
Architectural View Driven Model Transformations for  
Supporting the Lifecycle of Parallel Applications 

Ethem Arkin1 and Bedir Tekinerdogan2 
1Aselsan A.Ş., Ankara, Turkey 

2Information Technology Group, Wageningen University, Wageningen, Netherlands 

Keywords: Parallel Computing, Architecture Modeling, Architecture Viewpoint, Model-to-Model Transformation. 

Abstract: Two important trends can be identified in parallel computing. First of all, the scale of parallel computing 
platforms is rapidly increasing. Secondly, the complexity and variety of current software systems requires to 
consider the parallelization of application modules beyond algorithms. These two trends have led to a 
complexity that is not scalable and tractable anymore for manual processing, and therefore automated support 
is required to design and implement parallel applications. In this context, we present a model-driven 
transformation chain for supporting the automation of the lifecycle of parallel computing applications. The 
model-driven transformation chain adopts metamodels that are derived from architectural viewpoints. The 
transformation chain is defined as a logical sequence consisting of model-to-model transformations. We 
present the tool support that implements the metamodels and transformations. 

1 INTRODUCTION 

To increase the performance that is required from 
large scale applications, the current trend is towards 
applying parallel computing on multiple nodes. Here, 
unlike serial computing in which instructions are 
executed serially, multiple processing nodes are used 
to execute the program instructions simultaneously. 
To benefit from the parallel computing power, 
usually parallel algorithms are defined that can be 
executed simultaneously on multiple nodes. As such, 
increasing the processing nodes will increase the 
performance of the parallel programs. Different 
studies have been carried out on the design and 
analysis of parallel algorithms to support parallel 
computing (Amdahl, 2007) (Frank, 2002) (Pllana and 
Fahringer, 2002). These studies have provided useful 
results and further increased the performance of 
parallel computing. Several important challenges 
have been identified and tackled in parallel 
computing related to activities such as the analysis of 
the parallel algorithm, the definition of the logical 
configuration of the platform, and the mapping of the 
algorithm to the logical configuration platform. The 
research on parallel algorithms and its mapping to 
parallel computing platforms is still ongoing.  

We can identify two important trends in parallel 
computing. First of all, the scale of parallel 
computing platforms is rapidly increasing. Over the 

last decade the number of processing nodes has 
increased dramatically to tens and hundreds of thou-
sands of nodes providing processing performance 
from petascale to exascale levels (Kogge et. al., 
2008). The second trend includes the increasing 
complexity and variety of current software systems. 
Here the design problem goes beyond the notion of 
algorithms and data structures of the computation, 
and the design of the overall system or application of 
the parallel computing systems emerges as an 
important problem. Hence, the challenge then 
becomes not only analyzing, deploying and mapping 
parallel algorithms but requires considering the 
overall analysis and mapping of parallel applications 
to parallel computing platform.  

These two trends have led to a complexity that is 
not scalable and tractable anymore for manual 
processing, and therefore automated support is 
required to design and implement parallel 
applications. In this context, we present a model-
driven transformation chain for supporting the 
automation of the lifecycle of parallel computing 
applications. The model-driven transformation chain 
adopts metamodels that are derived from architectural 
viewpoints. The architecture viewpoints have been 
defined in our earlier work for modeling the mapping 
of parallel applications to parallel computing 
platforms (Tekinerdogan and Arkin, 2013). In 
essence, the viewpoints can be used to derive 

40 Arkin E. and Tekinerdogan B..
Architectural View Driven Model Transformations for Supporting the Lifecycle of Parallel Applications.
DOI: 10.5220/0005231600400049
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 40-49
ISBN: 978-989-758-083-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



architectural views that serve as blueprints for 
realizing the system. The viewpoints are in essence 
visual and do not support the automated processing. 
In this paper we map the viewpoints to domain 
specific languages to represent architecture views as 
textual executable descriptions that can be used in 
model transformations to automate the steps of the 
life cycle of parallel computing. The transformation 
chain is defined as a logical sequence consisting of 
model-to-model transformations. We present the tool 
support that implements the metamodels and 
transformations 

The remainder of the paper is organized as 
follows. In section 2, we shortly describe the 
viewpoints which form the basis for the domain 
specific languages and the model transformations. 
Section 3 presents the model transformation approach 
and the model transformations. Section 4 describes 
the implementation and the toolset. Section 5 presents 
the related work and finally we conclude the paper in 
section 6. 

2 PRELIMINARIES 

In principle we can identify the following important 
concerns in the life cycle for modeling parallel 
applications:   

 Identifying Parallel and Serial Modules in the 
Application 

Depending on the application semantics, while some 
modules can run in parallel others can only run in 
serial. Typically serial modules will be mapped to a 
single node, while parallel modules need to be 
mapped to multiple nodes. For the architect it is 
important to depict these explicitly and as such help 
to identify the proper selection of parallel module. 

 Modeling of the Physical Computing Platform 
The application will run on a selected or to be selected 
physical configuration platform that consists of 
multiple nodes. The architect needs to be able to 
model the physical computing platform for smaller 
but also for very large computing platforms (e.g. 
exascale computing).  

 Mapping of Modules and Algorithms to Physical 
Nodes 

The mapping of the modules to the computing 
platforms can be done in different ways. The mapping 
can be usually done in many different alternative 
ways and each alternative will typically behave 
differently with respect to quality metrics such as 
speedup and efficiency. The architecture needs to be 
able to communicate the decision on which mapping 

is made. Based on this the optimal design decision 
can be made.   

 Defining the Interaction Patterns among Parallel 
Modules 

Parallel modules and algorithms will typically 
exchange information to perform the requested tasks. 
In general it is important to define the proper 
interaction patterns not only for functional reasons 
but also to optimize the parallelization overhead and 
as such increase efficiency.  

 Modeling Multiple Computer Architectures 
When considering application instead of 

algorithm only it appears that we cannot reduce the 
problem to one of the computing platforms as defined 
in the Flynn’s taxonomy. Typically, multiple of these 
categories are integrated in the overall application. 
That is, for example, both the SIMD and MISD could 
be needed for realizing the application. For complex 
applications all the four kinds of computing 
architectures might be required. The Order 
Management case is such an example. 

Based upon the number of concurrent instruction 
(or control) and data streams available in the 
architecture the so-called Flynn’s Taxonomy 
distinguishes among the following types of 
computing architectures (Flynn, 1972): 
 Single Instruction, Single Data (SISD): This 

architecture exploits no parallelism in either the 
datastream or instructions. A traditional 
uniprocessor computer like the PC is an example 
to this type of architecture. 

 Single Instruction, Multiple Data (SIMD): This 
architecture exploits multiple data streams using a 
single instruction stream to perform operations 
that may be parallelized. For example, processor 
arrays or GPUs process multiple pixel data on an 
image using the same instruction set. 

 Multiple Instruction, Single Data (MISD): In this 
architecture multiple instructions operate on a 
single data stream. Pipeline architectures are often 
considered as an example of this type. 

 Multiple Instruction, Multiple Data (MIMD): This 
architecture exploits multiple processors 
executing different instructions on different data 
simultaneously. Distributed systems, clusters, 
grid systems are examples of MIMD 
architectures. 

Based on the above concerns we have proposed an 
architecture framework consisting of a coherent set of 
viewpoints which addresses the different concerns for 
supporting the design of parallel applications 
(Tekinerdogan and Arkin, 2015). These six 
viewpoints are as follows: 

Architectural�View�Driven�Model�Transformations�for�Supporting�the�Lifecycle�of�Parallel�Applications

41



 Application Decomposition Viewpoint 
This viewpoint aims to support the analysis and 

decomposition of the application into parallel and 
serial modules. A module can be either a package that 
is a grouping module element to group a set of 
modules or a module that can be serial, parallel, serial 
algorithm or parallel algorithm. A serial module and 
a serial algorithm module is the implementation of a 
set of instructions or algorithm which is executed on 
a single processing unit. A parallel module is a 
module with the instruction set that run on multiple 
processing units simultaneously. 

 Algorithm Decomposition Viewpoint 
Each module in the application decomposition 

viewpoint has a separate behavior for the deployment 
of the application. A serial module or a serial 
algorithm module can be deployed and executed on a 
single processing unit. A parallel module consists of 
a set of instructions that will be executed among 
different processing units simultaneously. A parallel 
algorithm module includes serial or parallel sections 
that determines the behavior of the algorithm and 
must be decomposed into sections that will be 
executed serial or parallel. 

 Component Viewpoint 
According to the decomposition of the parallel 

application, a component view includes serial 
components, serial algorithm components, parallel 
components and parallel algorithm components. The 
types of the components are determined by the 
module that is compiled to the component. 

 Physical Configuration Viewpoint 
Physical configuration viewpoint includes the 

hardware configuration for the parallel computing 
platform including nodes, network, processing units, 
memory and bus. 

 Deployment Viewpoint 
Deployment viewpoint is used to represent the 

deployment of components to the physical 
configuration view. 

 Logical Configuration Viewpoint 
This viewpoint is used to represent the logical 

communication patterns and the dynamic behavior of 
the algorithm. Logical configuration is generated 
according to the tile and communication pattern 
definitions which is described in our earlier study 
(Tekinerdogan and Arkin, 2013). 

To illustrate the problem we will use the Order 
Management Application architecture as an example. 
The Order Management application is typically a 
critical part of commercial systems including, for 
example, packages like Order Entry, Financial and 

Inventory. To increase the performance of such a 
system several modules need to be run in parallel. 

 

Figure 1: Order Management Application Architecture 
(Decomposition View). 

3 ARCHITECTURE VIEW 
DRIVEN TRANSFORMATIONS 

The architecture viewpoints of the previous section 
can be used to realize the mapping of parallel 
applications to parallel computing platforms. 
However, the viewpoints are mainly visual and not 
appropriate for automated support. In this section we 
present the approach for automating the overall 
process using the architecture viewpoints. Figure 2 
represents the transformation chain including views  

 

Figure 2: Transformation Chain for Supporting the 
Lifecycle of Parallel Applications. 

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

42



and transformations between the views for parallel 
computing architectures. Four transformation 
processes are defined including Algorithm 
Decomposition Generator, Component Generator, 
Deployment Generator, and Logical Configuration 
Generator. In the following subsections we discuss 
each generator in detail. In addition to the generators 
the transformation chain include the two manual 
activities Algorithm Decomposition Definition and 
Deployment Setting. Both activities are used to 
enhance additional details to the generated views. In 
the activity Algorithm Decomposition Definition the 
preliminary generated Algorithm Decomposition 
View is manually edited for identifying the parallel 
and serial sections of the algorithm (Arkin et. al., 
2013). In the activity Deployment Setting the parallel 
components are manually assigned to physical 
configuration processing units. 

3.1 Algorithm Decomposition 
Generator 

 
a) Application Decomposition Metamodel 

 
b) Algorithm Decomposition Metamodel 

Figure 3: Metamodels for Algorithm Decomposition 
Generator.  

Algorithm Decomposition Generator transforms the 
ParallelAlgorithmModule elements of application 
decomposition view to Algorithm elements of 
algorithm decomposition view. Figure 3 shows the 
metamodels of the application decomposition 
viewpoint and algorithms decomposition viewpoint. 
Application Decomposition metamodel (Figure 3a)  
has a main Application element. Application includes 
the Module Elements which can be either a Package 
or a Module. Package contains other module 
elements that can be either ParallelModule, 
SerialModule, ParallelAlgorithmModule or 
SerialAlgorithmModule. Algorithm Decomposition 
metamodel (Figure 3b) contains parallel algorithms 
used for the parallel application. Algorithm includes 
Sections, Parallel Sections and Serial Sections. Each 
section can contain other sections. A parallel 
application is related to a parallel Operation that is 
defined in the parallel library. This library is used for 
defining reusable parallel operations using tiles and 
communication patterns which are described in detail 
in (Arkin et. al., 2013). 

 
1. rule AlgorithmDecompositionGenerator  
2.  transform app : 
3.     applicationdecomposition!Application 
4.  to algs : 

algorithmdecomposition!AlgorithmDecompositi
on  

5. { 
6.   algs.algorithms = Sequence{}; 
7.   for (module in app.modules) 
8.   {  
9.     generateAlgorithm(algs, module); 
10.   } 
11. } 
12. operation generateAlgorithm  
13.    (algs: 
14. algorithmdecomposition!AlgorithmDecompositi

on, 
15.     module: 

applicationdecomposition!ModuleElement) 
16. { 
17.   if(module.isTypeOf( 
18.     applicationdecomposition! 
19.                   ParallelAlgorithmModule)) 
20.   { 
21.     var alg = new  
22.              

algorithmdecomposition!Algorithm; 
23.     alg.name = module.name; 
24.     algs.algorithms.add(alg); 
25.   } 
26.   if(module.isTypeOf( 
27.     applicationdecomposition!Package)) 
28.   { 
29.     for (m in module.modules) 
30.     {  
31.       generateAlgorithm(algs, m); 
32.     } 
33.   } 
34. } 

 

Figure 4: Algorithm Decomposition Generator 
Transformation Rules. 

Architectural�View�Driven�Model�Transformations�for�Supporting�the�Lifecycle�of�Parallel�Applications

43



The Algorithm Decomposition Generator searches 
for the Parallel Algorithm Modules in the application 
decomposition view and generates the algorithm 
decomposition view. Figure 4 shows the 
transformation rules of Algorithm Decompostion 
Generator. 

The main transformation rule iterates over the 
modules of the application and calls the operation 
generateAlgorithm for the module (lines 7-10). The 
generateAlgorithm operation (lines 12-33) first 
checks the module whether it is a 
ParallelAlgorithmModule or a Package. If the 
module is a Parallel Algorithm Module, then a new 
algorithm instance is created and added to algorithm 
list (lines 17-25). If the module is a Package, then 
generateAlgorithm operation is recursively called for 
each submodule (lines 26-32). 

3.2 Component Generator 

Component Generator transforms modules of 
application decomposition view to components for 
component view. The transformation uses 
Application Decomposition Metamodel (Figure 3a) 
and Component Metamodel (Figure 5). Component 
metamodel includes Application element as main 
element. Application consists of Packages and 
Components. Similarly, components can be either 
Parallel Component, Serial Component, Parallel 
Algorithm Component or Serial Algorithm 
Component. Each component has an Interface 
relation with another component. A component has 
required and provided interfaces. 

 

Figure 5: Component Metamodel. 

The transformation rules for Component 
Generator is shown in Figure 6. The main 
transformation rule is shown from lines 2 to 10. The 
application decomposition view modules are 
transformed into component view modules. The 
transformModule operation is defined to implement 
this transformation. The transformed module is added  

 
1. rule ComponentGenerator  
2.  transform app : 

applicationdecomposition!Application 
3.  to capp : component!Application { 
4.  capp.name = app.name; 
5.  capp.modules = Sequence{}; 
6.  for (module in app.modules) { 
7.    capp.modules.add( 
8.             transformModule(module)); 
9.    } 
10. } 
11. operation transformModule 
12.     (module:    
13.        

applicationdecomposition!ModuleElement 
14.     ) : component!ModuleElement { 
15.   var comp; 
16.   if(module.isTypeOf( 
17.     

applicationdecomposition!ParallelModule)) 
18.   { 
19.     comp = new component!ParallelComponent; 
20.     comp.name = module.name; 
21.   } 
22.   if(module.isTypeOf( 
23.     applicationdecomposition!SerialModule)) 
24.   { 
25.     comp = new component!SerialComponent;  
26.     comp.name = module.name; 
27.   } 
28.   if(module.isTypeOf( 
29.     applicationdecomposition! 
30.                ParallelAlgorithmModule)) 
31.   { 
32.     comp = new 
33.         

component!ParallelAlgorithmComponent; 
34.     comp.name=module.name; 
35.   } 
36.   if(module.isTypeOf( 
37.     applicationdecomposition! 
38.                SerialAlgorithmModule)) 
39.   { 
40.     comp = new 
41.         component!SerialAlgorithmComponent; 
42.     comp.name = module.name; 
43.   } 
44.   if(module.isTypeOf( 
45.     applicationdecomposition!Package)) 
46.   { 
47.     comp = new component!Package; 
48.     comp.name = module.name; 
49.     comp.modules = Sequence{}; 
50.     for (m in module.modules) {  
51.       comp.modules.add(transformModule(m)); 
52.     } 
53.   } 
54.   return comp; 
55. } 

 

Figure 6: Component Generator Transformation Rules. 

to component view in lines 7-8. In the 
transformModule operation, the type of the 
application decomposition module is checked. Each 
module type is transformed to the counter component. 
If the module is ParallelModule, then a new 
ParallelComponent instance is created with the same 
name (lines 16-21). If the module is SerialModule, 
then a new SerialComponent instance is created (lines 
22-27). In lines 28-35, ParallelAlgorithmComponent 
is created from ParallelAlgorithmModule and in lines 

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

44



36-43, SerialAlgorithmComponent is created from 
SerialAlgorithmModule. If the module is a Package, 
then the transformModule operation is called for its 
submodules (lines 44-53). 

3.3 Deployment Generator 

Deployment Generator merges and transforms the 
component view and physical configuration view to 
deployment view. The transformation uses the 
Component Metamodel (Figure 5), Physical 
Configuration Metamodel (Figure 7a) and 
Deployment Metamodel (Figure 7b). The Physical 
Configuration metamodel is adopted from 
(Tekinerdogan and Arkin, 2013) which includes 
Network, Node, Processing Unit, Bus and Memory 
elements. Deployment metamodel is a composition of 
component metamodel and physical configuration 
metamodel which has a relation of <<deployed on>> 
from component to processing unit. 

 
a) Physical Configuration Metamodel 

 
b) Deployment Metamodel 

Figure 7: Metamodels for Deployment Generator. 

The transformation rules as shown in Figure 8 have 
two main rules. The first rule transforms the physical 
configuration elements to deployment view elements. 
The Physical Configuration Transform rule 
transforms the physical configuration to deployment 
configuration in which the network and nodes are 
transformed to deployment instances. Each node of 
the physical configuration is transformed to 

deployment node calling transformNode operation in 
line 8. The transformNode operation creates a new 
node instance and transforms the memory, bus and 
processing unit elements in the node (lines 12-19).  

 

1. rule PhysicalConfigurationTransform  
2.  transform pc : 

physicalconfiguration!PhysicalConfiguration 
3.  to dpc : deployment!PhysicalConfiguration 

{ 
4.  dpc.name = pc.name; 
5.  dpc.network = new deployment!Network; 
6.  dpc.nodes = Sequence{}; 
7.  for (node in pc.nodes) {  
8.   dpc.nodes.add( transformNode(node) 

);}  
9. } 
10. operation transformNode 
11.     (node: physicalconfiguration!Node) : 

deployment!Node { 
12.  var n = new deployment!Node; 
13.  n.memory = new deployment!Memory; 
14.  n.bus = new deployment!Bus; 
15.  n.pus = Sequence{}; 
16.  for (pu in node.pus) {  
17.   var p = new 

deployment!ProcessingUnit; 
18.   p.memory = n.memory; 
19.   n.pus.add(p);} 
20.  return n; 
21. } 
22. rule ApplicationTransform  
23.  transform app : component!Application 
24.  to dapp : deployment!Application {  
25.  dapp.name = app.name; 
26.  dapp.modules = Sequence{}; 
27.  for (module in app.modules) {  
28.  

 dapp.modules.add(transformModule(module))
;} 

29. } 
30. operation transformModule 
31.    (module: component!ModuleElement) : 

deployment!ModuleElement { 
32.  var comp; 
33.  if(module.isTypeOf(component!ParallelComp

onent)) { 
34.   comp = new 

deployment!ParallelComponent; 
35.   comp.name = module.name;} 
36.  if(module.isTypeOf(component!SerialCompon

ent)) { 
37.   comp = new 

deployment!SerialComponent; 
38.   comp.name = module.name;} 
39.  if(module.isTypeOf(component!ParallelAlgo

rithmComponent)) { 
40.   comp = new 

deployment!ParallelAlgorithmComponent; 
41.   comp.name = module.name;} 
42.  if(module.isTypeOf(component!SerialAlgori

thmComponent)) { 
43.   comp = new 

deployment!SerialAlgorithmComponent; 
44.   comp.name = module.name;} 
45.  if(module.isTypeOf(component!Package)) { 
46.   comp = new deployment!Package; 
47.   comp.name = module.name; 
48.   comp.modules = Sequence{}; 
49.   for (m in module.modules) { 
50.   

 comp.modules.add(transformModule(m));}} 
51.  return comp; 
52. } 

 

Figure 8: Deployment Generator Transformation Rules. 

Architectural�View�Driven�Model�Transformations�for�Supporting�the�Lifecycle�of�Parallel�Applications

45



The second rule transforms the component 
application elements into deployment application 
elements. Here, the modules of the component view 
are transformed using transformModule operation 
(lines 30-51), which checks the type of the module 
and transforms to the counter element in the 
deployment view. 

3.4 Logical Configuration Generator 

Logical Configuration Generator transforms an 
algorithm decomposition view to a logical 
configuration view using the information of the 
deployment of parallel algorithm components to 
processing units. The metamodel for logical 
configuration is adopted and is used to generate the 
dynamic behaviour of the algorithm using tiles, 
communication patterns and operations. The 
transformation rules to generate the logical 
configuration is defined in Figure 9. The 
transformation rules consist of three main parts. In the 
first part, tiles that will be used according to 
deployment view and algorithm sections are found 
from the base library (lines 20-31). The prime 
factorization method is used to find the tile size of 
appropriate tiles. In the second part, patterns are 
selected to generate the communication patterns for 
the tiles with respect to the operations for the 
algorithm sections (lines 32-44). Subsequently, these 
selected patterns are added to the patterns list of the 
corresponding operation. Later on when it is needed 
the pattern can be reused in the last section in which 
the final logical configuration is generated (lines 45-
54).   

4 IMPLEMENTATION AND 
TOOLSET 

To assist the architect for applying the architecture 
views and transforming using the transformation 
chain, we have developed the toolset that implements 
each architecture viewpoint metamodel and defined 
transformation rules. For this we have used the 
Epsilon (2014) toolset for Eclipse IDE that is used to 
represent the notation (concrete syntax) of the 
viewpoints. For each viewpoint we have defined the 
corresponding metamodel. The metamodels are 
defined in the Eclipse Modeling Framework (EMF) 
using Emfatic language in Epsilon. 

Figure 10 shows the architecture views for the 
earlier defined case study, which are generated by the 
transformation chain in the toolset. In Figure 10a a test  

 
1. operation library!Pattern 

isDominating(tile:library!Core) : Boolean 
2. operation logicalconfiguration!Pattern 

getTile 
3.     (i:Integer, j:Integer) : 

logicalconfiguration!Tile 
4. operation logicalconfiguration!Pattern 

setCommunication 
5.     (from_i:Integer, from_j:Integer, 

to_i:Integer, to_j:Integer, 
6.      patternList:Sequence, level:Integer)  
7. operation logicalconfiguration!Pattern 

setCommunication 
8.     (ft:logicalconfiguration!Tile, 

tt:logicalconfiguration!Tile) 
9. operation createPattern  
10.     (main:logicalconfiguration!Pattern, 

i:Integer, j:Integer, 
11.      patternList:Sequence, 

commLevel:Integer, level:Integer, 
12.      parentSize:Integer, scaling:Any) 
13.  
14. rule LogicalConfigurationGenerator  
15.   merge base : library!AssetBase 
16.   with algorithm : algorithm!Algorithm 
17.   into lc :  

logicalconfiguration!LogicalConfiguration { 
18.   for(parallelSection in  
19.         algorithm!ParallelSection.all) { 
20.   //FIND TILES 
21.   var n = coreSize; 
22.   while (i<=n) { 
23.     while ((n - (n/i * i)) = 0) { 
24.       factors.add(i); 
25.       n = n / i;} 
26.     i = i + 1;} 
27.   var 

operationName=parallelSection.oper.name; 
28.   var sizeList = Sequence{}; 
29.   i = 0; 
30.   while(i < factors.size()){ 
31.     sizeList.add(factors.get(i)); i = i + 

1;} 
32.   //FIND PATTERNS 
33.   var patternList = Sequence{}; 
34.   for(factor in sizeList){ 
35.     for(oper in base.operations) { 
36.       if(oper.name == operationName) { 
37.         for(pattern in oper.uses) { 
38.           if(pattern.size == factor) { 
39.             //pattern.name.println(); 
40.             //commLevel.println(); 
41.             patternList.add(pattern);}}}}} 
42.   var commLevel = 0; 
43.   if(scaling == base!ScalingType#UP) { 
44.     commLevel = patternList.size - 1; } 
45.   //GENERATE LOGICAL CONFIGURATION 
46.   for(pattern in patternList) { 
47.     var mainPattern = new  
48.                

logicalconfiguration!Pattern; 
49.     createPattern(mainPattern, 0, 0, 

patternList, 
50.              commLevel, 0, 1, 

pattern.scaling); 
51.     var patternOperation = new 
52.              

logicalconfiguration!Operation; 
53.     mainPattern.implements = 

patternOperation;} 
54.   lc.tiles.add(sectionPattern);}} 

 

Figure 9: Logical Configuration Generator Transformation 
Rules. 

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

46



computer is defined with four nodes and a network 
among nodes. Each node has four processing units, a 
bus and a memory. Application decomposition for 
Order Management Application, which is shown in 
Figure 10b, is composed of three packages and each 
package includes modules. In Figure 10c, Algorithm 
Decomposition View is generated using application 
decomposition viewpoint, where parallel algorithm 
module ShippingCalculations is defined. Component 
viewpoint (Figure 10d) is generated using application 

decomposition. Deployment view (Figure 10e) 
includes test computer definition (physical 
configuration), order management components and 
<<deployedon>> relation property for each 
component. Logical configuration (Figure 10f) is 
generated from algorithm decomposition using 
parallel mapping library and the information that the 
parallel algorithm component is deployed on which 
processing units. 

 

 
a) Physical Configuration View 

 
b) Application Decomposition View 

 
c) Algorithm Decomposition View d) Component View 

e) Deployment View 

 
 
 
 
 
 
 

f) Logical Configuration View 

Figure 10: Architecture views generated by transformation chain. 

Architectural�View�Driven�Model�Transformations�for�Supporting�the�Lifecycle�of�Parallel�Applications

47



Moreover, in the toolset we have implemented 
view editors for the architecture view definitions. The 
Eclipse Graphical Modeling Framework (GMF) 
models are generated from the EMF models using 
EuGENia tool in Epsilon.   

Figure 11 shows a snapshot of the toolset with the 
example for Physical Configuration Editor. The user 
interface of the editor provides four panels: 1) Project 
Explorer, 2) Outline Overview, 3) Editor Panel and 
4) Palet Panel. Project Explorer shows the projects 
to define different physical configuration models. 
Outline Overview shows the outline of the editing 
physical configuration. Editor Panel, provides the 
panel for editing the physical configuration using the 
Viewpoint structures which can be selected and easily 
added to the model by drag and drop. Finally, the 
Palet Panel includes the view structures. In the 
example a physical configuration with two nodes and 
a network is given. Each node has 4 processing units 
and a memory with a bus. 

 

Figure 11: Physical Configuration Editor. 

5 RELATED WORK 

In the literature of parallel computing the particular 
focus seems to have been on parallel programming 
models such as MPI, OpenMP, CILK etc. (Talia, 
2001) but the design and the modeling got less 
attention. Several papers have focused in particular 
on higher level design abstractions in parallel 
computing and the adoption of model-driven 
development.  

Palyart et. al. (2012) propose an approach for 
using model-driven engineering in high performance 
computing. They focus on automated support for the 
design of a high performance computing application 
based on abstract platform independent model. The 
approach includes the steps for successive model 
transformations that enrich progressively the model 
with platform information. The approach is supported 

by a tool called Archi-MDE. Gamatie et al. (2011) 
represent the Graphical Array Specification for 
Parallel and Distributed Computing (GASPARD) 
framework for massively parallel embedded systems 
to support the optimization of the usage of hardware 
resources. GASPARD uses MARTE standard profile 
for modeling embedded systems at a high abstraction 
level. MARTE models are then refined and used to 
automatically generate code. Our approach can be 
considered an alternative approach to both 
GASPARD and Archi-MDE. The difference of our 
approach is the particular focus on optimization at the 
design level using architecture viewpoints.   

In our earlier study (Arkin et. al., 2013) 
(Tekinerdogan and Arkin, 2013), we have proposed 
an architecture framework for mapping parallel 
algorithms to parallel computing platforms. In that 
study we only focused on parallel algorithms and did 
not consider the broader concept of application. Also 
we assumed a distributed memory model in which 
each node has its own memory unit and, as such, 
targeted the MISD architecture of the Flynn’s 
taxonomy. The current approach is more general and 
detailed in the sense that it focuses on software 
application, supports both modules and algorithms, 
can represent different memory models, supports 
modeling different computing architectures, and most 
importantly, supports the generation of the views. 

6 CONCLUSIONS 

We have applied model-driven transformation 
techniques to support the automation of the mapping 
of parallel applications to parallel computing 
platforms. We have mainly focused on the practical 
aspects and showed that this is indeed possible. We 
could define the domain specific languages without 
substantial problems and use these in the generators 
that we implemented. The overall approach provides 
a substantial support for the scalability problem in 
parallel computing and increases the productivity and 
quality. In our future work we will focus on 
supporting design aspects beyond modeling, and 
focus on optimizing the deployment configurations of 
parallel applications. 

REFERENCES 

Amdahl, G.M., 2007. Validity of the Single Processor 
Approach to Achieving Large Scale Computing 
Capabilities, Reprinted from the AFIPS Conference 
Proceedings, Vol. 30 (Atlantic City, N.J., Apr. 18–20), 

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

48



AFIPS Press, Reston, Va., 1967, pp. 483–485, Solid-
State Circuits Newsletter, IEEE, vol.12, no.3, pp.19,20, 
Summer. 

Arkin, E., Tekinerdogan, B., Imre. K., 2013. Model-Driven 
Approach for Supporting the Mapping of Parallel 
Algorithms to Parallel Computing Platforms. Proc. of 
the ACM/IEEE 16th International Conference on 
Model Driven Engineering Languages and System. 

Epsilon, http://www.eclipse.org/epsilon. 
Flynn, M., 1972. Some Computer Organizations and Their 

Effectiveness, Computers, IEEE Transactions on, 
vol.C-21, no.9, pp.948, 960. 

Frank, M.P., 2002. The physical limits of computing, 
Computing in Science & Engineering, vol.4, no.3, 
pp.16, 26, May-June. 

Gamatié, A., Le Beux, S., Piel, E., Ben Atitallah, R., Etien, 
R., Marquet, P., Dekeyser, J., 2011. A Model-Driven 
Design Framework for Massively Parallel Embedded 
Systems. ACM Transactions on Embedded Computing 
Systems, 10(4), 1–36. 

Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, 
W., Dally, W., Denneau, M., Franzon, P., Harrod, W., 
Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., 
Richards, M., Scarpelli, A., Scott, S., Snavely, A., 
Sterling, T., Williams, R.S., Yelick, K., Bergman, K., 
Borkar, S., Campbell, D., Carlson, W., Dally, W., 
Denneau, M., Franzon, P., Harrod, W., Hiller, J., 
Keckler, S., Klein, D., Williams, R.S., and Yelick, K., 
2008. Exascale Computing Study: Technology 
Challenges in Achieving Exascale Systems. DARPA. 

Palyart, M., Ober, I., Lugato, D., Bruel, J., 2012. HPCML: 
a modeling language dedicated to high-performance 
scientific computing. In Proceedings of the 1st 
International Workshop on Model-Driven Engineering 
for High Performance and CLoud computing 
(MDHPCL '12). ACM, New York, NY, USA, Article 
6, 6 pages. 

Pllana, S., Fahringer, T., 2002. UML based modeling of 
performance oriented parallel and distributed 
applications, Simulation Conference, 2002. 
Proceedings of the Winter, vol.1, no., pp.497, 505 vol.1, 
8-11. 

Talia, D., 2001. Models and Trends in Parallel 
Programming. Parallel Algorithms and Applications 
16, no. 2: 145-180. 

Tekinerdogan, B., Arkin. E., 2015. Architecture 
Framework for Modeling the Deployment of Parallel 
Applications on Parallel Computing Platforms, 3rd Int. 
Conf. on Model-Driven Engineering and Software 
Development (MODELSWARD 2015). 

Tekinerdogan, B., Arkin, E., 2013. Architecture 
Framework for Mapping Parallel Algorithms to Parallel 
Computing Platforms, In MDHPCL@ MoDELS, pp. 
53-62. 

Architectural�View�Driven�Model�Transformations�for�Supporting�the�Lifecycle�of�Parallel�Applications

49


