
A Modular Method for Global System Behaviour Specification

Urooj Fatima and Rolv Bræk
Department of Telematics, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway

Keywords: Model-driven Engineering, Service Composition, Interface Behaviour, Activity Diagrams.

Abstract: The challenge addressed in this paper is how can we specify the global behaviour of distributed reactive
systems in a way which eases the comprehension of the system without compromising its specification’s
correctness, completeness, modularity and readability. Instead of defining the global behaviour models in a
monolithic way, we approach the problem by decomposing the specification into interface functionality and
core functionality. The resulting interface-modular method for system specification is presented and discussed
in this paper using aTaxiCentralas case study. The novelty of this method lies in the clear separation of
interfaces from core functionality in global specification, and the use of activity diagrams in combination with
collaborations to express and compose the specifications.

1 INTRODUCTION

Normally in system development, after requirements
have been captured and analysed, the desired sys-
tem behaviour is first specified from a global, cross-
cutting, perspective involving several entities and then
mapped to a design structure of components with
precisely defined local component behaviours. The
global behaviour emerging from the joint local com-
ponent behaviours shall of course correspond to the
specified global behaviour. Such correspondence can
be assured in two ways: (1) by a process of verifica-
tion, that is verifying after a design has been devel-
oped, that the local behaviours of the designed com-
ponents are in accordance with the specification; or
(2) by a process of design synthesis (transformation)
whereby the local designs are derived from specifi-
cations in such a manner that correctness is guaran-
teed. Most current system design methods follow the
first approach because fully automated design synthe-
sis has not been practically feasible. There are two
main reasons for this:

a. it is normally very difficult and/or impractical to
completely specify global behaviours.

b. the global behaviour emerging from a direct map-
ping to a distributed design may contain undesired
behaviours that follow from the nature of a dis-
tributed design and not from the specification it-
self. This kind of behaviour, sometimes referred
to as implied scenarios, is the cause of so-called
realizability problems.

In order to solve problem ‘b’ mentioned above it is
necessary that all realizability problems can be iden-
tified and resolved as part of the design synthesis pro-
cess. In (Castejón et al., 2007) the authors provide a
classification of the various causes of such problems
and explain how problems can be detected on the level
of global behaviour and subsequently resolved during
design. Based on this foundation (Kathayat and Bræk,
2011) has proposed some refinements to the analysis
while (Kathayat et al., 2011) and (Fatima and Bræk,
2013) defined a method for design synthesis using ac-
tivity diagrams for both global (source) and local (tar-
get) behaviour where the resulting local behaviour is
in a form of activity diagrams that can be subject to
extensive analysis before generating product quality
(Java) code using a tool called Reactive Blocks (Re-
activeBlocks, 2014). Thus, there is now a systematic
way to overcome problem ‘b’ and principal solutions
to enable highly automated design synthesis.

In this paper, we focus on problem ‘a’ mentioned
above - how to achieve the necessary completeness,
rigour and modularity in global behaviour specifica-
tions to enable highly automatic design synthesis in
practice?

Sequence diagrams of some sort are probably the
most used notations for global behaviour. They de-
fine behaviour in terms of interactions taking place
among different components of a system and/or its
environment, either in the form of asynchronous mes-
sage passing or in the form of synchronous invoca-
tions. They are well suited for specifications since

490 Fatima U. and Bræk R..
A Modular Method for Global System Behaviour Specification.
DOI: 10.5220/0005245104900497
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 490-497
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

they consider systems and components from the out-
side and describe only their externally visible be-
haviour. Purely sequential behaviours are easy to
specify completely using sequence diagrams. It is
concurrency that causes problems. The service pro-
vided by a distributed reactive system normally in-
volves several concurrent parts. The number of pos-
sible and relevant interaction orderings is then often
beyond what is practically feasible to specify, and
therefore completeness is not achieved. The general
countermeasure for this kind of problem is to factor
out concurrency and thereby reduce the number of in-
teraction orderings needed to be explicitly modelled.
Rather than considering global behaviours involving
many concurrent parts, one may consider only two
parts at a time and their interface behaviour, possibly
decomposed further into smaller and more manage-
able sub-behaviours. This kind of decomposition fol-
lows naturally from the use of collaborations to struc-
ture and decompose global behaviours as we shall see
in the following. The remaining problem then is to
model the dependencies and global ordering among
the interface behaviours.

Even when completely defined, interactions are
not sufficient to fully specify the behaviour of sys-
tems and components. In many cases some internal
data and data manipulation is equally important to the
environment and the users of a system and therefore
need to be specified as well. We are not considering
internal design details here, only the data and oper-
ations that are important and give value to end users
and other systems in the environment are considered.

From this we deduce that a complete specification
needs to cover (at least) two related aspects: the ex-
ternal interactions and their ordering; and the inter-
nal data and operations that give value to the envi-
ronment, which is called the core functionality in the
following. There are (at least) two ways to organise
such specifications:

1. the integrated approach in which the core func-
tionality is embedded with interactions in one
(large) specification,

2. the interface-modular approach where core func-
tionality and interfaces are specified separately
and then combined.

The second approach is the topic and main contri-
bution of this paper (The authors have previously used
the integrated approach and found it feasible, but hard
and error prone to develop). The interface-modular
approach is promising because it simplifies the pro-
cess of developing complete specifications and also
results in more modular specifications. As it turns
out, the core functionality models serve both to spec-

Problem Domain

Taxi Dispatcher (TD)

Taxi (T)User (U)

Core
FunctionalityTD TD

Functional Specification

Interface Functionality Interface Functionality

act U-TD

U TD

U TD

act TD-T

TD T

TD T

U TD

act U-TD

U TD

U TD

act TD-T

TD T

TD T

U TD

Localization and Component Derivations

U T

U TD T

Composition of Interface Functionality and Core Functionality

Code Generation

Functional Requirements

Figure 1: The overall illustration of the proposed method.
The area highlighted with grey background is the focus of
this paper.

ify the core functionality itself independently of par-
ticular interfaces, and as a glue taking care of the de-
pendency among interfaces.

The main properties of the method are the follow-
ing:

- It simplifies achieving completeness in functional
specifications.

- It covers interface functionality as well as core
functionality.

- It defines interface functionality and core func-
tionality in separate modules that are partly inde-
pendent and may be composed in different ways.

- It specifies interface behaviours in a form that
later can be used as contracts for lookup and vali-
dation purposes.

We use UML activities to define behaviour be-
cause they provide the ordering constructs needed for
our purpose and allow us to stay within one notation
for both global and local behaviours. Moreover, they
support building blocks of variable granularity with

A�Modular�Method�for�Global�System�Behaviour�Specification

491

well defined interfaces suitable for composing the in-
terfaces and core functionality.

Figure 1 serves to illustrate the approach in terms
of a TaxiCentralthat shall be used as a running ex-
ample throughout the rest of the paper. The rest of
the paper is organized as follows. The functional re-
quirements of theTaxiCentralare presented in Sec-
tion 2. In Section 3, we present our interface-modular
method by explaining the guidelines and applying
them on theTaxiCentral. Section 4 explains our
method validation. We discuss related work in Sec-
tion 5 and conclude in Section 6.

2 FUNCTIONAL
REQUIREMENTS

Functional requirements normally contain an infor-
mal textual specification of the core functionality (in
terms of events, data and operations).

In theTaxiCentral, Userscan bookTaxisby plac-
ing taxi-booking requests to aTaxiDispatcher. Taxis
inform the TaxiDispatcherabout their availability.
The TaxiDispatcherkeeps an overview of available
Taxisand assignsTaxisto Usersas fairly as possible.
Once aTaxi is assigned to aUser, it can contact the
Uservia phone call.

TheTaxiDispatcheris driven by events generated
by users and taxis and communicated across the in-
terfaces as messages represented by the tokens in the
activity diagrams. The functional requirements given
below are organized according to the external events
and specify the actions to be taken in response. Itali-
cized items represent important domain entities and
data. Italicized bold items represent important do-
main events.

A. TaxiRequest. TheUser initiates the taxi-booking
request by sending a request to theTaxiDis-
patcher. As a result, either of the following two
responses shall be generated:

A1. TaxiAssign. If a Taxi is available, theTaxishall
be taken out of thetaxi queueby theTaxiDis-
patcherand assigned to theUser.

A2. UserWait. If a Taxi is not available, theUser
shall be entered in auser queueand receive
wait notification from theTaxiDispatcher, in-
dicating the position in queue.

B. TaxiAvailable. The Taxi updates its availability
status to theTaxiDispatcher. As a result, either of
the following two responses shall be generated:

B1. UserAssign. If a User is waiting in theuser
queue, theUser shall be taken out of theuser
queueand assigned to the availableTaxi.

TaxiCentral

User

Taxi

TD

act
User-TD

act
Taxi-TD

act
Taxi-User

pc:

PhoneCall

ts:

TaxiStatus

tr:

TaxiReq
uw:

UserWait

gt:

Grant

tw:

TaxiWait

sz:

Seize

uwd:

UserWithdraw
twd:

Taxi

Withdraw

rqr

rqe

uwr

uwe

uwdr

uwde

ge

gr

twdr

twde sr

se

twr

twe

str

ste

ce

cr

Figure 2: UML collaboration diagram showing roles and
collaboration uses in interfaces ofTaxiCentralservice.

B2. TaxiWait. If no User is waiting in theuser
queue, theTaxiDispatchershall insert theTaxi
reference in ataxi queueand send wait notifica-
tion to theTaxi. TheTaximay receive its queue
position.

C. UserWithdraw. The User can withdraw its re-
quest while waiting in theuser queue. Its refer-
ence shall then be removed from the queue by the
TaxiDispatcher.

D. TaxiWithdraw. The Taxi can withdraw while
waiting in the taxi queue. The TaxiDispatcher
shall then remove its reference from thetaxi
queue.

The TaxiCentral is not a trivial example since it
has to deal with: (1) the multiplicity of taxis and
users; (2) the queues and other data needed in order
to coordinate users and taxis; (3) all the possible ways
that events generated by taxis and users may inter-
leave.

3 FUNCTIONAL SPECIFICATION

We consider a service here as a collaborative be-
haviour that may involve several components and
more than one interface. In our method, a service pro-
vided by a distributed reactive system is specified in
four steps: (1) the service structure is defined using
UML collaboration diagrams; (2) the interface func-
tionality is defined using UML activity diagram; (3)
the core functionality is defined using UML activity
diagram; (4) the interface and core functionality is
connected. Each of these steps are illustrated in this
section using theTaxiCentral.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

492

act User-TD

 tr.TaxiReqUser TD

uw.UserWaitUser TD

 gt.Grant TDUser

!!"#$"%&'())

"&*

 uwd.User

Withdraw
TDUser

+'#,-"./"0$

10"%2',$

+'#,34',('5("

+'#,300,6&

10"%2,$7*%'8 10"%9:&&";$"*

ts.TaxiStatusTD Taxi

tw.TaxiWait TaxiTD

sz.SeizeTD Taxi

act Taxi-TD

twd.Taxi

Withdraw

<<external>>

end

TD Taxi

!"#$%&"$'"(')

!"#$*"$+

!"#$,)-.)/+

0/)1%//$23

!"#$*$+451"6!"#$7833)9+)5

(a) User-TDInterface Functionality Model. (b)Taxi-TD Interface Functionality Model.

Role 1 Role 2
Service

 name

Terminating

Role
Initiating

 Role

role

participation

(c) Notation forCallBehaviourAction.

Figure 3: Interface Functionality Models ofTaxiCentral.

3.1 Service Structure

The method guidelines for creating the service struc-
ture (SS) are described below:
SS1: Use UML collaboration diagram to define the

structure of a service.

SS2: Identify the participants and interfaces of the
service from the functional requirements doc-
ument. Represent the participants as roles in
the collaboration diagram.

SS3: Decompose the service behaviour into
collaboration-uses, where each collaboration-
use encapsulates the interactions needed
to carry a domain event mentioned in the
requirements.

SS4: Bind the roles of each collaboration-use to the
roles of the main collaboration.

SS5: Indicate the initiating role of each
collaboration-use with a filled circle and
terminating role with a filled squarea.

aFilled circles and squares are not standard UML no-
tations, but can be provided by profiling. They represent
information needed during subsequent behaviour analy-
sis and design synthesis.

SS6: Add references to activity diagrams that will
define the behaviours of interfaces identified in
‘SS2’ (detailed in Section 3.2).

By inspecting the functional requirements given
in Section 2, three main roles are identified in the
TaxiCentral: the User, the Taxi and theTD (Taxi-
Dispatcher). Likewise, three interfaces are identified
namely:User-TD, Taxi-TDandUser-Taxi. The UML
collaboration diagram ofTaxiCentralis shown in Fig-
ure 2. Each collaboration-use, for instanceTaxiReq,
UserWait, etc. encapsulates interactions needed to
carry the events of theTaxiCentral. The decompo-
sition of collaborations into roles and collaboration
uses is one important step towards mastering com-
plexity. Each elementary1 collaboration involves only
two roles and has a limited complexity making a com-
plete definition of its behaviour practically feasible.

3.2 Interface Functionality

The method guidelines for interface functionality (IF)
are as follows:

1We consider collaborations that are not further decom-
posed as elementary collaborations.

A�Modular�Method�for�Global�System�Behaviour�Specification

493

IF1: Develop activity diagrams of each interface
identified in ‘SS2’ and referenced in ‘SS6’.

IF2: Map the domain events, related to an interface,
from the requirements to pinsb on the boundary
of that interface activity. The name of a pin
should correspond to a particular event.

IF3: Add a ‘CallBehaviourAction’ for each
collaboration-use performed on the interface.

IF4: Add partitions on each ‘CallBehaviourAction’
to indicate the participating roles. Mark the
initiating and terminating roles with filled cir-
cles and squares, respectively.

IF5: Make flows and activity nodes to define the or-
dering of the CallBehaviourActions identified
in ‘IF3’ that can be enforced locally in the in-
terface. This may include interrupting regions
and interrupting flows, forks, joins merges,
choices and other elements of UML activities.

IF6: For the ordering that is enforced externally,
make flows to and from the corresponding pins.
In the case of data dependency, connect the
pins externally with dashed flows representing
the external ordering required.

bThe activity diagrams can have all types of pins that
UML allows, i.e. initiating, terminating, streaming and
alternative pins.

The resulting interface functionality models for
theTaxiCentralare depicted in Figure 3. Note that an
interruptible region and interrupting flows have been
used to specify that theUserWait collaboration-use
shall be terminated when aTaxi becomes available or
theUserends. The interruptible activity region is de-
picted by a dashed rectangle.

The dashed flows in Figure 3 represent essentially
how the responses to incoming events shall be ordered
by the core functionality depending on its data. Hence
they represent what we may call adata dependency.
In addition todata dependencythere may beevent de-
pendencywhen events on one interface trigger actions
on another interface. In theTaxiCentral, the arrival of
an availableTaxi on theTaxi-TD interface shall lead
to actions on theUser-TD interface, taking the user
out of queue and assigning theTaxi if there is a wait-
ing User. This case ofevent dependencyis taken care
of by the un-connected input pinTaxiAvailableon the
User-TD interface. A corresponding event therefore
has to be generated by the core logic.

Development of interface behaviours separately is
much simpler and more manageable than to develop
a complete behaviour directly as in the integrated ap-
proach. Each of the two interfaces presented in Fig-
ure 3 is relatively simple and easy to understand even

!"#$

%&'(&)*

+,&-./

!"#$0

!"#$

12"$3"43&

+,&-./

5)&60

!"#$7"$*

!"#$"%&'(

!"#$%&%'('(

)*(+%&%'('(

&89*: &89*:;<*/&89*:;<*/&89*:

=>)&6*/5)&6/$>/

5)&60

=>)&6*/!"#$/$>/

!"#$0

5)&6

7$*,?6"@
!"#$

7$*,?6"@

%&8<2&

5)&6/A6<8/5)&60
%&8<2&

!"#$/A6<8/!"#$0

B*"6* =>$*$"3/B&**$>C)

D#*6"-*

!"#$/A6<8/

!"#$0

D#*6"-*

5)&6/A6<8/

5)&60

5)&67"$*

!"#$1))$C> 5)&61))$C>

Figure 4: The Core Functionality Model ofTaxiCentral.

for a non-technical person (with a little explanation)
and therefore useful for discussions and validation
with end users. Moreover, they define a behaviour
contract that both parts of the interface must obey.

3.3 Modelling the Core Functionality

The method rules for core functionality (CF) are as
follows:

CF1: Define the activity that contains the core func-
tionality by using a UML activity diagram.

CF2: Map the domain events from the requirements
to streaming pins on the edge of the activity
that defines the core functionality. The name
of each pin should correspond to the name of
an event defined in the requirements.

CF3: Define local variables in the activity that can
hold the data it shall handle according to the
requirements.

CF4: For each domain event to be handled (repre-
sented by a streaming pin) define an internal
activity flow that performs the actions given in
the corresponding requirement.

CF5: If necessary add pins to start and stop the ac-
tivity.

The resulting core functionality of theTaxiCentral
is illustrated in Figure 4. The functional requirements
of theTaxiCentralin Section 2 tells that it’s core func-
tionality needs to maintain a user queue (UserQ) and
a taxi queue (TaxiQ) to coordinate multiple users and
taxis. The variables are indicated by a note on the up-
per right corner of the activity diagram as shown in

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

494

act User-TD

 tr.TaxiReqUser TD

uw.UserWaitUser TD

 gt.Grant TDUser

!!"#$"%&'())

"&*

 uwd.User

Withdraw
TDUser

+'#,-"./"0$

ts.TaxiStatusTD Taxi

tw.TaxiWait TaxiTD

sz.SeizeTD Taxi

act Taxi-TD

twd.Taxi

Withdraw

<<external>>

end

TD Taxi

+'#,12',('3("

45"678

+'#,9

:0"%;',$

+'#,100,<&

45"678

:0"%9

+'#,;',$

:0"%100,<&

!"#$"%&'(

!"#$%&%'('(

)*(+%&%'('(

"=>$? "=>$?@A$8"=>$?@A$8"=>$?

B&0"%$8:0"%8,&8

:0"%9

B&0"%$8+'#,8,&8

+'#,9

:0"%;,$5*%'C +'#,;,$5*%'C
-"=A2"

:0"%8D%A=8:0"%9

-"=A2"

+'#,8D%A=8+'#,9

E$'%$
B&,$,'(8

E"$$,&<0

F#$%'6$

+'#,8D%A=8

+'#,9

F#$%'6$

:0"%8D%A=8

:0"%9

+'#,;',$

:0"%;',$

+'#,12',('3("

+'#,100,<&

+'#,;,$5*%'C

:0"%100,<&

:0"%;,$5*%'C

+'#,12',('3("+'#,-"./"0$

+'#,12',('3("

+'#,-"./"0$

+'#,-"./"0$

:0"%4A&&"6$"* +'#,4A&&"6$"*

Figure 5: Composition of core functionality model and interface functionality models resulting in global behaviour model of
theTaxiCentral.

Figure 4 since UML does not have any specific nota-
tion to represent variables in activity diagrams.

Although this model may appear to be very inter-
nal, it actually specifies the core behaviour which is
of importance for end-users, and therefore relevant in
a specification. In purely interface oriented specifica-
tions this functionality is completely missing.

3.4 Composing the Core and Interface
Functionality

Once the interface functionality and core functional-
ity models are defined, we need to ensure their cor-
rect alignment and coordination in order to compose
the complete service behaviour. The method rules for
composing the complete service behaviour (CSB) are
as follows:

CSB1: Find matching pins on the core functionality
model and the interface functionality models.
Connect the matching pins.

CSB2: If a matching output pin cannot be found in
the core functionality, look into the core func-
tionality model to identify the appropriate
flow where the required event is represented.
Add a fork to the flow identified and an output
pin. Connect the fork to the pin.

The resulting complete behaviour of theTaxiCen-
tral is shown in Figure 5. It also illustrates the
rule ‘CSB2’ where the matchingTaxiAvailableand
TaxiRequestoutput pins are not found originally on
the core functionality model. They are then added
to the core functionality model and connected to the
newly added fork on the corresponding flow.

Note that the interface functionality and core func-

tionality are defined in separate modules, that are
partly independent and may be modified separately as
long as their interface remains unchanged. This is one
of the advantages of the interface-modular approach.

4 METHOD VALIDATION

First we comment that the development of a global
interface-modular specification may not be quite as
straight forward as suggested in the presentation
above. In practice one may need to iterate in order to
discover and resolve all dependencies and to develop
the interface and core functionalities to the level pre-
sented in Figure 5.

We may now ask about the generality of the ap-
proach and completeness of the resulting global spec-
ification.

For the core functionality, activity diagrams are
both well suited and general enough. They can eas-
ily be expressed in a tool like Reactive Blocks (Krae-
mer et al., 2009; ReactiveBlocks, 2014) that will ana-
lyze the model and generate corresponding code. For
interface functionality, the challenge is to cover all
possible event orderings. This is achieved by the
interface focus, the decomposition into elementary
collaboration-uses and the ordering constructs of ac-
tivity diagram. The functionality of theTaxiCentral
has been implemented in several versions using the
Reactive Blocks tool (Kraemer et al., 2009; Reac-
tiveBlocks, 2014). This includes both the core func-
tionality and the interface functionality including re-
mote communications using a variety of protocols.
A lesson from this is that our use of activity dia-
grams is quite general and enable sufficient complete-

A�Modular�Method�for�Global�System�Behaviour�Specification

495

ness for design synthesis. We have tested our ap-
proach on a variety of other problems too, in order
to uncover possible shortcomings. Among these is
thebCMSsystem (bCMS, 2012) which is more com-
prehensive and more distributed than theTaxiCentral.
ThebCMScore functionality needs to be partitioned
and distributed accordingly. Other systems on which
we have tested our approach are: aLiftSystem; an
Access-ControlSystem; and a Tele-MedicineSystem.
From this we have encouraging indications that the
approach is sound. These examples are not explained
in this paper due to lack of space.

5 RELATED WORK

Expressing the core functionality using activity dia-
grams is similar to the common practice in work-flow
modelling used in the business process development.
Factoring out interfaces in separate interface contracts
is also according to common practice in the same do-
main as seen in web services and SOA. What is not
so common is to define the two aspects in modules
that can be directly composed using pins. Within the
embedded and reactive systems domain, it is common
to specify interface functionality using sequence dia-
grams, but less common to specify core functionali-
ties separately. It is more common to map (incom-
plete) sequence diagrams to state machines that inte-
grate interface and core functionality during (manual)
design.

In the literature, one can find many proposals to
represent high-level service specification such as se-
quence diagrams and Use Case Maps (UCM) (Buhr,
1998; Castejón, 2005). Interactions, for instance
UML sequence diagram, are commonly used to ex-
press collaborative behaviour using messages which
are exchanged between components. But sequence
diagrams can normally be used for limited scenar-
ios only and contain other drawbacks mentioned
in (Castejón, 2008), (Zaha et al., 2008).

The WSCI specification (Arkin et al., 2002) de-
scribes the interface of a web service participating in
a choreographed interaction using XML-based lan-
guage. Unlike our approach, a WSCI interface de-
scribes only one partner’s participation. The WSCI
does not describe how a web service manages mes-
sage ordering which in our approach is explicitly han-
dled. Other approaches have been proposed (Beyer
et al., 2005a; Beyer et al., 2005b; Mencl, 2004) to
define interface behaviours, but none of them models
interface behaviour as activities ordering elementary
collaborations. The problem addressed in the multi-
view point approach proposed in (Dijkman and Du-

mas, 2004) is similar to ours. But, there are impor-
tant differences that sets our work apart from their
approach. Interface behaviours for instance are one-
sided in their approach. Moreover, their approach
does not factor out internal tasks as we do in the core
functionality.

Deriving interface contracts by projection from
complete component behaviours have been much
studied and several approaches exist (Bræk and Hau-
gen, 1993; Floch and Bræk, 2003; Sanders et al.,
2005). However, the opposite problem of specify-
ing interfaces first, and then composing the com-
plete component behaviours has not been so well re-
searched in the past.

The interface behaviours we develop, define the
behaviour that is visible on each particular interface.
This may be considered as aprojectionof the com-
plete behaviour of a component or a system. One
of the original methods of projections is proposed
in (Lam and Shankar, 1984) to reduce the complex-
ity of analyzing non-trivial communication protocols.
The method breaks up the protocol analysis problem
into smaller problems by constructing a smaller image
protocol system using refinement algorithms that pre-
serves properties of the original protocol system. Our
method is inspired by similar reduction of complexity
by constructing smaller interface behaviours as pro-
jections. In doing this we seek to precisely define the
visible interface behaviour that users and other en-
tities in the environment will observe, while hiding
other interfaces and details of the core functionality.

Various mathematical approaches have been pro-
posed to define choreography semantics for exam-
ple Labelled Transition System (Salaün and Bultan,
2012). Activity traces are used by (Qiu et al., 2007) to
represent choreography. Most of these proposals lead
to manual synthesis of the components. Whereas,
once the system is specified using our interface-
modular approach, synthesis of the components can
be automated by using the rules published in (Fatima
and Bræk, 2013).

6 CONCLUSION AND FUTURE
WORK

We have presented an interface-modular method for
system specification which is suitable to become the
source of highly automated design synthesis. The
method is demonstrated by a non-trivial case study,
the TaxiCentral. Our method approaches the com-
plexity of global behaviour specification problem by
factoring out two separate aspects of a system i.e.
‘core functionality’ and ‘interface functionalities’. In-

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

496

terface behaviours are decomposed using collabo-
rations and defined as activities ordering elemen-
tary collaborations expressed using activity diagrams.
This separation allows interfaces and core functional-
ity to be combined in different ways as long as their
internal interfaces are unchanged.

To our knowledge, the interface-modular method
we have presented is original in the way it defines in-
terface behaviour, separates the interface behaviour
and core functionality, and composes interfaces and
core functionality.

Currently, we are working on using the interface
contracts (which is a by-product of our method) for
compositional validation to ensure correct interwork-
ing and dynamic binding.

REFERENCES

Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi,
K., Orchard, D., Pogliani, S., Riemer, K., Struble, S.,
Takacsi-Nagy, P., et al. (2002). Web service chore-
ography interface (wsci) 1.0.Standards proposal by
BEA Systems, Intalio, SAP, and Sun Microsystems.

bCMS (2012). bcms case study document.
http://cserg0.site.uottawa.ca/cma2013re/CaseStudy.pdf.
Accessed On: 22-09-2014.

Beyer, D., Chakrabarti, A., and Henzinger, T. A. (2005a).
An interface formalism for web services. InProceed-
ing of the First International Workshop on Founda-
tions of Interface Technologies.

Beyer, D., Chakrabarti, A., and Henzinger, T. A. (2005b).
Web service interfaces. InProceedings of the 14th
International Conference on World Wide Web. ACM,
New York.

Bræk, R. and Haugen, Ø. (1993).Engineering Real Time
Systems. Prentice Hall.

Buhr, R. J. A. (1998). Use case maps as architectural en-
tities for complex systems. InIEEE Transactions on
Software Engineering, volume 24(12). IEEE Press.

Castejón, H. N. (2005). Synthesizing state-machine be-
haviour from uml collaborations and use case maps.
In SDL 2005 Model Driven, volume 3530. LNCS,
Springer.

Castejón, H. N. (2008).Collaborations in Service Engi-
neering: Modeling, Analysis and Execution. PhD
Thesis, Department of Telematics, NTNU.

Castejón, H. N., Bræk, R., and Bochmann, G. V. (2007).
Realizability of collaboration-based service specifi-
cations. In Proceedings of the 14th Asia-Pacific
Soft. Eng. Conf. (APSEC07). IEEE Computer Society
Press.

Dijkman, R. and Dumas, M. (2004). Service-oriented
design: A multi-viewpoint approach. InInterna-
tional Journal of Cooperative Information Systems,
volume 13.

Fatima, U. and Bræk, R. (2013). On deriving detailed com-
ponent design from high-level service specification. In

System Analysis and Modeling About Models, volume
7744. LNCS, Springer.

Floch, J. and Bræk, R. (2003). Using projections for the de-
tection of anomalous behaviours. InSDL 2003 System
Design, volume 2708. LNCS, Springer.

Kathayat, S. B. and Bræk, R. (2011). Analyzing realizabil-
ity of choreographies using initiating and responding
flows. In Proceedings of the 8th International Work-
shop on Model-Driven Engineering, Verification and
Validation, MoDeVVa, pages 6:1–6:8, New York, NY,
USA. ACM.

Kathayat, S. B., Le, H., and Bræk, R. (2011). A model-
driven framework for component-based development.
In SDL 2011 - Integrating System and Software Mod-
eling, volume 7083. LNCS, Springer.

Kraemer, F. A., Slåtten, V., and Herrmann, P. (2009). Tool
support for the rapid composition, analysis and imple-
mentation of reactive services. InJournal of Systems
and Software, volume 82(12). Elsevier.

Lam, S. S. and Shankar, A. U. (1984). Protocol verifica-
tion via projections.IEEE Transactions on Software
Engineering, 10(4).

Mencl, V. (2004). Specifying component behavior with port
state machines. InElectronic Notes on Theoretical
Computer Science.

Qiu, Z., Zhao, X., Cai, C., and Yang, H. (2007). Towards the
theoretical foundation of choreography. InProceed-
ings of the 16th International Conference on World
Wide Web, WWW ’07, pages 973–982, New York,
NY, USA. ACM.

ReactiveBlocks (2014). Reactive blocks - the tool for
professional java developers. http://www. bitreac-
tive.com. Accessed On: 10-12-2014.

Salaün, G. and Bultan, T. (2012). Realizability of chore-
ographies using process algebra encodings.Services
Computing, IEEE Transactions on, 5(3):290–304.

Sanders, R. T., Bræk, R., Bochmann, G. V., and Amyot,
D. (2005). Service discovery and component reuse
with semantic interfaces. InSDL 2005 Model Driven,
volume 3530. LNCS, Springer.

Zaha, M. J., Dumas, M., Hofstede, A. H. M., Barros, A., and
Decker, G. (2008). Bridging global and local models
of service-oriented systems. InIEEE Transactions on
Systems, Man., and Cybernetics, volume 38(3). IEEE
Press.

A�Modular�Method�for�Global�System�Behaviour�Specification

497

