single trace link (Cleland-Huang, Gotel and Zisman
2014). A trace artifact refers to “traceable unit of
data” such as a class, requirement, or a document.
The level of granularity of a trace artifact can be
defined by its size: for instance, a requirement in a
document has a fine-grained granularity, while a
document that has as set of requirements has a
coarse-grained granularity. Additionally, trace
artifacts can be classified according to their types
(e.g., test artifacts, design artifacts) (Cleland-Huang,
Gotel et al. 2014). A trace link specifies a
relationship between a source and target artifacts,
which can be traversed from source to target artifact
or from target to source artifact. Similar to trace
artifacts, a trace link may have a type that can be
identified based on the link’s syntax or semantics.
The semantics provides a purpose or a meaning to
the relationship between source and target artifacts.
Although trace link and trace relations may be used
interchangeably, there is a difference between the
two terms since the former is used to refer to “a
specified association between a pair of artifacts, one
comprising the source artifact and one comprising

the target artifact” (Cleland-Huang, Gotel et al.
2014), whereas the latter refers to “all the trace links
created between two sets of specified trace artifact
types”. Trace links may be categorized based on
different criteria such as model type (e.g., MDE,
non-MDE models), purpose, usage, and
functionality (Mason 2002; Costa and Da Silva
2007; Paige, Olsen, Kolovos et al. 2008; Cleland-
Huang, Gotel et al. 2014)

From the discussion above it becomes clear that
the notion of traceability is varied, that traceability
information can be characterized in many different,
sometimes complementary ways, which could be
domain, organization or even project specific.

3 GENERIC TRACEABILITY
MODEL REQUIREMENTS

Since we are interested in systems that are realized
through software and hardware solutions, we extend
the MDD traceability definition and consider
traceability as any relationship that exists between
artifacts involved in the system engineering life
cycle.

We define a generic traceability model as a
model that has the ability to capture traceability
information of heterogeneous systems, as defined
and illustrated in the Introduction, and provide
flexibility to its users to model any required
traceability information, with various taxonomies as
presented in Section 2, and that can accommodate
flexibility and evolution without having to change
the model itself (only its instance would change).

We assume users to have three roles, similarly to
other similar technologies, as they require different
kinds of expertise and they expect different services
from such a generic traceability model: A super-user
would be in charge of defining the legal taxonomies,
characterizations and constraints. This would require
a deep understanding of the traceability model and
those taxonomies/characterizations/constraints as
dictated by the context (i.e., domain, organization,
team, project); an engineer would be in charge of
tooling, for example, to feed trace information from
the various tools that are used to create
heterogeneous artifacts to be traced, enforce
taxonomies defined by the super-user; A domain
expert who would use the technology and tool
support to create traceability information between
heterogeneous artifacts and reason about this
information.

We are searching for a traceability model that
must be oblivious of the heterogeneity of the models

Towards�Traceability�Modeling�for�the�Engineering�of�Heterogeneous�Systems

323

Table 2: Traceability model requirements.

 Traceability Requirement Model Characteristics

1 Model implementation Independent of any language, tool, or framework.

2 Types of source and target artifacts
types

Any type (i.e., heterogeneous or homogeneous).

3 Association cardinality between
source and target artifacts

 Allows for tracing source to target artifacts with cardinality 1-1, 1-many, and
many-many.

4 Type of traced models MDE and/or non-MDE models, i.e., any model, in the widest sense of the
word, including, but not limited to, UML, SysML, Simulink models, electronic
design, mechanical design, blueprint, plain language, source code, tests.

5 Characterization of trace links
semantics

Allows for applying more than one characterizations to a given trace link.

6 Characterization of source and
target artifacts types

Allows for applying more than one characterization to a given artifact.

7 Artifacts granularity Allows for tracing artifacts at different levels of granularity.

8 Applying Constraints Allows for applying more than one constraint to an artifact, a trace, or a trace
link.

9 Support for model transformation Allows for capturing traceability information during model to model
transformation

10 Trace link direction Indicate whether the trace link is outgoing from or incoming to with reference
to the source artifact.

11 Artifacts linking Prevents from establishing illegal links between certain artifacts

12 Model extensibility and flexibility Allows for accommodating new types of trace links and artifacts without
changing the model itself.

which elements are traced. For instance, modeling
traceability links should not rely on the fact that
artifacts are instances of a MOF-based language. We
typically need to link artifacts that come from
widely different sources. We are also looking for a
model that can accommodate any taxonomy of
traceability links engineers may want to use. In other
words, it should allow different, possibly new, ways
of characterizing trace data. As a result, the model
should not make any assumption about the types of
artifacts that can be linked (heterogeneous artifacts),
or how they should be classified (various possible
taxonomies), and therefore it should not make any
assumption about the semantics those links could
have according to engineers’ needs. The model
should not change when new artifacts, coming from
newly created modeling notations need to be traced,
or when new classification taxonomies need to be
used. One can view these two constraints as having
to identify a traceability model that can be
extensible, to accommodate new models, new
artifacts, different, possibly new ways of
characterizing them, without having to change the
model itself (only its instance would change).

Based on the above assumptions, we put forward
that a satisfactory generic traceability model should
possess the following general characteristics, which
are summarized in Table 2. The model

implementation should be independent of any tool,
language, or framework.
 It shall allow modeling traceability between

artifacts of similar or different types (i.e.,
homogeneous and heterogeneous artifacts).

 It shall allow modeling traceability between
source and target artifacts of one-to-one,
one-to-many, and many-to-many
cardinalities.

 It shall specify the direction of the trace link
(i.e., is the link from source-to-target or from
target-to-source)

 It shall allow capturing traceability
information between artifact within one
model or across different models.

 It shall allow applying more than one
constraint to trace elements (i.e., trace link,
artifact) using any constraint language.

 It shall allow apply more than one
characterization to an artifact.

 It shall allow specifying various semantics
for trace links between artifacts

 It shall allow modeling traceability between
model elements at different levels of
granularity (i.e., different conceptual or
decomposition levels).

 It shall be able to receive different kinds of
artifacts generated using different tools.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

324

 It shall allow capturing traceability
information between MDE and/or non-MDE
model types.

 It shall allow capturing traceability
information between models during model
transformation.

 The model shall prohibit establishing illegal
links between some artifacts.

 The model shall be flexible such that it
allows for accommodating new trace links
and artifacts without changing the model
itself.

4 RELATED WORK ON
TRACEABILITY MODELS

Paige and colleagues (Paige, Drivalos, Kolovos et al.
2011) defined a taxonomy of semantically rich trace
link between MDE models that may be constructed
using diverse modeling languages. Trace links are
said to be semantically rich because their types
conform to a project-specific traceability
metamodel, accompanied by a set of project-specific
correctness constraints. For validation purposes, the
authors applied their method for identifying trace
links to the Requirement Engineering phase, which
they split into early activities, modeling with I* (Yu
2009) and later activities, modeling with the UML
(specifically the class diagram, i.e., a domain
model). It turns out that this solution satisfies
partially requirements number 2, 3, 4, 5, 8, 10 (Table
2). One drawback of their approach, using the
I*/UML example is that the types of traceability
links between I* and class diagram artifacts need to
be in the metamodel itself, making the metamodel
difficult to evolve to accommodate new artifacts,
new types of models (recall our requirements).
Specifically, if ten different types of traceability
links need to be accounted for, which can be
considered a small number given that for instance a
link between an I* actor and a UML class is
considered as one type (one metaclass), then the
metamodel contains ten different traceability link
metaclasses; if traceability links must be classified
according to orthogonal classifications, which is
very likely according to other authors, then the
number of traceability link metaclasses equals the
cross product of the sizes of the classifications. As a
result, this solution fails to satisfy requirements 1, 6,
7, 9, 11, 12 (Table 2).

Pavalkis and colleagues (Pavalkis, Nemuraite
and Milevičienė 2011) defined a traceability

metamodel for relating artifacts in an instance of the
Business Process Model Notation (BPMN) (Object
Management Group 2014a): e.g., between resources
and their process, between participants involved in
messages (message sender and receiver). Although
their approach is extensible and customizable since
new rules can be defined for BPMN traceability
links, their solution is specific to BPMN, and more
generally to MOF-based modeling techniques, and is
therefore not adequate for our purpose. In summary,
this solution satisfies partially requirements 3, 4, 8,
10, 12 but not requirements 1, 2, 5, 6, 7, 9, 11 (Table
2).

Drivalos and colleagues (Drivalos, Kolovos,
Paige et al. 2008) presented the Traceability
Metamodeling Language (TML) for defining the
syntax and semantic of traceability metamodels.
With TML, one models traceability links between
Ecore-based model elements while providing some
context-specific information. Constraints can be
expressed in the Epsilon Validation Language
(EVL) (Kolovos, Rose, Garcia-Dominguez et al.
2014), an extension of the OCL (Object
Management Group 2014b). The authors validate
their approach with a case study to trace artifacts
between a class diagram (using a class diagram
metamodel) and a component diagram (using a
component diagram metamodel). We note that the
solution is specific to Ecore-based models, does not
provide enough information about the direction of
the trace link (i.e., does not specify which of the
artifacts is a source or a target), does not provide a
mechanism for capturing traceability information
during model transformation (transitivity of links),
and doesn’t accommodate various characterizations
for trace links or artifacts. Therefore, this solution
satisfies partially the requirements 2, 3, 4, 5, 6, 8, 12
but fails to satisfy requirements 1, 7, 9, 10, 11 (Table
2).

Falleri and colleagues (Falleri, Huchard and
Nebut 2006) defined a traceability metamodel for
recording traceability information during model
refactoring, where a model conforming to a certain
metamodel is transformed, possibly through several
refactoring/transformation steps, into an improved,
refactored model that conforms to the same
metamodel. This solution is good for capturing
traceability links during model transformation as it
can capture a sequence or a chain of links between
source and target artifacts. However, it is domain
(transformation) specific and can only do that, the
source and target artifacts must conform to the same
metamodel, and it doesn’t provide any semantics or
constraints on the type of the trace links. They

Towards�Traceability�Modeling�for�the�Engineering�of�Heterogeneous�Systems

325

validated their solution by first writing a simple
transformation code in Kermeta (Drey, Faucher,
Fleurey et al. 2014) that maps each UML class (resp.
attribute) into a database table (resp. column), and
then visualize the traceability links as a graph (using
graphviz). In summary, this solution satisfies
partially the requirements 3, 4, 9, 10, 12 but not
requirements 1, 2, 5, 6, 7, 8, 11 (Table 2).

Cysneiros and colleagues (Cysneiros, Zisman
and Spanoudakis 2003) propose a light-weight
XML-based approach to generate bidirectional
traceability relations between UML use case and
class diagrams and I* models: e.g., actors in I* are
linked to actors in the use-case diagram. Although
they provide an approach to generate traceability
links between two heterogeneous models (i.e., I*
and UML), there is no indication that it can be
extended to other model types, for instance models
not conforming to MOF-based metamodels. This
solution satisfies partially requirements 2, 3, 4, 7, 8
but does not satisfy requirements 1, 5, 6, 9, 10, 11,
12 (Table 2).

Anquetil and colleagues (Anquetil, Kulesza,
Moreira et al. 2010) introduced a traceability
reference metamodel that supports general
traceability for aspect-oriented and model-driven

software product line. A trace link is bidirectional,
multivalued, between artifacts uniquely identified
with a Universal Resource Identifier (URI), thereby
accommodating for model heterogeneity. Their
model has metaclasses that allow a trace link or an
artifact to have subtypes. These metaclasses can be
used to specify (il)legal links between certain
artifacts, e.g., specifying which types of artifacts can
(or cannot) be linked, or to provide justifications for
linked artifacts. This solution is therefore the one in
the literature that satisfies the largest number of our
requirements (Table 2), specifically, requirements 2,
3, 4, 7, 8, 10, 11, 12. However, we note a few issues
with this solution. It does not explicitly model
traceability links between artifacts due to model
transformations. More seriously the specification of
link types or artifact types assumes a subtype
relationship whereas literature suggests one would
likely be interested in orthogonal taxonomies of such
types. For instance, one would like to combine the
(vertical, horizontal) taxonomy (Ramesh and
Edwards 1993) with the (refine) taxonomy (Ramesh
and Edwards 1993). The solution is therefore not as
generic and extensible as claimed by the authors,
and does not fit our needs. Specifically, the solution
does not satisfy requirements 1, 5, 6, 9.

Table 3: Summary of traceability models features.

Reference Traceable
Models

Metamodel
Technology

Tool
Support

Validation

Extension
to new link
types
without
changing
metamodel

Important Design
Features

Satisfied Requirements
from Table 2

Paige, 2011 Ecore based UML class
diagram

Eclipse
possible

Partial
instantiation,
couple of case
studies

No trace links
classifications,
linking
heterogeneous
models

2, 3, 4, 5, 8, 10
(yes/partially).
1,6,7,9, 11, 12 (no)

Pavalkis,
2011

BPMN UML
derived
property

MagicDraw Partial
instantiation,
one case study

Yes, but
limited to
what can be
done with
derived
properties

new traceability
rules and relations
in BPMN

3, 4, 8, 10, 12 (yes/
partially).
1, 2, 5, 6, 7, 9, 11 (no)

Drivalos,
2008

MOF-based
models

UML class
diagram

Eclipse Partial
instantiation,
one case study

Yes, but
limited to
MOF

modeling link
types

2, 3, 4, 5, 6, 8, 12 (yes/
partially).
1, 7, 9, 10, 11 (no)

Falleri,
2006

MOF-based
models

UML class
diagram

Kermeta

Partial
instantiation,
one case study

Yes, but
limited to
MOF

sequence of links
in model
transformation

3, 4, 9, 10, 12
(yes/partially).
1, 2, 5, 6, 7 ,8, 12 (no)

Cysneiros,
2003

Heterogeneous XML Prototype
tool.

Partial
instantiation,
one case study

No linking of
heterogeneous
models

2, 3, 4, 7, 8 (yes/ partially).
1, 5, 6, 9, 10, 11, 12 (no)

Anquetil,
2010

Heterogeneous UML class
diagram

Eclipse Partial
instantiation,
one case study

Yes, but
limited to a
type and
subtype
only

trace links
classifications,
linking
heterogeneous
models

2, 3, 4, 7, 8, 10, 11, 12
(yes).
1, 5, 6, 9 (no)

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

326

5 ANALYSIS OF TRACEABILITY
MODELS AND DRAWBACKS

The search in the literature for a solution to the
problem discussed in the Introduction was not
successful. The main reason is that, each existing
solution is tailored to a specific domain: e.g., some
solutions can only trace artifacts from MOF-based
models, some solutions can only trace during model
transformation. As we conducted our search we also
noticed, putting aside the abovementioned issue,
that, each traceability modeling technique has its
own advantages and drawbacks, that is, it is difficult
to find a solution that offers the advantages of all the
current existing solutions at once.

To summarize, existing solutions fail to solve our
problem, as defined in the introduction, and
summarized in terms of requirements of Table 3 for
one or more of the following reasons. They target
specific domains such as model transformation,
Ecore models, or BPMN (Cysneiros, Zisman et al.
2003; Falleri, Huchard et al. 2006; Amar, Leblanc
et al. 2008; Drivalos, Kolovos et al. 2008; Pavalkis,
Nemuraite et al. 2011) as opposed to heterogeneous
models(Cysneiros, Zisman et al. 2003; Anquetil,
Kulesza et al. 2010). As a result, some cannot
accommodate the definition of new traceability
types between new types of artifacts, or cannot
easily do so(Cysneiros, Zisman et al. 2003; Paige,
Drivalos et al. 2011). They lack the ability to specify
the semantics of trace links (Falleri, Huchard et al.
2006; Pavalkis, Nemuraite et al. 2011) although
work exist specifically on that topic (Drivalos,
Kolovos et al. 2008; Kolovos, Paige and Polack
2008; Anquetil, Kulesza et al. 2010; Paige, Drivalos
et al. 2011).

In addition to the drawbacks discussed in section
4, we set up comparison criteria among the existing
traceability models based on the requirement we
stated in section 3. The results, summarized in Table
3 indicate that no one model can comprise all the
requirements we stated in section 3. This suggests a
need for a traceability model to accommodate such
requirements.

6 CONCLUSIONS

Traceability in its simplest form is the ability to
describe and follow the life of software artifacts
(Winkler and Pilgrim 2010). Collecting traceability
information plays an important role in ensuring
quality, and is also mandated by many agencies for

instance to qualify or certify software and systems.
In our work we consider traceability needs during
the engineering of systems that are realized through
software and hardware solutions, and that include a
wide range of disciplines and therefore
heterogeneous modeling notations. We argued that,
as a result, the solution to model traceability
information between artifacts in the many models
that specify a system must be oblivious of the
solutions being used to model those artifacts. In
other words, the traceability model must be
oblivious of the heterogeneity of the models which
elements are traced. Additionally, we argued that the
solution to model traceability should accommodate
situations where new artifacts, possibly in new
models, need to be traced, where new ways of
characterizing artifacts and traceability links need to
be used. In other words, the traceability modeling
language being devised should not change when new
artifacts, coming from models created with new
modeling notations, possibly characterized in new
ways, need to be traced. The solution to model
traceability information should be flexible to
accommodate many different situations and
flexibility should come at the model instance level
instead of at the model level to facilitate updates. In
other words, we conclude that there is a need for yet
another traceability model.

ACKNOWLEDGEMENTS

This work was performed under the umbrella of a
NSERC-CRD grant. The authors would like to thank
NSERC, CRIAQ, CAE, CMC Electronics, and
Mannarino Systems & Software for their financial
support.

REFERENCES

Aizenbud-Reshef, N., B. T. Nolan, J. Rubin, et al. (2006).
"Model traceability " IBM Systems Journal 45(3): pp.
515–526.

Amar, B., H. Leblanc and B. Coulette (2008). A
Traceability Engine Dedicated to Model
Transformation for Software Engineering. European
Conference on Model Driven Architecture -
Traceability Workshop Berlin.

Anquetil, N., U. Kulesza, A. Moreira, et al. (2010). "A
model-driven traceability framework for software
product lines. ." Softw. Syst. Model 9(4): pp. 427-451.

Cleland-Huang, J., O. Gotel and A. Zisman, Eds. (2014).
Software and Systems Traceability, Springer.

Costa, M. and A. Da Silva (2007). RT-MDD framework—

Towards�Traceability�Modeling�for�the�Engineering�of�Heterogeneous�Systems

327

a practical approach. European Conference on Model
Driven Architecture - Traceability Workshop.

Cysneiros, F., A. Zisman and G. Spanoudakis (2003).
Traceability approach for I* and UML models.
International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems, Portland.

Drey, Z., C. Faucher, F. Fleurey, et al. (2014). Kermeta
language reference manual.

Drivalos, N., D. S. Kolovos, R. F. Paige, et al. (2008).
Engineering a DSL for software traceability. Software
Language Engineering.

Falleri, J., M. Huchard and C. Nebut (2006). Towards a
traceability framework for model transformations in
kermeta. European Conference on Model Driven
Architecture - Traceability Workshop.

Gotel, O. and A. Finkelstein (1994). An Analysis of the
Requirements Traceability Problem. Proceedings of
the First International Conference on Requirements
Engineering, Utrecht, The Netherlands.

IEEE (1990). IEEE Standard Glossary of Software
Engineering Terminology. IEEE Standard Glossary of
Software Engineering Terminology. I. s. board. New
York.

Kolovos, D., R. Paige and F. Polack (2008). Detecting and
Repairing Inconsistencies Across Heterogeneous
Models. International Conference on Software
Testing, Verification, and Validation.

Kolovos, D., L. Rose, A. Garcia-Dominguez, et al. (2014).
'The Epsilon Validation Language', in (eds.) The
Epsilon Book. pp. 57-76.

Mason, P. (2002). MATrA : Meta-modelling Approach to
Traceability for Avionics, University of Newcastle.

Object Management Group (2014a). Business process
Model Notation (BPMN).

Object Management Group. (2014b). "Object Constraint
Language (OCL)." Available at:
http://www.omg.org/spec/OCL. (Accessed 20 July,
2014).

Paige, F., N. Drivalos, D. S. Kolovos, et al. (2011).
"Rigorous identification and encoding of trace-links in
model-driven engineering." Software & Systems
Modeling 10(4): pp. 469-487.

Paige, F., G. K. Olsen, D. Kolovos, et al. (2008).
Building Model-Driven Engineering Traceability
Classifications. European Conference on Model
Driven Architecture - Traceability Workshop Berlin,
Germany.

Pavalkis, S., L. Nemuraite and E. Milevičienė (2011).
"Towards Traceability Metamodel for Business
Process Modeling Notation." IFIP Advances in
Information and Communication Technology: pp. 177-
188.

Pinheiro, F. A. C. (2004). 'Requirements traceability', in J.
C. Sampaio do Prado Leite and J. H. Doorn (eds.)
Perspectives on software requirements. Berlin:
Springer pp. 91-113.

Ramesh, B. and M. Edwards (1993). Issues in the
Development of a Requirements Traceability Model.
Proceedings of the IEEE International Symposium on
Requirements Engineering.

Spanoudakis, G. and A. Zisman (2005). 'Software
Traceability: A road map', in S. K. Chang (eds.)
Handbook of Software Engineering and Knowledge
Engineering. pp. 395-428.

Winkler, S. and J. Pilgrim (2010). "A survey of
traceability in requirements engineering and model-
driven development." Software and Systems Modeling
9(4): pp. 529-565.

Yu, E. (2009). 'Social modeling and I*', in A. T. C.
Borgida, V. K., P. Giorgini and E. S. Yu (eds.)
Conceptual Modeling: Foundations and Applications:
Springer. pp. 99-121.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

328

