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Abstract: We propose a novel vein extraction technique adapted to template protection and use it to apply a fuzzy
commitment scheme. We construct dedicated error correcting codes that enable us to maintain a good accuracy
after template protection. In a second application, we offer to overcome the alignment issues when comparing
two vein templates by performing this step outside of the protection scheme. Different implementations are
proposed to explore trade-offs between False Rejection Rate, False Acceptance Rate, comparison time and
security. All approaches are tested on the recent database of University of Twente from ICB 2013. Our
biometric performances are close to state of the art approaches whilst bringing security with the template
protection scheme.

1 INTRODUCTION

Biometrics provide a reliable and convenient way of
individual authentication. The use of physical traits
has the advantage that they cannot be lost or forgot-
ten. However, the storage of biometric templates may
lead to security and privacy issues. In order to thwart
these problems, different solutions for privacy protec-
tion have been proposed (ISO, 2011). A first set of
techniques is to protect the template with a template-
level transformation, often denoted by biometric tem-
plate protection. This can offer a first layer of security
without impacting too much the system. More robust
security protection will rely on more complex archi-
tectures that work at the system level (not restricted
to the template-level). The underlying idea of the
template-level approach is to derive a protected ver-
sion of the enrolled biometric template and to store it
instead of the first one. The transformation mecha-
nism is considered as public and it must be difficult to
reconstruct the template from the protected one with-
out the genuine user’s biometric data. The level of
difficulty that one can achieve is very often dependent
on the difficulty to reverse the transformation and the
difficulty to find a matching template. That motivates
us to find a good trade-off between false positive rate
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and reversibility.
Among the well known biometric template protec-

tion schemes there are the fuzzy commitment scheme
(Juels and Wattenberg, 1999) and the fuzzy vault
scheme (Juels and Sudan, 2006). Both approaches
commit to a secret value under a noise-tolerant key.
The first scheme deals with fixed-length binary keys
while the latter is able to deal with unordered sets.
First introduced in (Juels and Wattenberg, 1999), the
fuzzy commitment scheme binds a binary biometric
template to a random codeword. The idea is to over-
come the biometric variance by means of error cor-
rection. The error correction capacity has to coin-
cide with the chosen threshold deliminating intra and
inter-class variance. The fuzzy commitment scheme
has been applied to many different biometric modal-
ities and representations: a survey can be found, for
instance, in (Rathgeb and Uhl, 2011). We propose
in this paper to use it with finger vein biometrics.
An attempt on backhand vein has been carried out in
(Hartung and Busch, 2009) and fuzzy commitments
has also been applied on finger vein in (Yang et al.,
2013), but after a first bio-hashing step (that relies on
a secret parameter). Our approach deals with non-
hashed finger vein templates. Note that the security
evaluation of the fuzzy commitment scheme is still
an open problem despite recent proposals (see for in-
stance (Simoens et al., 2012)). However, this work
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has not the ambition of bringing new elements on its
security, but rather to focus on showing how to ap-
ply efficiently the fuzzy commitment scheme to finger
vein biometrics.

To do so, it is necessary to take a closer look at
the manner vein information is represented and com-
pared. Since Miuraet al. publications (Miura et al.,
2004) (Miura et al., 2007), vein feature extraction and
vein recognition problems have generated an increas-
ing interest among the biometrics research commu-
nity. However, finger vein recognition is still a re-
cent research field. Therefore research about a funda-
mental stage for recognition systems like feature ex-
traction is still vivid. Different strategies have been
proposed, for example, local representation with SIFT
(Ladoux et al., 2009) and minutiae (Yu et al., 2009).
To be well suited for fuzzy commitment scheme, an
interesting characteristic for vein recognition is to al-
low comparison with the Hamming distance. Several
papers are interesting from this point of view. For
example, Leeet al. use in (Lee et al., 2010) a 50 x
20 LBP coded vector to characterize a finger. Com-
parison is done thanks to a weighted Hamming dis-
tance. In (Zhou and Kumar, 2010), Zhou and Kumar
use different representations for palm vein recogni-
tion: Multi-scale local vesselness based on Hessian
eigenvalues, Localized Radon Transform and Ordi-
nal representation. In this case again, the compari-
son of these representations is based on the Hamming
distance. Finally, Hartunget al. in (Hartung et al.,
2011; Hartung et al., 2012) adapt Spectral Minutiae
(Xu et al., 2009) to backhand vein recognition with
encouraging performances. In this work, we propose
a novel vein extraction technique and novel error cor-
recting code constructions to reach a very good ratio
between accuracy and security.

This article is structured as follows. In section
2 we give a brief overview of vein extraction tech-
niques, we introduce an efficient technique to derive
binary templates that can be compared via Hamming
classifier, and we describe the database we used for
our experiments. Section 3 details the modalities of
the fuzzy commitment as we applied it, and the way
we chose the underlying error correcting codes while
section 4 presents the experiments we carried out. Fi-
nally, section 5 concludes our study.

2 VEIN BIOMETRICS

2.1 Vein Extraction for Template
Protection

In the context of template protection, it is necessary to
adapt data representation to get an effective protection
scheme and minimize information leaks. To do so,
some methods have already been proposed ((Hartung
et al., 2011), (Fuksis et al., 2011), (Hirata and Taka-
hashi, 2009)). With the fuzzy commitment scheme,
one very important point is to provide templates that
can be compared with the Hamming distance. How-
ever, guaranteeingHamming-wisecomparison is not
enough to provide a good data representation. Secu-
rity analysis shows that it is also necessary to be care-
ful in order to make attacks by false acceptance or
brute force difficult.

In general, vein acquisition systems reveal only
main vessels. Therefore, the main part of finger vein
images is made ofbackground, that means none ves-
sel information. If vein extraction precisely respects
vessels net, then extracted templates will present a
majority of black pixels. In a biometrics recognition
context it is not a problem. In the context of template
protection this bias facilitates attacks. Indeed, fake
templates with a majority of black pixels would take
advantage of this bias reducing the distance between
a protected template and themselves.

To eliminate this problem, we propose a quite
counter-intuitive scheme: do not respect the real
vessel information! We propose to make sure that
vein templates contain as much as possible an equal
number of white and black pixels. This way, we
go a step closer to random data. Our solution can
be applied to different vein extraction methods.
Moreover it does not need to use several templates
as input for balancing the white and black pixels:
the algorithm is made to work with one image to
be compatible with single-image enrollment schemes.

Let I be the vein image,Ev(I) the extraction func-
tion. The only requirement onEv is to be a continuous
and smooth function on[0,255]. Then, templateT is
constructed as follows:

T(x,y) =

{

1 i f Ev(x,y)≥ thresh
0 i f Ev(x,y)< thresh

(1)

Wherethreshis chosen for each imageI in order
to get the number of 1 and the number of 0 as close
as possible inT. That is to saythreshis the median
of Ev(x,y). It is clear that some pixels set to one do
not represent finger vein. This is a consequence of
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balancing the template. As stated earlier, this rule
can be applied to any continuousEv function, for
example for some 2D adaptation of (Frangi et al.,
1998) or any continuous operator mentioned above.
In this article we use a proprietary functionEv based
on a rough modelisation of finger veins.

2.2 Vein Database Description

The lack of public database has been a problem up to
now. Fortunately, some databases are now available
((Kumar and Zhou, 2012), (Ton and Veldhuis, 2013)),
and hopefully some more should be available in the
future. For this experiment, we work with UTFVP
database from University of Twente (Ton and Veld-
huis, 2013). These data represent 60 person’s 6 fin-
gers (index finger, middle finger, and annular finger
of both hands). Data were acquired during two differ-
ent sessions allowing four acquisitions by finger. In
general, image quality is good.

Image resolution is 126 pixels per centimeter
(ppcm). In order to work with a compact represen-
tation of finger veins, we downsample the images by
a factor of 5 in each dimension. Finger’s outlines are
easily computed using gradients of the image. Some
finger orientation correction is done by computing fin-
ger principal axis and performing a rotation in order
to get it horizontal. Then, to code reference finger
images we use a 100× 30 finger area centered on
the middle of the image which corresponds roughly
to the middle phalanx. This zone is usually described
as the most stable and the most discriminant area for
finger vein recognition. Figure 1 shows a finger from
Twente database and its corresponding balanced en-
coded version.

Figure 1: Finger vein from Twente database and its corre-
sponding balanced coding.

For query images we use a 128× 44 area centered

on the middle of the image. We use this a priori posi-
tioning because finger position is quite stable between
two acquisitions. In the case of a bitwise comparison,
different sizes of coding areas for query images and
reference images allow to absorb small translations.
For example, during the comparison stage, it is pos-
sible to move the reference template over the search
template to find the highest matching score position.
When relative finger positions can vary a lot, Yang has
proposed in (Yang and Li, 2010) to detect phalanges
position in order to determine the region of interest for
coding. In our tests, only small translations between
query and reference images can be handled.

To estimate accuracy of our finger vein coding, we
perform authentication tests without template protec-
tion. That is, we evaluate the amount of different pix-
els in the common area of 100× 30 between refer-
ence and verification templates. We test different po-
sitions and keep the one corresponding to the small-
est distance. For each finger we use the first image
as a reference, and two images, acquired during sec-
ond acquisition session, for the query images. The
results are summarized in table 1, while figure 2 gives
an overview of the distances we have to deal with.

Table 1: Performances without template protection.

Nb Gen. Nb Imp. EER FRR (%) FRR (%)
Tests Tests (%) @FAR10−4 @FAR10−5

720 258480 0.56 2.22 3.89

Figure 2: Hamming distances.

Despite constraints on the coding strategy due to
our motivation to apply fuzzy commitment, our EER
is close to the best EER described in (Ton and Veld-
huis, 2013), that is 0.4%.
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Figure 3: Fuzzy Commitment scheme.

3 FUZZY COMMITMENT

3.1 Background

Before detailing how the fuzzy commitment works,
we give a brief recall on error-correcting codes. The
goal of these primitives is to transmit a messagem
over a noisy channel. To do so, the message is
mapped before transmission to a bigger data string
c - calledcodeword- containing redundant informa-
tion. This way, if some limited parts ofcare corrupted
during transmission,c can be reconstructed through a
decoding algorithm, and therefore alsom. More for-
mally, a linear binary error-correcting codeC is de-
noted by[n,k,d] wherek is the original size of the
message calleddimension, n the size of the redun-
dant string calledlengthandd denotes the smallest
Hamming distance between two codewords ofC. The
correction capacity ofC is bounded by(d−1)/2.

The fuzzy commitment scheme applied to biomet-
rics demands a binary fixed-length biometric template
b that is masked by a random codewordc to form a
protectedtemplates= b⊕ c. Meanwhile, the hash
valueh(c) is stored together withs. During authenti-
cation, a fresh biometric templateb′ is presented and
XORed withs to gets′ = b′⊕ s= b′⊕b⊕ c. Decod-
ing algorithm is applied ons′ to get a codewordc′. If
b andb′ are within a certain thresholding in terms of
Hamming distance, thenc′ = c which can be checked
by h(c′) = h(c). Figure 3 depicts the whole process.

An upper bound for the security of the fuzzy com-
mitment is given by the dimensionk of the error-
correcting code used, as it gives the amount of in-

formation of the key bound to the biometric tem-
plate b. Many more sophisticated security analysis
of the scheme have been carried out, see for instance
(Stoianov et al., 2009; Ignatenko and Willems, 2010;
Smith, 2004; Tuyls and Goseling, 2004). Most weak-
nesses come from the non uniform distribution of er-
rors in the biometric templates. The use of balanced
black and white vein templates limits this point. The
scheme is also subject to false acceptance attacks (see
for instance (Korte and Plaga, 2007)). As soon as
an impostor manages to authenticate, the codeword
bound to the template is retrieved (and consequently
the original templateb as well). False acceptance rate
should thus remain low in order to limit this threat.
The use of a soft-decoding algorithm instead of a clas-
sical decoding algorithm may also lead to increased
false acceptances as it enables to decode more errors.
Finally, cross-matching and decodability attacks have
been studied (Simoens et al., 2009; Kelkboom et al.,
2011). Here we focus on the two main issues that are
the dimension of the code and the false acceptance
rate (FAR). In particular, we aim a quite low FAR, that
is set to be approximately between 10−4 and 10−5.

3.2 Our Construction Choices

The choice of the error-correcting code has to be done
regarding the amount of errors one has to deal within
the biometric setting. Thus, we measured the distance
corresponding to roughly 0.001% of false acceptance
on Twente database. It turned out that we have around
36% of different pixels in this case.

In order to overcome this error rate, we have cho-
sen to use product codes in our scheme. Product
codes are a class of error-correcting codes constructed
from two or more subcodes.C = C1[n1,k1,d1]×
C2[n2,k2,d2] is a [n1n2,k1k2,d1d2] code whose code-
words can be seen asn2×n1 matrices whose columns
are codewords fromC2 and rows codewords fromC1.
Whenk1 andk2 are small enough, themin-sumalgo-
rithm (Tanner, 1981) can be used to decode product
codes in a very efficient way. It is an iterative process
that associates two scores between 0 and 1 at each ele-
ment of the matrix. These values represent the costs to
put the element to 0 (resp. to 1). Scores are initialized
regarding the word to be decoded and are improved
iteratively. At each iteration, the algorithm looks for
the codeword that costs the least. The error correc-
tion capacity of the min-sum algorithm is assured to
be d1d2/2 if two iterations are performed but it can
go much further in practice. For our experiments, we
have limited the amount of iterations to five, as it is a
good compromise between error correction and exe-
cution time. Finally, product codes can be composed
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of more than two subcodes in a straightforward man-
ner. The decoding process is then a less direct adapta-
tion, details can be found in (Wu et al., 2007), but we
use the most intuitive approach.

Min-sum decoding along with product codes
have been successfully applied in fuzzy commitment
schemes with iris and fingerprint in (Bringer et al.,
2008; Bringer et al., 2007). We follow these exam-
ples by choosing product codes with similar proper-
ties, that is permitting to reach the lowest possible
false rejection rate in the Shannon sense (Shannon,
2001). But we go a step further and use for the first
time in this kind of setting product codes of dimen-
sion 3 and 4 in order to achieve a good trade-off be-
tween execution time, code dimension and error cor-
rection capacity. In fact, subcodes with good quali-
ties (weight distribution, correction capacity) are of-
ten codes withn a power of two. The product codes
we tested are composed of repetition codes and of or-
der 1 Reed-Muller codes (Muller, 1954; Reed, 1954)
which are known to have good weight distributions.
As we have 3000 pixels in each template, we have
chosen to use an area of 2048 pixels to perform the
fuzzy commitment scheme. The choice of these pix-
els has been done regarding the areas in pictures less
impacted by errors. As stated in section 2.2, the mid-
dle of the phalanx is more stable, we thus naturally
evinced pixels on the horizontal borders. Our area of
interest is roughly the 68× 30 central zone of each
picture.

4 EXPERIMENTS

4.1 Fuzzy Commitment with One
Reference Template

Traditionally, vein comparison consists in testing
many translations of one template on the other in or-
der to find the best one corresponding to the smallest
amount of different pixels. In our setting, we test up
to 225 translations. To apply a fuzzy commitment in
this case, we need to perform as many decodings as
tested translations (but we can stop if one decoding is
correct).

4.1.1 Using an Interleaving

The error repartition inside a finger vein picture is not
random, there is a correlation between neighboring
pixels. We have thus introduced a random permuta-
tion, as a way to interleave the pixels, that we apply on
the 2048 bits extracted from the template. This way,
the efficiency of the min-sum decoding algorithm is

increased and we were able to decode further than
without the permutation. Note that the permutation is
not a secret, it is just introduced to enhance the decod-
ing capacity of the min-sum algorithm in our setting.
Moreover, the use of a permutation allows to be resis-
tant against cross-matching and decodability attacks.

4.1.2 Tests and Performances

For our tests, we used the first image of each finger
as reference template and used third and fourth im-
ages for verification. This leads to 259,200 compar-
isons, among them 720 are genuine. Table 2 sums up
the performances we were able to reach. Execution
timings include the 225 decodings. Our experiments
were run on a computer with a 3.3GHz Intel Core i5
processor and 8GB of RAM. Compared to the bio-
metric performances presented in section 2.2, our re-
sults are degraded. This comes mainly from the fact
that we use only two thirds of the pictures. We can
also remark that the dimension of the error correcting
codes can reach 50 bits.

Table 2: Performances of the fuzzy commitment scheme
with one reference template (2048 bits).

Error correcting code Dim. FAR FRR Exec.
(bits) (%) (%) (ms)

RM(4,1)×RM(5,1)×[4,1,4] 30 0.01 4.31 560
[8,2,4]×RM(4,1)×RM(4,1) 50 0.03 3.05 350

4.2 Using a Second Reference Template

In order to improve the biometric performances, and
especially reduce false acceptance rates, we propose
to enroll a second reference template and impose to
match against both templates to authenticate. To
overcome the alignment problem that would soar the
amount of decodings with two templates, we addi-
tionally introduce a way to perform alignment before
the commitment scheme itself.

Just as Uludaget al. used a helper data to per-
form alignment of fingerprints before a fuzzy vault
scheme in (Uludag and Jain, 2006), we use a part of
the biometric templates to best overlap them. To do
so, we separate each reference template into distinct
areas. We extract a small central zone of 276 pixels
that is stored in clear and used later to evaluate the
optimal translation – but only for that purpose as a
second anddistinct part of 2048 pixels is used to per-
form the fuzzy commitment itself. We concatenate
the two 2048-pixel areas of both templates to form a
4096-bit word that we bind to a codeword just as be-
fore. The stored template contains now 2×276 pixels
in clear and a 4096-bit protected string. Again, we
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Figure 4: Choice of the areas: in black the alignment area,
in white the code zone (used for the fuzzy commitment) and
in gray unused pixels.

use a random permutation in order to break the corre-
lation between neighboring pixels.

Figure 4 depicts the image dividing as we per-
formed it. We chose a cross form for the alignment
part in order to be able to absorb the different transla-
tions we have to test.

During authentication, we first use the two align-
ment areas from the reference templates to find the
best translations inside the freshly acquired image.
We then extract the two corresponding areas of 2048
pixels to form a 4096-bit template that is XORed with
the secure template stored in the database. Finally, the
result of this is decoded. Again, we limit the min-sum
algorithm to five iterations.

4.2.1 Performances

We used the two first images of each finger for en-
rollment and the same two last images as before for
verification. The amount and nature of tests stay thus
unchanged.

Table 3 depicts our secure sketch results in term
of biometric accuracy, code dimension and execution
time. We propose two error-correcting codes that per-
mit to achieve low false acceptance rates whilst re-
maining quite accurate. The execution time is also
drastically reduced, as we have only one decoding to
perform. The key size is also improved but is limited
to 64 bits due the amount of errors to correct that is
rather high.

Table 3: Performances of the fuzzy commitment scheme
with two reference templates (4096 bits).

Error correcting code Dim. FAR FRR Exec.
(bits) (%) (%) (ms)

RM(6,1)×RM(6,1) 49 0.0035 2.92 11
[8,2,4]×[8,2,4]×RM(3,1)×RM(3,1) 64 0.0023 3.33 2.1

Compared to the biometric performances pre-
sented in section 2.2, we are able to get the same
performances with two reference templates instead of
one in section 2.2.

4.2.2 Security of the Scheme

Intuitively, the use of the central alignment area in
clear leads to information leakages. Veins have some
predictable patterns, mostly horizontal lines, that
could be exploited in order to guess some pixels of the
code zone knowing the alignment area. We have esti-
mated the leakage coming from the alignment zone by
measuring the correlation between neighboring pixels
in the whole database. Table 4 shows the result of our
measures. As we can see, there is a higher horizontal
correlation than the vertical one. The correlation is
quite high for the pixels at distance one in any direc-
tion and it stays high for the the pixels at distance two
horizontally (thick, blue values in the table). We have
therefore chosen to surround the alignment area by a
security zone (kind of DMZ) of one pixel vertically
and two pixels horizontally (see the gray zone around
the cross in Figure 4). This reduces the possibility
to exploit the information coming from the alignment
area. We remove the most predictable pixels of the
code zone, knowing the helper data, in order to limit
the information leakage. However it is clear that this
approach is a trade-off between execution time and
security.

Table 4: Pixel correlation for different distances in Twente
database.

dx
-3 -2 -1 0 1 2 3

dy

-3 -0.11 -0.10 -0.10 -0.09 -0.11 -0.11 -0.11

-2 -0.02 0.03 0.09 0.11 0.07 0.01 -0.03

-1 0.13 0.27 0.42 0.51 0.41 0.25 0.12

0 0.21 0.41 0.67 1.00 0.67 0.41 0.21

1 0.12 0.25 0.41 0.51 0.42 0.27 0.13

2 -0.03 0.01 0.07 0.11 0.09 0.02 -0.02

3 -0.11 -0.11 -0.11 -0.09 -0.10 -0.10 -0.11

Our scheme, like any fuzzy commitment scheme,
is vulnerable to false acceptance attacks. We man-
age to keep the false acceptance rate low in or-
der to limit the threat. Considering the code
[8,2,4]×[8,2,4]×RM(3,1)×RM(3,1), if an attacker
has access to a protected template, we would need a
database of around 45000 vein templates in order to
statistically decode it by false acceptance.

As stated in sections 4.1 ans 4.2, we limited
our experiments to five min-sum iterations for the
decoding. But an attacker could try more itera-
tions in order to decode further. We have eval-
uated the potential of this threat by studying the
execution of the fuzzy commitment with the code
[8,2,4]×[8,2,4]×RM(3,1)×RM(3,1). We increased
the number of iterations to 10 and measured the dif-
ference: execution time grows to 3.5ms while FAR
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stays almost stable with 0.0035%. In fact, more than
20% of impostor comparisons already lead to a suc-
cessful decoding with five min-sum iterations, but the
codeword found was not the right one (it is the hash
comparisonh(c)=h(c′) that lead to a reject). Increas-
ing the amount of iterations seems to have a poor im-
pact on the true decoding capacity. We thus expect
the possible gain for an attacker to test more min-sum
iterations to be small.

5 CONCLUSION

In this paper, we apply a fuzzy commitment scheme
with finger vein biometrics. An adaptation of vein
encoding is proposed making vein template privacy
protection techniques efficient and more secured. The
idea is to get a binary template with an equal number
of black and white pixels. This reduces efficiently the
risk of successful attacks. Moreover, it is very general
and can be applied to any continuous vein extraction
function. We also manage to pass over the alignment
problem by performing this step outside of the pro-
tection scheme. Doing so, we limit information leaks
by analyzing their potential and adapting the coding
area. We show how to increase accuracy and code di-
mension using two reference templates. Although the
fuzzy commitment scheme is inherently sensitive to
false acceptance attacks as any template-level protec-
tion technique, our biometric performances are pretty
competitive with FAR close to 10−5 and thus ensuring
a first layer of security through a template protection
scheme. Finally, but not least, the comparison times
we obtain are compatible with realistic use cases.
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