
Automated State-based Online Testing Real-time Embedded
Software with RTEdge

Wafa Hasanain1, Yvan Labiche1 and Serban Gheorghe2
1Systems and Computer Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, Canada

2Edgewater Computer Systems Inc., Ottawa, Canada

Keywords: State-based Testing, Online Testing, Real-time, Embedded, RTEdge.

Abstract: Verifying a real time embedded application is challenging since one has to consider timing requirements in
addition to functional ones. During online state-based testing the generation and execution of test cases hap-
pen concurrently: test case generation uses information from a state-based test model in combination with
observed execution behaviour. This paper describes a practical online testing algorithm that is implemented
in the state-based modeling tool RTEdge. Two case studies show that our online testing algorithm produces
a test suite that achieves high model coverage, thus facilitating the automated verification of real-time em-
bedded software.

1 INTRODUCTION

Specifying, designing, constructing, and verifying
software systems is a challenge and doing so for
embedded, real-time software is even harder because
one has to account for non-functional (time related)
requirements in addition to functional ones. RTEdge
is a collection of specification modeling, code gen-
eration, simulation and analysis tools that facilitate
developing such software systems
(http://www.edgewater.ca/software-solutions) as a
set of communicating state machines, similarly to
IBM’s RSA Real-time Edition.

Our objective was to devise an automated test
case generation procedure from an RTEdge model.
Such test cases can be executed against different
simulation settings or on the target (deployment)
platform to evaluate impact of design decisions.

We report on a black-box, online, directed ran-
dom test case generation procedure. It is black-box
since we only rely on the specification to derive test
inputs, but also since we only use a small portion of
the specification: in fact we only use the specifica-
tion of signals that trigger behaviour in the set of
communicating state machines in the RTEdge mod-
el. It is online since we rely on RTEdge capabilities
to simulate the model: test case creation occurs con-
currently to the simulation of their execution. It is
directed since we monitor progress of model cover-
age to decide whether to stop or continue test case

construction. Our case studies show that our ap-
proach, although random, achieves very high levels
of coverage of the RTEdge model. We also show
how random test case generation is completed with
formal verification to further increase coverage
when necessary. This paper contributes to the field
of (random) testing is different ways: This paper
brings additional data to the on-going debate as to
whether random testing is effective or not; We dis-
cuss how our approach has been integrated in a
commercial CASE tool; We show our solution, even
though simple, is effective at covering the model of
two representative case studies; Our approach differs
in several ways from related work; To the best of
our knowledge, this is the first time random testing
is applied the way we propose in this paper.

Section 2 discusses related work. Section 3 in-
troduces the RTEdge platform we build upon and
section 4 introduces our test framework. Section 5
introduces two case study systems and section 6
discusses results. Section 7 concludes the paper.

2 RELATED WORK

State-based testing is a vibrant field of research, as
confirmed for instance by the number of tools that
support one or more of the state-based testing activi-
ties (Shafique, 2013). It is not feasible in a confer-
ence paper to provide a complete picture of this

294 Hasanain W., Labiche Y. and Gheorghe S..
Automated State-based Online Testing Real-time Embedded Software with RTEdge.
DOI: 10.5220/0005243402940302
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 294-302
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

large field of research. We only point the reader to
some useful general discussions while focussing on
works that are directly related to ours.

Testing from a finite state machine (FSM), or a
set of communicating FSMs (C-FSM), heavily de-
pends on the behaviour specification the FSM con-
tains. When the FSM does not have actions (or ac-
tivities) on transitions or states, or guard conditions,
then approaches exist to automatically generate test
cases (Khalil, 2010, Mathur, 2008, Mouchawrab,
2011). A C-FSM can under some conditions, so as to
avoid a state space explosion, be transformed into a
larger extended FSM from which the abovemen-
tioned techniques can be used (Luo, 1994). Alterna-
tively, techniques specific to C-FSMs exist, e.g., (Li,
2002). Other techniques involve symbolic execution,
e.g., (Conformiq, 2006, Jin, 2011), or a meta-
heuristic search, e.g., (Asoudeh, 2014, Guo, 2004).
Alternatively, one can consider testing techniques
for LTSs, e.g., (Tretmans, 2008). When the FSM has
actions (or activities) and/or guards that are all line-
ar, automated test case construction is also feasible:
e.g., (Asoudeh, 2014, Duale, 2004, Kalaji, 2011,
Larsen, 2005, Schwarzl, 2010, Utting, Vain, 2011).
These techniques are typically offline since it is
possible to analyse the model and create feasible test
cases prior to executing them. There are exceptions,
such as UPPAAL-TRON (Larsen, 2005), to online
test using a timed automaton specification.

When actions (or activities) and guards are spec-
ified with a more complex language, offline testing
is typically not possible since it is not possible to
statically analyse both the state based behaviour and
the complex Java/C/C++ pieces of code to create
feasible test cases. Instead, online testing is neces-
sary to simulate the model to identify the resulting
state and therefore identify what can be the next
event to send to the implementation/simulation of
the state based behaviour.

Related work also pertains to random testing
(Duran, 1984), that is the automated generation of
test inputs from an input domain or an operational
profile. Random testing is effective, sometimes
surprisingly more so than other (structural) criteria
(Duran, 1984, Arcuri, 2010). Adaptive random test-
ing (Chen, 2005) has been proposed to improve
random testing, although its real effectiveness has
been put to question (Arcuri, 2011).

Other attempts to enhance random (white-box)
testing have been proposed. In directed random
testing (Godefroid, 2005), collecting information on
executed paths is used to systematically direct the
selection of new random inputs to lead execution to
trigger new program paths. Our approach works

similarly, though at the model level instead of the
code. In feedback random testing (Pacheco, 2007),
unit test for object-oriented classes are created as
legal (according to contracts) sequences of method
calls and execution results (feedback) in terms of
violated contracts and execution outputs (e.g., re-
turned values) is used to extend (with new method
calls and new input data) of test cases. In coverage
rewarded random testing (Groce, 2011), reinforce-
ment learning is used to obtain interesting new test
cases. The first two techniques have been combined
to automatically generate tests from stateflow mod-
els (Satpathy, 2008), in an attempts to improve upon
existing, purely random input selection techniques,
e.g., Reactis (Cleaveland, 2008). This required that
the state model be flattened and unfolded up to a
pre-defined depth. We do not require that.

Our approach differs from these related works in
one or more of the following. (1) We do not perform
any analysis of the states and transitions to identify
new inputs, and we do not perform transformation of
the state model. We only use information about the
signals that can be sent to the system, i.e., the signals
the state-based behaviour can respond to. In other
words, the state model (and not only the code) is a
black-box. (2) Our test model is a set of communi-
cating state machines, which also include pieces of
C/C++ code for the specification of actions, activi-
ties and guard conditions: guards and actions are not
assumed to be linear. (3) We focus on achieving a
complete set of coverage objectives instead of one
objective at a time, similarly to some recent white-
box testing approach (Fraser, 2013). (4) During
random selection, we uniformly sample from a do-
main without any attempt to improve over this sim-
ple random selection.

3 THE RTEdge PLATFORM

RTEdge is a Model Driven Development (MDD)
platform, for designing critical real-time embedded
applications (Gheorghe, 2011, Sarkar, 2010).
RTEdge is built around a modeling subset of AADL
(Feiler, 2012) and UML2 (Pender, 2003).

With RTEdge, one specifies software as a set of
state machines communicating through signals and
ports (a.k.a., capsules), annotated with assertions
(e.g., state invariants), constraints (e.g., guards),
activities (C/C++ code), and expected temporal
properties. The model responds to Independent Sys-
tem Inputs and Dependent System Inputs. An Inde-
pendent System Input (ISI) is generated by the envi-
ronment of execution of the software being de-

Automated�State-based�Online�Testing�Real-time�Embedded�Software�with�RTEdge

295

signed, independently from any behaviour specified
in the RTEdge model. A Dependent System Input
(DSI) is sent by the environment at the request of the
software: i.e., the RTEdge model sends a signal to
its environment and the environment is expected to
respond with a DSI. An ISI is defined by time arrival
constraints (typically a period) and may carry data
(C/C++ struct). A DSI is also specified by a time
arrival constraint (the model/application expects it to
arrive within a specific amount of time after it sends
the request to the execution environment). Also,
RTEdge provides a Periodic Timer through which
state machine execution can be triggered. The timer
uses a Service to broadcast a timeout Signal to any
capsules using the service.

Prior to any other activity (see below), one can
verify the structural correctness of the RTEdge mod-
el: e.g., two capsules exchange the same set of sig-
nals; and one can check temporal correctness and
resource utilization (schedulability). During this
process, the Worse Computed Response Time
(WCRT) is determined for each transaction, i.e., an
execution triggered by an ISI that ends when no
more internal transitions are to be triggered, when no
more DSI is expected. With the RTEdge Formal
Link feature one can automatically transform an
RTEdge model into an equivalent Promela model
(Holzmann, 2003) which can then be automatically
run under the SPIN model checker (Holzmann,
2003) to verify safety and liveness properties.
RTEdge can then interpret SPIN counter-examples
as RTEdge model execution traces.

RTEdge also offers code generation, compiling,
deployment, debugging capabilities.

The RTEdge Virtual Time Environment (VT)
simulates the execution of an application automati-
cally generated by RTEdge on a host/development
machine rather than on the target platform. VT is
especially helpful during verification since the user
has precise control over the arrival of System Inputs
(e.g., injection), has precise control over how time
passes and offers the same capabilities as a debug-
ger. VT allows the definition of call-back functions
whereby one can register a user-defined function
that will be called under a particular circumstance.
Particularly interesting to us, call-back functions can
be called when a transaction ends, a transaction
starts, and an RTEdge periodic timer expires. Such
functions can typically be used when creating the
oracle, i.e., the piece of code that decides whether a
test case passes or not.

4 A TEST FRAMEWORK FOR
RTEdge

The objectives of our test framework were initially
the following: (i) We wanted to derive test cases
from an RTEdge model with a model-driven testing
approach/algorithm as simple as possible; (ii) We
wanted to rely on the existing features of RTEdge to
the maximum extent possible for testing purposes.

Next, we first discuss the rationale for the main
decisions that drove the design of our test frame-
work. We then discuss the framework itself and its
algorithms. More technical details can be found in
the first author’s thesis (Hasanain, 2013).

4.1 Selecting an Online Feedback
Random Test Case Generation

Since an RTEdge model can become quite complex,
with several communicating complex state ma-
chines, with complex C/C++ actions on transitions
and activities on states, it appeared very quickly that
devising a strategy that would analyse the model and
allow us to generate adequate test suites made of
executable test cases, according to standard selection
criteria (Ammann, 2008, Lee, 1996), similarly to
what is done in many other pieces of work (section
2) would be too expensive. Specifically we felt it
would be too complex or even impossible to devise a
test case generation strategy that would identify test
inputs (i.e., signals) to ensure that some state model
elements are reached. Instead, we decided to use
only information about the ISIs and DSIs to create
test cases: the details of the model, i.e., its com-
municating state machines, are not used as (primary)
test objectives to drive the test case generation. In
other words, we consider the tested software as a
black-box, not only because we do not look at its
implementation (the source code) to create test ob-
jectives and therefore test cases, but also because we
do not look at the state model.

We create test objectives from the specification
of ISIs and DSIs, that is, their timing information
(e.g., period) and the data they carry. At this level of
abstraction, there is however no clear relation be-
tween such specification and the behaviour actually
triggered in communicating state machines: this
triggered behaviour is in the state machines, which
we do not use. Therefore, instead of using criteria
(e.g., based on equivalence classes for the data car-
ried by input signals) to derive test cases, we decid-
ed to rely on a random generation (section 4.2).

Since any random test case generation can run

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

296

forever unless we identify a stopping criterion, we
nevertheless rely on coverage of model elements to
decide whether the random generation needs to con-
tinue. We monitor model coverage as test cases are
generated and executed and we stop when we have
reach adequacy or when we do not observe signifi-
cant coverage improvement (section 4.2).

In summary, we developed an online, directed
random test case generation.

4.2 The Test Framework

Our test framework uses the ISI and DSI specifica-
tions of an RTEdge model as an input. Because of
the time-related aspect of an RTEdge model, our
framework is to automatically generate a test script
that periodically and randomly sends the input sig-
nals to an executable version of the model, and ob-
serves the progress in terms of coverage of the mod-
el to decide when to stop the creation/execution of
test cases. To do so, we rely on RTEdge’s VT. (How
this is actually realized is shortly discussed in sec-
tion 4.3.)

Sending Independent System Inputs (ISIs).
We send an ISI to the System Under Test (SUT)
independently for each ISI, as follows. Since an ISI
is periodic, we start by sending an instance of the
ISI, randomly generating the data it carries (see
below) at time 0 (zero). VT manages time and time 0
corresponds to the SUT being created and ready to
respond (steady state). Then, at each time value
equal to a multiple of the ISI’s period, we send an-
other ISI instance, again randomly generating it data.

Sending Dependent System Inputs (DSIs). A
DSI is sent by the environment upon request by the
SUT, only once, within a specific amount of time
after the environment receives the request. For each
request for a DSI, we send a DSI instance by ran-
domly selecting a delay between the request arrival
for this DSI and the sending of the DSI instance
(randomly selected according to the delay specifica-
tion of the DSI), randomly selecting data for the DSI
(see below).

Generating Random Signal Data. We created a
signal data random generator for signals that do
carry data. This generator supports a subset of the
types that RTEdge supports, specifically the types
supported by SPIN plus character. For these primi-
tive types, the generator randomly (uniform distribu-
tion) selects a value in the allowed range. RTEdge
also supports more complex data types: arrays, enu-
merations, and structures (similar to C struct). To
generate an array, the generator determines the data
type of its elements, and generates the required data.

For each element in a structure, the generator gener-
ates the required data depending on the element
type. For an array or a structure, the generation is
recursive. For an enumeration, the generator produc-
es at random (uniform distribution) one of the possi-
ble values.

RTEdge allows the refinement of existing types
by specifying a reduced allowed range of values,
thanks to Data Range Constraints. Our generator
uses those constraints to randomly (uniformly from
the constrained range) generate values.

Stopping Criterion. Since a transaction includes
everything the SUT has to do in response to an ISI,
the end of a transaction is a good time to decide
whether to stop or continue generating test cases.
Each time the SUT finishes a transaction, it informs
the test framework, providing details about the
transaction: start and end times of the transaction,
states and transitions covered by the transaction.
(Note that VT allows us to stop the simulation of the
model to collect that information, thereby avoiding
any impact of the collection process on execution
times, and therefore deadlines. The simulation thus
remains representative of what would actually exe-
cute on the deployment platform.) We based our
stopping criterion on the coverage achieved by test
cases, using two standard criteria (Ammann, 2008):
state coverage and transition coverage.

Ideally, the online testing procedure would stop
when an adequate test suite has been generated, i.e.,
when 100% state and transition coverage is reached.
This is however not a guarantee since our test case
generation is black-box and random. We therefore
need a stopping criterion in case the random genera-
tion fails to reach adequacy. One possibility could
have been to ask the test engineer to decide of a
coverage level to reach. But even then, except if one
selects a trivial coverage level to reach, there would
be no guarantee to actually reach it. One difficulty is
that due to the random nature of the test case genera-
tion, coverage can increase for some transactions, it
may appear to have come to a standstill for another
transaction, and may increase again later on. Simi-
larly to what is done in some genetic algorithms
(Haupt, 1998), we decided to observe coverage over
a user-specified number of transactions. If no addi-
tional coverage is observed during this window, then
we stop. More formally we defined three flags: (1)
noNewCoverage is true if no new state/transition
coverage is observed during the observation win-
dow; (2) stateTarget is true if we reach adequacy
for states; (3) transTarget is true if we reach
adequacy for transitions.

Our random generation then stops if the

Automated�State-based�Online�Testing�Real-time�Embedded�Software�with�RTEdge

297

following condition is true: (stateTarget and
transTarget) or noNewCoverage; i.e., when
we reach adequacy or when no new coverage is
observed during the observation window.

Our approach requires some parameters from the
user: (1) The number of times a state/transition
needs to be visited; (2) The size of the observation
window (i.e., number of transactions) during which
coverage improvements is monitored; (3) The mini-
mum number of new states or transitions that one
expects to be covered during that window.

Notice that we allow the test designer to alter the
usual definition of coverage by using the first input
parameter: a state (transition) is considered covered
if and only if it has been visited a number of times
that is at least equal to that input parameter. If the
input parameter equals to one, this is the usual
meaning of coverage. Requiring that a state (transi-
tion) be visited more than once to be considered
covered is inspired by the notion of statistical soft-
ware testing (Thévenod-Fosse, 1991).

4.3 Framework Realization with VT

We relied on RTEdge’s VT’s capabilities to send
signals (SISs and DSIs) so the VT simulation con-
sumes them, to collect coverage information, to
collect transaction data.

Before entering into the details, it is important to
realize that time in VT progresses in discrete steps:
each time a transition in a capsule is triggered, time
advances. Each time VT advances time, it is able to
perform tasks not related to the simulation proper,
such as reporting on various aspects of the simula-
tion: e.g., what is the current state in each capsule,
which transitions where last triggered. This is done
without any impact on the simulation since that
simulation is implicitly paused.

Sending Signals to the VT Simulation. Sending
signals (ISI, DSI) to VT is as simple as putting the
signals in a queue from where VT fetches the next
signal to be consumed by the simulation. Each signal
deposited in that queue is specified with an arrival
time (according to the time maintained by VT) and
data values it carries. This is a priority queue with
signal time as a priority. This way, when VT ad-
vances time, it looks at the queue for a signal to
consume at that time. If there is one, the signal is
consumed. As discussed earlier, the sending of a
ISI/DSI happens as long as the test case construction
does not stop, i.e., the stopping criterion is not met:
more signals are put in the queue as needed. Note
also that in addition to fetching from the queue, VT
also populates the queue: e.g., capsules (state

machines) communicate through that queue.
Collecting Coverage Data. Using VT’s API,

each time VT advances time (see earlier discussion
on that), it reports on the current state of each cap-
sule as well as on the last triggered transition to the
testing framework, which then maintains a counter
for each state/transition to count the number of times
each one is visited during the simulation.

Receiving Transaction Data. RTEdge provides
callback functions that allow us to extend the func-
tionalities of VT and make sure our testing frame-
work is informed when specific events occur during
the simulation, specifically, to get the start and end
times of a transaction (i.e., an ISI is being consumed
by the SUT, and leads to a completed transaction).
The testing framework then calculates the duration
of each transaction, and compare this duration with
the Worst Computed Response Time (WCRT): if the
duration value of a transaction is strictly greater than
the WCRT of the ISI that triggered that transaction,
as computed during schedulability analysis, then
there is a fault in the model and the test case has
failed. This may happen because the estimates of
execution times which are typically used during
schedulability analysis can be optimistic. At the end
of the transaction, coverage information is also
fetched from VT (see above).

The designer has the possibility to set up timers
on capsules in order to detect lack of progress (i.e.,
lack of change of state, lack of change in behaviour)
within the capsule. Timers are similar to periodic
events and detect every so often whether progress is
being made in a capsule. If this is not the case, a
callback function informs the testing infrastructure,
which reveals a liveliness problem.

5 CASE STUDIES

We briefly describe the specification of two case
studies, and their design using RTEdge. More details
can be found online in the first author’s thesis (Ha-
sanain, 2013). According to our industry partner,
these are not trivial models when compared to mod-
els their clients manipulate. They also look repre-
sentative of other models one can find in publica-
tions (e.g., (Kalaji, 2011)).

5.1 The Production Cell System

The Production Cell case study is a realistic industry
application in the field of control systems (Lew-
erentz, 1995). It processes metal plates, which are
conveyed to a table by a feed belt. A robot takes

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

298

each plate from the belt and places it in a press
thanks to a retractable arm equipped with an elec-
tromagnet. The press forges the plate. A second
robot arm takes the plate from the press and places it
on the deposit belt. The production cell implementa-
tion contains 14 sensors and 13 actuators. Actuators
are used to switch the motors on and off or change
their directions, and sensors return value to the con-
trol program about the system state.

The specification of the production cell has three
kinds of non-functional properties. The safety re-
quirements are the most important: collisions be-
tween devices must not occur; plates must be
dropped in the safe area, two consecutive plates
must be transported at an adequate distance to avoid
placing two plates in the press, a movability re-
striction is implemented to prevent any machine
from moving further than what it is allowed. The
second important requirement is the liveness of the
system: each plate transported by the feed belt
should eventually be forged and arrive to the end of
the deposit belt. Third, the design of the Production
Cell should be flexible and could be easily be modi-
fied to similar Production Cell.

We designed the production cell using RTEdge
with five major capsules: feed belt, rotary table,
robot, press, and deposit belt. (The model has 16
capsules, 138 states and 168 transitions.) We as-
sumed movements of a plate in the Production Cell
take time and, similarly to others (Burns, 1998), we
assumed specific movements (e.g., travelling on the
feed belt to the table) take fixed amounts of time,
and different movements require different durations.
For example, the forging of a plate in the press needs
more time than moving the robot. We simplified the
interactions between the controlling software we
model and its environment made of sensors and
actuators by replacing the sensors in the model with
actions in the model, thereby simulating how time
elapses during those movements. As a result, when a
capsule in some particular state needs a sensor value
to proceed with the simulation, then it will wait a
specific amount of time in its current state before
moving to the next state (where the sensor data is
used), thereby simulating that there might be a de-
layed response by the sensor. For instance, the robot
must read a sensor in order to bring its fist arm next
to the press.

In the model, the feed belt (capsule) communi-
cates with an external capsule to simulate the receipt
of a new plate, and it communicates with the rotary
table (capsule) to simulate a plate moving to the
table. The press only communicates with the robot,
which communicates with the elevating rotary table

and the deposit belt. We designed the communi-
cating state machines of the model (i.e., the cap-
sules) such that certain safety requirements are en-
forced. Specifically, the capsules communications
ensure that specific sequences of signals will be
ignored. For instance, the table will not accept a
signal specifying the arrival of a new plate if it is
already holding a plate. To ensure a plate moves
from one device to another, the corresponding cap-
sules synchronize through signals.

To simulate how time passes as plates move
around, we created transients states with attached
activities that make time pass. We specified a transi-
ent state for each plate movement: e.g., a transient
state simulating the movement of a plate from the
beginning of the feed belt to its end.

5.2 The Elevator Control System

The Elevator Control system controls a configurable
number (strictly greater than one) of elevators, re-
sponding to requests from users at various floors
(configurable number) and within the elevators. It
also controls the motion of the elevators between
floors. In this case study, we assumed four floors
and two elevators. The elevator system being a well-
known system, often used as a case study, we do not
dwelve too much on its specification.

We designed the elevator with 14 communi-
cating capsules: 73 states, 86 transitions. One cap-
sule concurrently controls the cabs movements be-
tween the floors of the building, receiving requests
from another capsule, calculating each cab direction,
then sending requests to make things move, and
interacting with the user (e.g., lamps, floor buttons’
light).

Our model has two ISIs, which are the floor but-
ton request and the hall button request. In real time,
these system inputs are aperiodic; however, RTEdge
only sends each ISI periodically according to a user-
defined period. The period of an ISI must be equal to
or greater than the WCRT of the transaction this ISI
triggers. Therefore, in order to define a period for an
ISI, we have first estimated the required time for our
model to complete a transaction for the ISI, then we
performed a schedulability analysis of the model,
which returned the WCRT. We set the period of
each ISI to the computed WCRT, which is six sec-
onds for both ISI.

Automated�State-based�Online�Testing�Real-time�Embedded�Software�with�RTEdge

299

6 RESULTS

6.1 Production Cell

We used our framework to derive test cases from the
Production Cell model. At the same time, since our
framework can detect deviations from WCRT or
some liveliness problems, the framework partici-
pates in the verification of the model. Recall that our
framework requires three different inputs. In a first
experiment, we set those inputs as follows: The
number of times a state/transition needs to be visited
to be considered covered is set to one, the observa-
tion window is set to three, and the minimum num-
ber of new states/transitions that needs to be covered
in the observation window is set to one. The auto-
mated test case generation created a test case with
one transaction, i.e., one ISI (i.e., one plate) that
covered each state and each transition at least once.
The stated coverage goal was achieved, there was no
need for additional transactions, no need to observe
coverage progress over an observation window (re-
call the stopping criterion).

In a second experiment, we kept the values of the
last two parameters and required that each state and
each transition be visited at least three times to be
considered covered. The intent was to study the
performance of our approach on a more demanding
objective. We generated one test case involving
three ISIs (i.e., three plates). All transactions passed,
indicating that the duration of each transaction was
found to be smaller than the WCRT computed by the
schedulability analysis and no timeout was reported.

The first transaction covers five (new) states and
no (new) transition: transitions outgoing from initial
states in capsules are covered but not counted. Since
the state coverage goal is not achieved, the stopping
criterion is not true and test case construction pro-
ceeds with a second ISI (i.e., plate): eight new states
are covered and no (new) transition is covered. Test
case construction therefore continued with a third
ISI: 125 new states are covered and 168 transitions
are covered. Each state/transition was covered at
least three times, resulting in the test case construc-
tion to stop.

6.2 Elevator

We proceeded similarly to the Production Cell case
study. We set inputs as follows: The number of
times a state/transition needs to be exercised to be
considered covered is set to one, the observation
window (i.e., number of transactions) for studying
coverage progress is set to two, and the minimum

number of new states/transitions that need to be
covered in the observation window is set to one.

Our test generation procedure created one test
case with five ISI instances with randomly generated
buttons and directions: The first ISI comes from the
hall buttons with the following randomly generated
data (Direction = 1, Floor number = 2); The second
ISI comes from an elevator button (CabID = 0, Floor
number = 4); The third ISI comes from the hall but-
tons (Direction = 1, Floor number = 1); The fourth
ISI comes from an hall button (CabID = 1, Floor
number = 3); The fifth ISI comes from the hall but-
tons (Direction = 0, Floor number = 3).

All transactions passed. At the end of the test, the
coverage objective was not met: 69 (94.5%) states
coverage and 78 (90.7%) transitions coverage while
the stopping criterion was true (no coverage progress
over the observation window with ISI number 4 and
5).

We studied the remaining uncovered states (four)
and transitions (eight) and identified that these
would be exercised in case of emergency situations
with the elevators; such situations were not triggered
during the five ISI test case.

One capability we gave our test framework (Ha-
sanain, 2013), and that we did not discuss previously
in this paper due to lack of space, is that, thanks to
the mapping from an RTEdge model to Promela we
use SPIN to give us test cases that will exercise the
states/transitions that are missed by the random
generation, following already established procedures
to benefit from both testing and formal methods
(e.g., (Fraser, 2009)). For each uncovered state and
transition, our framework automatically defines an
LTL property that states that it is never possible to
reach this test purpose. Such a property is often
called a trap property (Gargantini, 1999). Assuming
the test model is correct, i.e., it is indeed possible to
reach this test purpose, and SPIN can handle the
complexity of this test model, then SPIN will be able
to find a counterexample showing how that test
purpose can be fulfilled: this counterexample is then
a test case achieving that test purpose. Using this
automated procedure, all states and transitions un-
covered during random testing where exercised,
resulting in an overall state and transition adequate
test suite.

7 CONCLUSIONS

In the domain of embedded, time critical, real-time
systems, assurance of the system meeting its timing
requirements as well as functional requirements is

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

300

key. To facilitate the verification of such systems, in
the context of a Model-Driven Development based
on RTEdge (the tool created by our sponsor), we
developed a black-box, online, directed random test
case generation procedure. We experimented with
this procedure on two well-known case studies and
showed that we can effectively reach very demand-
ing coverage levels of the model at random.

We conjecture that such impressive results might
in part be due to some structural characteristics of
our models, which is worth further investigations. In
case this conjecture is confirmed and additional
experiments show we almost reach coverage goals
on other case studies with different structural charac-
teristics, we do not feel overly concerned. Indeed,
thanks to the mapping from an RTEdge model to
Promela we showed we can use SPIN to give us test
cases that will exercise the states/transitions that are
missed by the random generation. Using Promela
and SPIN only would not be economical to achieve
the same level of coverage. However, combining
testing and a formal method would be economical,
as advocated by others (e.g., (Fraser, 2009)). Future
work should also investigate the effectiveness at
finding faults of the generated tests.

REFERENCES

P. Ammann and J. Offutt, Introduction to Software Test-
ing, Cambridge University Press, 2008.

A. Arcuri and L. Briand, “Adaptive random testing: an
illusion of effectiveness?” Proc. ACM ISSTA, 2011.

A. Arcuri, M. Z. Iqbal and L. Briand, “Formal analysis of
the effectiveness and predictability of random testing,”
Proc. ACM ISSTA, 2010.

N. Asoudeh and Y. Labiche, “Multi-objective construction
of an entire adequate test suite for an EFSM,” IEEE
ISSRE, 2014.

A. Burns, “How to Verify a Safe Real-Time System The
Application of Model Checking and a Timed Automa-
ta to the Production Cell Case Study,” Real-Time Sys-
tems Journal, 24 (2), 1998.

T. Y. Chen, H. Leung and I. K. Mak., “Adaptive random
testing,” Proc. Asian Computing Science Conf., 2005.

R. Cleaveland, S. A. Smolka and S. T. Sims, “An Instru-
mentation-Based Approach to Controller Model Vali-
dation,” Proc. Automotive Soft. Workshop. 2008.

Conformiq, TTCN-3, Qtronic and SIP: The Model-Based
Testing of a Protocol Stack, a TTCN-3 Integrated Ap-
proach, http://www.verifysoft.com/ttcn-
3_qtronic_sip.pdf, [Last checked: May 2014]

A. Y. Duale and M. Ü. Uyar, “A method enabling feasible
conformance test sequence generation for EFSM mod-
els,” IEEE Trans. on Computers, 53 (5), 2004.

J. W. Duran and S. C. Ntafos, “An evaluation of random
testing,” IEEE TSE, SE-10 (4), 1984.

P. H. Feiler and D. P. Gluch, Model-Based Engineering
with AADL, Addison-Wesley, 2012.

G. Fraser and A. Arcuri, “Whole Test Suite Generation,”
IEEE TSE, 39 (2), 2013.

G. Fraser, F. Wotawa and P. E. Ammann, “Testing with
model checkers: a survey,” STVR, 19 (3), 2009.

A. Gargantini and C. Heitmeyer, “Using Model Checking
to Generate Tests from Requirements Specifications,”
Proc. European Soft. Eng. Conf., 1999.

S. Gheorghe, “Integrating Formal Model Checking with
the RTEdge™ AADL Microkernel,” SAE Internaional
Journal of Aerospace, 4 (2), 2011.

P. Godefroid, N. Klarlund and K. Sen, “DART: directed
automated random testing,” Proc. ACM PLDI, 2005.

A. Groce, “Coverage rewarded: Test input generation via
adaptation-based programming,” Proc. ASE, 2011.

Q. Guo, R. Hierons, M. Harman, K. Derderian, “Com-
puting Unique Input/Output Sequences Using Genetic
Algorithms,” Proc. FATES, 2004.

W. Hasanain, Verifying Real-Time Embedded Software by
Means of Automated State-based Online Testing and
the SPIN Model Checker—Application to RTEdge
Models, Carleton University, 2013.
https://curve.carleton.ca/system/files/theses/27490.pdf.

R. L. Haupt and S. E. Haupt, Practical Genetic Algo-
rithms, Wiley, 1998.

G. J. Holzmann, The SPIN Model checker, Addison-
Wesley, 2003.

X. Jin, G. Ciardo, T.-H. Kim and Y. Zhao., “Symbolic
verification and test generation for a network of com-
municating FSMs.,” Proc. ATVA, 2011.

A. S. Kalaji, R. M. Hierons and S. Swift, “An integrated
search-based approach for automatic testing from ex-
tended finite state machine (EFSM) models,” IST, 53
(12), 2011.

M. Khalil and Y. Labiche, “On the Round Trip Path Test-
ing Strategy,” IEEE ISSRE, 2010.

K. G. Larsen, M. Mikucionis, B. Nielsen and A. Skou.,
“Testing real-time embedded software using
UPPAAL-TRON: an industrial case study.,” Proc.
ACM EMSOFT, 2005.

D. Y. Lee and M. Yannakakis, “Principles and methods of
testing finite state machines-a survey,” Proc. of the
IEEE, 84 (8), 1996.

C. Lewerentz and T. Lindner (Ed.), Formal Development
of Reactive Systems: Case Study Production Cell,
LNCS, 1995.

J. J. Li and W. E. Wong, “Automatic test generation from
communicating extended finite state machine
(CEFSM)-based models,” Proc. IEEE ISORC, 2002.

G. Luo, G. V. Bochmann and A. Petrenko, “Test selection
based on communicating nondeterministic finite-state
machines using a generalized Wp-method,” IEEE
TSE, 20 (2), 1994.

A. P. Mathur, Foundations of Software Testing, Pearson,
2008.

S. Mouchawrab, L.C. Briand, Y. Labiche, M. Di Penta,
“Assessing, Comparing, and Combining State Ma-
chine-Based Testing and Structural Testing: A Series
of Experiments,” IEEE TSE, 37(2), 2011.

Automated�State-based�Online�Testing�Real-time�Embedded�Software�with�RTEdge

301

C. Pacheco, S. K. Lahiri, M. D. Ernst and T. Ball., “Feed-
back-directed random test generation,” Proc.
ACM/IEEE ICSE, 2007.

T. Pender, UML bible, Wiley, 2003.
R. Sarkar, “Proof-Based Engineering of Real-Time Appli-

cations: An RTEdge™ Case Study,” SAE Int. Journal
of Aerospace, 3 (1), 2010.

M. Satpathy, A. Yeolekar and S. Ramesh, “Randomized
directed testing (redirect) for simulink/stateflow mod-
els,” in Proc. ACM EMSOFT, 2008.

C. Schwarzl and B. Peischl, “Test Sequence Generation
from Communicating UML State Charts: An Industri-
al Application of Symbolic Transition Systems,” Proc.
IEEE QSIC, 2010.

M. Shafique and Y. Labiche, “A systematic review of
state-based test tools,” STTT, 2013.

P. Thévenod-Fosse and H. Waeselynck, “An investigation
of statistical software testing,” STVR, 1 (2), 1991.

J. Tretmans, “Model based testing with labelled transition
systems,” LNCS, 2008.

M. Utting and B. Legeard, Practical Model-based testing,
Morgan Kaufmann.

J. Vain, A. Kull, M. Kääramees, M. Markvardt and K.
Raiend, in J. Zander, I. Schiferdecker, and P. Moster-
man, Eds., Model-Based Testing for Embedded Sys-
tems, CRC Press, 2011.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

302

