
A MapReduce-based Approach for Finding Inexact Patterns in Large
Graphs�

Péter Fehér, Márk Asztalos, Tamás Mészáros and László Lengyel
Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Budapest, Hungary

Keywords: Graph Isomorphism, MapReduce, Pattern Matching.

Abstract: Finding patterns in graphs is a fundamental problem in graph theory, and also a practical challenge during
the analysis of big data sets. Inexact patterns may correspond to a set of possible exact graphs. Their use
is important in many fields where pattern matching is applied (e.g. mining in social networks or criminal
investigations). Based on previous work, this paper introduces a pattern specification language with special
language features to express inexact patterns. We also show a MapReduce approach-based algorithm that is
able to find matches. Our methods make it possible to define inexact patterns and to find the exact matches in
large graphs efficiently.

1 INTRODUCTION

Finding patterns efficiently in large graphs is a core
challenge in the analysis of big data sets. Pattern
matching is based on subgraph isomorphism that
deals with the problem of deciding if there is an injec-
tive morphism from one graph to another. It is already
proven that finding such a morphism is NP-complete
in general (Plump, 1998). To perform the pattern
matching efficiently, especially in the processing of
big data sets, distributed algorithms such as MapRe-
duce gain focus. To find a match, we need a pat-
tern specification language and a matcher algorithm
that performs the actual searching. The language may
contain special features that make it possible to define
not just a single graph but inexact patterns as well. An
inexact pattern covers a set of possible exact graphs
by using constraints. Being able to detect inexact pat-
terns might be critical in some cases, for example,
when the analyzer needs to match a general pattern
without knowing all of the details, the host graph is
not completely known, or some aspect of the searched
pattern is incorrect (Coffman et al., 2004). Moreover,
inexact patterns lead to more concise specifications
that is an important aspect in graph rewriting-based
model transformations (Ehrig et al., 2006).

As an example, consider the graph depicted in
�This work was partially supported by the European

Union and the European Social Fund through project Fu-
turICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-
0013) organized by VIKING Zrt. Balatonfüred.

Figure 1. This graph illustrates the retail banks be-
longing to the central bank. The graph also represents
the different type of loans the retail banks offered
to their customers. Moreover, the dotted lines be-
tween the customers indicate personal relationships.
Although this example contains only a several dozens
of elements, it is easy to see, that a real life example
from this field might consist of millions of elements,
therefore its analysis with MapReduce can be not only
reasonable but inevitable.

Assume that the central bank wants to know the
households, where at least two members of the family
have mortgages. Since it does not matter to the central
bank whether the relatives have their mortgages at the
same bank or not, there are two different patterns. In
the first case (depicted in Figure 2(a)), the customers
have their mortgages at different banks, therefore the
pattern should match two bank elements. However,
the family members might get their mortgages from
the same bank, and in this case there should be only
one bank element matched (depicted in Figure 2(b)).
The answer is formulated from the union of the two
cases.

By the usage of traditional pattern matching lan-
guages and solutions, the central bank needs to match
two different patterns. However, with the help of in-
exact patterns, a simple pattern can be formulated to
answer the question of the central bank. The inex-
act pattern to solve this problem is presented in Fig-
ure 3 (the purpose of the labels is to identify the el-
ements later). The optional blocks (depicted as dot-

205Fehér P., Asztalos M., Mészáros T. and Lengyel L..
A MapReduce-based Approach for Finding Inexact Patterns in Large Graphs.
DOI: 10.5220/0005231102050212
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 205-212
ISBN: 978-989-758-083-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: Graph representing the Bank-Customer relationships1.

(a) (b)

Figure 2: The traditional patterns.

ted rectangles) are internal parts of the language our
metamodel-based matcher relies on. The language
makes it possible to not only use optional blocks, but
to define logical relations between them. In our exam-
ple, the match is only complete if either one or both
optional blocks from the block A and block B can be
matched beside the block C.

In previous work, we presented a MapReduce-
based algorithm (MRSIS) that performs the matching
of exact graph patterns, and we have analyzed its per-
formance. In this paper, we introduce the adapta-
tion of the method to handle inexact matches. The
main contributions are twofold: (i) We introduce an
improved pattern specification language that can de-
scribe inexact matches. (ii) We present the improved
version of the MapReduce-based matcher algorithm
(MRMM) that is able to handle the new language. In
the design phase, our goal was to provide advanced
language features that make it possible to specify in-

1The icons used in Figure 1-3 were made by
Freepik from www.flaticon.com and is licensed by http://
creativecommons.org/licenses/by/3.0/.

Figure 3: A simple pattern with optional blocks.

exact pattern and still allow to provide efficient dis-
tributed algorithms for the matching.

The remainder of the paper is organized as fol-
lows. Section 2 presents the new language designed
for defining patterns. The basics of the MapReduce
framework are discussed in Section 3. Next, Section 4
describes the pattern matching algorithm. Section 5
provides an overview of related work. Finally, Sec-
tion 6 closes with concluding remarks.

2 THE PATTERN
SPECIFICATION LANGUAGE

In this section, we introduce our concept to describe
inexact graph patterns. Pattern specification lan-
guages are developed with two important goals kept
in mind: (i) the language should be expressive enough
to be able to specify possible matches in a concise
way. (ii) Moreover, it is important to have efficient
algorithms that can search for the matches.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

206



Figure 4: Language features of pattern matchers.

The most trivial specification language would
simply allow us to specify exact patterns, i.e. each
element that will be present in the match. In other
words, we provide a pattern where we specify the
types of the nodes and edges along with optional ad-
ditional constraints, and the actual matches will be
isomorph occurrences of this pattern. In many cases,
we may need more advanced language features (such
as multiplicities, negative application conditions etc.)
that lead to inexact patterns. Multiplicities (or car-
dinalities) added to the nodes and to the ends of the
edges mean that the given element of the pattern may
occur several times in the actual match. With this fea-
ture, the patterns of the specification language can
be turned into small metamodels whose all possi-
ble instances that are present in the model are valid
matches. Two sample patterns (with and without mul-
tiplicities) along with possible matches are depicted
in the first and second columns of Figure 4. Col-
ors denote the types of the elements. Negative ap-
plication conditions (NACs) consists of additional el-
ements that will not be matched, on the contrary, they
must not be able to be found.

The language features detailed above obviously
increase the expressiveness of the language, but also
make the match finder algorithms more complex and
harder to be implemented. In the following, we intro-
duce our pattern specification language. Our goal is to
find a good balance between these two goals. There-
fore, this language contains several language features,
but has a few limitations compared to the previously
mentioned fully metamodel-based approach.

In theory, patterns of our language consists of
nodes and edges. We define their types and additional
constraints on their attributes in the usual way. We
can define groups in a pattern. A group is a set of con-
nected nodes. Each node can be a member of at most
one group, so the groups are disjoint. Moreover, it is
required that if two nodes are members of two differ-
ent groups, they cannot have edges between them in
the pattern. We can assign multiplicity constraints to
the groups. When searching for the possible matches
of the pattern, each group can be present multiple
times according to their multiplicity constraints. The
nodes that are not members of any groups represent

single nodes in the matches just as in exact patterns.
When an edge of the pattern connects a group mem-
ber and a traditional node, this means that the instance
of the exact node will be connected to every instances
of the group. The third column of Figure 4 shows a
sample pattern where there is one group and its mul-
tiplicity is 2..8. This means that at least 2, but at most
8 instances of the group must be present in a possi-
ble match. The figure also presents an instance of the
pattern. It can be seen that the node in the top left cor-
ner of the pattern is connected to all instances of the
group.

Because of the space limits of this paper, we do
not go into deeper details about other features of the
language, but we mention that application conditions
(negative and positive) and logical statements on op-
tional blocks can be specified as well.

We have implemented a textual language. Accord-
ing to the previous concepts, we can define nodes,
edges, and blocks with multiplicities. Nodes and
edges may have labels. Additionally, logical state-
ments using block identifiers can be specified. The
code belonging to the inexact pattern presented in Fig-
ure 3 is as follows:
rule MultipleMortgages {

node p1 [Person] node l1 [Loan] node b1 [Bank]

node p2 [Person] node l2 [Loan] node b2 [Bank]

node p3 [Person] node l3 [Loan]

edge from p1 to l1 [Mortgage]

edge from b1 to p1 [Customer]

edge from p1 to p2 [Relationship]

edge from p2 to l2 [Mortgage]

edge from b2 to p2 [Customer]

edge from p1 to p3 [Relationship]

edge from b1 to p3 [Customer]

edge from p3 to l3 [Mortgage]

block A (b2, p2, l2)?

block B (b1, p3, l3)?

block C (l1)1..*

with A or B

}

We believe that our concept is efficient enough to
be applied in real-world scenarios. Moreover, in the
next sections, we will show an efficient distributed al-
gorithm that is able to find the actual matches spec-
ified by the patterns of the language. This demon-
strates the practical applicability of our approach.
Moreover, our experiences gained from practical so-
lutions show that the presented language is expres-
sive enough to be used in model transformations as
well, which is an important application field of pat-
tern specification languages.

A�MapReduce-based�Approach�for�Finding�Inexact�Patterns�in�Large�Graphs

207



Figure 5: The structure of a MapReduce algorithm.

3 THE MAPREDUCE
TECHNIQUE

The MapReduce framework is a parallel computing
paradigm (Dean and Ghemawat, 2008). The frame-
work was originally developed at Google, and to-
day has become the de facto approach for process-
ing large-scale data. One of its open source imple-
mentations is the Apache Hadoop (Apache Hadoop,
2011). The MapReduce framework was designed for
utilizing distributed computing resources and for han-
dling large data sets. Data is always assumed to be
distributed, and the data balancing is managed by the
Hadoop Distributed File System (HDFS).

One of the biggest differences between the
MapReduce and other parallel computing frameworks
is that MapReduce implements both parallel and se-
quential computation: the framework calls the map
and reduce functions sequentially, but in each phase
the functions are executed in parallel.

The structure of a MapReduce algorithm is illus-
trated in Figure 5. Basically, the MapReduce algo-
rithm consists of three phases. First, the map function
is executed. The framework assigns the same mapper
task µ to several processes, but these processes take
different inputs as the lone argument of µ. The map-
per function is stateless, because it does not have any
information on the previously processed data, nor can
it communicate with other mapper tasks. In this man-
ner, it only requires the input value to compute its out-
put value. This way the mapper function can be run
against the values in parallel, which provides great ef-
ficiency. Generally, the mapper µ takes a single string
input and produces any number of <key, value> pairs
as output.

The second phase is referred to as shuffle or as
group. At this stage, the framework seamlessly sorts
the outputs of the mappers by their keys. As a result,
the values are grouped by their key values.

The shuffle step makes it possible to assign every
value with the same key to the same reducer in the

final phase. A reducer r takes a single key and all
the values associated with it as input. After process-
ing, the reducer produces arbitrary number of <key,
value> pairs, as output. Like the mapper tasks, the
reducers are stateless as well. An important attribute
of the MapReduce framework is that all mapper tasks
must finish before the reducer tasks can begin. This
aspect of the framework supports the sequential pro-
cessing. However, by assigning different keys to dif-
ferent processes, the reducer task also supports paral-
lelization.

The map, shuffle, and reduce phases constitute a
MapReduce job. The MapReduce algorithm can be
implemented as a series of MapReduce jobs. In this
case, the output of the l1 job (i.e. the <key, value>
pairs produced by the r1 reduces) is the input of the
l2 job (i.e. the string input of the µ2 mapper)(Fehér
et al., 2013).

Based on (Karloff et al., 2010), the formal defini-
tion of the MapReduce programming paradigm is the
following.

Definition 1. A mapper is a function that takes a bi-
nary string (which might be a <key, value> pair) as
input. As output, the mapper produces a finite set of
<key, value> pairs.

Definition 2. A reducer is a function whose input is
a binary string, a key (k), and a sequence of values
(v1;v2; : : : ) that are also binary strings. As output, the
reducer produces a finite multiset of pairs of binary
strings <k;vk;1>, <k;vk;2>, <k;vk;3>, : : : . The key in
the output pair is identical to the key in the input.

As it was mentioned before, the main strength of
the MapReduce approach is the ease of paralleliza-
tion. Since one mapper task processes one element
from the input set at a time, the framework can have
multiple instances from the same map function as-
signed to different computing nodes in parallel. Sim-
ilarly, one reducer task operates on one key value and
on the values associated with it. Therefore, if the
number of different keys is denoted with n, then at
most n different reducer instances can be executed si-
multaneously.

4 THE PATTERN MATCHING
ALGORITHM

The MapReduce MetaMatcher algorithm (MRMM) is
a novel approach to detect arbitrary patterns in graphs
with millions of edges and vertices. The algorithm is
constructed to extend the MapReduce Subgraph Iso-
morphism - version S algorithm (MRSIS), therefore

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

208



the pattern matching utilizes the advantageous prop-
erties of the MapReduce framework. In this manner,
the algorithms make it possible to move the pattern
matching into the cloud, which offers the following
benefits: (i) The graph can be stored in the cloud
(typically in a BLOB), (ii) the size of the cluster can
be dynamically changed depending on the graph and
the pattern to match. There are a number of differ-
ent cloud vendors offering these possibilities, for ex-
ample (Amazon Web Services, 2013) and (Windows
Azure, 2013).

This section briefly presents the basics of the
MRSIS algorithm, then introduces the MRMM algo-
rithm, which enables the inexact pattern matching.

4.1 The MRSIS Algorithm

The MRSIS is a MapReduce algorithm to detect sub-
graph isomorphism. At each iteration, the algorithm
adds a new pair of vertices to each partial mapping.
All partial mappings are subgraphs isomorphic to the
target graph. In case the partial mapping contains the
same number of vertices as the target graph, then the
two sets are isomorphic to each other. In this man-
ner, the algorithm terminates after at most n iterations,
where n denotes the number of vertices contained by
the target graph. In case a partial mapping cannot be
extended with a new pair of vertices in a way to re-
main subgraph isomorphic to the target graph, the al-
gorithm does not emit any information related to this
partial mapping, therefore, it does not participate in
the next iteration. The algorithm terminates either af-
ter the nth iteration, or when there are no partial map-
pings that can be extended with a new pair of vertices.

In order to minimize the required I/O operations,
the algorithm uses a special data structure, which con-
tains only the necessary information about a source
graph node. Since the processing of a textual file in
a MapReduce framework is performed line-by-line,
each line represents a source graph vertex. The neces-
sary information about a given node is the following:
� The identifier of the node,
� In case of labeled graph, the labels of the vertex

(if there is any),
� The sources of the incoming edges and their labels

(if there is any),
� The targets of the outgoing edges and their labels

(if there is any).
Since the node may have multiple vertex labels

and incoming/outgoing edges with multiple edge la-
bels, the information must be carefully separated.
The data structure in Extended Backus–Naur Form
(EBNF) is depicted in the following listing, where the
rule of thumb is the following:

1. The identifier of the node is the most important in-
formation, therefore it is the first, and is followed
by a tabulator that is typically used as the sepa-
rator between the key and the value emitted by
either the mapper or the reducer.

2. The remaining sets, i.e. the labels, incoming
edges and outgoing edges are separated by a semi-
colon character.

3. Each item in an array (e.g. the different labels of
the node) are separated by a comma character.

4. The end points of the edges are separated from
their labels by a dash character.

5. Each item in a subarray (e.g. the different labels
of the edges) are separated by a colon character.

row = ID, "\t", { NodeLabels }, ";",

{ IncomingEdges }, ";",

{ OutgoingEdges }, ";", HelperBit;

ID = alphabetic character | digit,

{ alphabetic character | digit };

NodeLabels = Label, { ",", NodeLabels };

IncomingEdges = ID, { "-", EdgeLabels },

{ ",", IncomingEdges };

OutgoingEdges = ID, { "-", EdgeLabels },

{ ",", OutgoingEdges };

EdgeLabels = Label, { ":", EdgeLabels };

HelperBit = "0" | "1";

The MRSIS algorithm consists of a chain of two
MapReduce jobs. The first job is responsible for
adding a new node pair to the partial mappings. Each
mapper function in this job takes a partial mapping
and a candidate node from the source graph. The
function then calculates the next target graph node
to match and determines whether this node can be
mapped to the candidate node regarding to the par-
tial mapping. In case of a successful match, the func-
tion extends the partial mapping with this node pair.
In order to be able to produce all possible candidate
nodes for this new partial mapping, the mapper func-
tion emits a new <key, value> pair for each source
graph node contained by the mapping, where the key
is the source graph node and the value is the new par-
tial mapping. The function then moves on to the next
partial mapping related to this candidate node. The re-
ducer functions group the emitted <key, value> pairs
by their keys. In this manner, after the first job, the
partial mappings are extended with another node pair,
and each emitted line consists of all information of a
source node, and all partial mappings the given source
node is part of.

The second job is responsible for generating the
candidate pairs for each partial mappings. This
means, that the job transforms the data in such a way
that the partial mappings appear in the line of ev-
ery candidate source graph node. Therefore, each
mapper function obtains a source graph node and the

A�MapReduce-based�Approach�for�Finding�Inexact�Patterns�in�Large�Graphs

209



mappings the node is part of. Then, for each partial
mapping, the function iterates through the neighbors
of the source graph node, and if the neighbor is not
contained by the given partial mapping, the function
emits it as the key of a <key, value> pair. The related
value is the partial mapping. The reducer functions
group the emitted lines by their key values and drop
the recurrences.

4.2 The MRMM Algorithm

Recall that, the MRMM algorithm is based on the
MRSIS algorithm. This section presents the main dif-
ferences between the two algorithms.

The MRMM algorithm is capable of detecting pat-
terns with optional parts. These parts are organized
into blocks. The blocks have the following three prop-
erties:
� The identifier of the block, which must be unique.
� The identifiers of the nodes contained by the

block. None of the nodes can be contained by
more than one block.

� The multiplicity of the block.
Since the algorithm supports optional blocks, that

is, the final match is valid with and without the nodes
contained by the block as well, the identifier of the al-
ready examined blocks must be maintained through-
out the MapReduce iterations. This is particularly im-
portant in those cases, when a block cannot be part of
a valid partial mapping, because otherwise the algo-
rithm would repeatedly check the nodes of this block,
causing an infinite loop.

The obligation of maintaining the block identifiers
means that the data structure must be extended. The
information about the examined blocks is related to
the partial mapping, therefore, each partial mapping
has an additional value in the outputs, which con-
tains the identifier of the last unsuccessfully matched
block. This information is enough, because of the fol-
lowing:
� The identifier unambiguously determines the

block.
� The identifiers of the successfully matched blocks

can be deduced from the partial mapping.
� The algorithm orders the nodes of the target

graph, therefore, if there are more than one unsuc-
cessfully matched blocks, the last one determines
the previous ones as well.
Since the MRSIS algorithm detects isomorphic

subgraph patterns, the number of nodes contained
by the final match equals to the number of nodes
contained by the target graph. However, in case of
the pattern matching this is not true anymore, be-
cause of the multiplicity of the blocks, the number

of nodes contained by the valid matches might dif-
fer from the number of nodes contained by the target
graph. Therefore, the MRMM uses an indicator that
signals when at� least one partial mapping is extended
with a new node pair. In this case, another iteration
of MapReduce jobs is justified. Otherwise, the algo-
rithm terminates.

The main difference between the two algorithms
is the selection of the next candidate node. As it was
mentioned, the algorithm maintains a sorted list based
on the nodes of the target graph. The MRSIS algo-
rithm simply chooses the first from this list that is
not already contained by the partial mapping. How-
ever, in case of optional blocks this cannot be a solu-
tion. Therefore, a new node selection algorithm was
needed, which is shown in Algorithm 1.

Algorithm 1: The algorithm of selecting the next candidate
node for a partial mapping.
Require: the given partial mapping as actualMatch and the identifier of the

last unsuccessfully matched block as lastBlockId
Ensure: the identifier of the next candidate node

1: if actualMatch:isEmpty then
2: return GETFIRSTNODE()
3: Nodes[] SortedNodes GETSORTEDNODES()
4: Nodes[] possibleNodes SortedNodes
5: if not lastBlockId:isEmpty then
6: Nodes[] blockNodes GETUNUSEDBLOCKNODES()
7: possibleNodes:Remove(blockNodes)
8: Node lastNode GETNODEBYID(actualMatch:Last:TargetNode)
9: string lastNodeBlockId lastNode:BlockId

10: if not lastNodeBlockId:isEmpty ^ lastNodeBlockId 6= lastBlockId
then

11: Nodes[] blockNodes GETNODESFORBLOCK(lastNodeBlockId)
12: if blockNodes:count > 0 ^ lastNode 6=

SortedNodes:LastInBlock(blockNodes) then
13: return SortedNodes:GetNextFromBlock(lastNode):Id
14: if blockNodes:count > 0 ^ lastNode 6=

SortedNodes:LastInBlock(blockNodes)
^ ISBLOCKSTILLANOPTION(lastNodeBlockId;actualMatch)

then
15: return SortedNodes:GetFirstInBlock(lastNodeBlockId):Id
16: for all mjm 2 actualMatch^GETNODEBYID(m:TartgetNode)2

possibleNodes do
17: possibleNodes:Remove(m)

18: Node nextNode possibleNodes:First()
19: return nextNode:Id

The algorithm consists of four parts. First, if the
partial mapping is empty, then the identifier of the first
node in the sorted list is returned. This node cannot
be part of any optional block, because then the algo-
rithm could not find the mappings without this op-
tional node.

The second part (lines 4–8) filters the possible
nodes. The GETUNUSEDBLOCKNODES() method
returns all nodes that are contained by any block that
appears before the last unsuccessfully matched block

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

210



in the sorted list. These nodes cannot be part of
the candidate nodes because they are either already
matched or determined as an unsuccessful match.
Therefore, these nodes are removed from the possi-
ble nodes.

The third part (lines 10–17) is responsible for
returning the next candidate node when the lastly
matched node was part of a block. In case there are
still nodes contained by this block left in the sorted
list, the algorithm returns with the identifier of the first
one of these. In case the lastly matched node was the
last one contained by the block, but the multiplicity of
the block indicates another matching, the algorithm
returns the first node of the sorted list contained by
the block.

Finally, the fourth part (lines 19–22) returns the
identifier of the next possible node. This way the al-
gorithm handles all possibilities regarding to the de-
fined language.

The first mapper function of the MRMM, which is
responsible for adding new pairs to the partial map-
pings, now might take an optional node as the candi-
date. In this case the candidate node either extends
an optional block currently contained by the partial
mapping or not. If it is an extension then the algo-
rithm runs as usual. However, if it is not an extension,
that is, this is a new block, then the algorithm emits
the original partial mapping as well, and sets its last
unsuccessfully matched block to the identifier of this
block. This way the partial mapping with and without
the optional block constitutes two different branches.

The second mapper function, which is responsible
for moving the partial mappings to the row of can-
didate source graph nodes, must also check, whether
the partial mapping contains all non-optional nodes
from the target graph. If so, and there is no candidate
source node related to this mapping, then the mapping
should be marked as a complete match.

With the help of these modifications, the MRMM
algorithm is able to detect different patterns with op-
tional parts. The algorithm also possesses the advan-
tageous properties of the MRSIS algorithm.

5 RELATED WORK

In related work (Berry et al., 2007), Berry et al. devel-
oped a parallel implementation for supporting mas-
sive multithreading. The implementation is based
on the large shared memory of the machines in the
cluster. The algorithms are designed for finding con-
nected components and st-connectivity. Experimental
results were measured on a synthetic power law graph
with 234 million edges. Berry also developed heuris-

tics for inexact subgraph isomorphism (Berry, 2010).
Our approach is capable of handling large problems
as well with no need for large shared memory.

In (Plantenga, 2012), Plantenga presents a new al-
gorithm, which finds inexact subgraph isomorphisms.
The main contribution of his work is a scalable
MapReduce algorithm for finding all type-isomorphic
matching subgraphs and also introduces the concept
of walk-level constraints. The suggested algorithm
adds new edges to the already matched ones at each
iteration. Experimental results are also provided on
graphs with size of billions of vertices and edges. The
MRMM algorithm is also suitable for inexact pattern
matching, moreover, it is capable of detecting even
more complex patterns.

In (Tong et al., 2007), Tong et al. suggest an algo-
rithm that returns a specified number of “best effort”
matches. The complexity of the Graph X-ray algo-
rithms is linear to the number of nodes in the source
graph. In contrast, the MRMM algorithm returns all
exact matches and can handle not only vertex labels
but edge labels as well.

In (Liu et al., 2009), Liu et al. present a MapRe-
duce algorithm for “pattern finding”. Similarly to
MRMM, their algorithm increases the size of partial
mappings. However, the algorithm was used on a
graph with 2000 edges with a cluster of 48 nodes.
Since they assume the full adjacency matrix is avail-
able at each cluster node, the algorithm may have dif-
ficulty with larger graphs. The MRMM algorithm do
not use the whole adjacency matrix at each mapper,
this way it is more scalable.

In (Kim et al., 2013), Kim et al. developed a
method to efficiently process multiple graph queries
based on MapReduce. The method uses a filter-and-
verify scheme to reduce the number of subgraph iso-
morphism test. In contrast to the MRMM algorithm,
their work focuses on multiple graph queries instead
of pattern matching.

The purpose of the solution presented in (Mezei
et al., 2009) is to compute one of the possible matches
for a pattern. The algorithm is executed in a com-
puting grid consisting of several worker and a mas-
ter node coordinating their operation. The individual
worker nodes are performing the same matching algo-
rithm on the same graph, but the matching is started
from different points of the host graph. The selec-
tion of the starting point is coordinated by the master
node. Once either of the nodes finds a match, it noti-
fies the master node that lets the other worker nodes
stop the algorithm. In contrast, our algorithm is ca-
pable of computing all the possible matches. Another
important drawback of this approach is that it needs
the complete host graph to be stored on each worker

A�MapReduce-based�Approach�for�Finding�Inexact�Patterns�in�Large�Graphs

211



nodes, while our approach is more scalable since the
workers always see only a small portion of the com-
plete graph.

The pattern matching approach presented in (Dörr,
1995) can be used for matching multiple patterns hav-
ing isomorphic sub-patterns at the same time. The al-
gorithm runs on single-core environments, but by dis-
covering the identical parts of the different patterns
and performing their matching at once, it can achieve
noticeable performance gain, since only the different
parts of the patterns must be matched separately af-
terwards.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we have introduced a new pattern spec-
ification language. The presented concept makes it
possible to define inexact patterns in a concise way.
We have also presented the algorithm MRMM, a
MapReduce-based method for detecting inexact pat-
terns in large graphs. The algorithm finds all sub-
graphs corresponding to the defined pattern in the host
graph.

The MapReduce framework is designed to sup-
port processing large data sets. Therefore, it can be
suitable for graph related algorithms if the graphs are
represented as textual files. In this paper, we have also
described the applied data structure.

Because of the lack of space, in this paper, we fo-
cused on the description of the new language concept
and the new matcher algorithm. We plan to present
the detailed evaluation of the performance and the ex-
periences collected during the application of the ap-
proach in a separate publication.

Other future work contains the analysis of the pre-
sented algorithms. Since the MapReduce framework
is not optimized for I/O operations, the sizes of the
produced outputs are critical. In order to evaluate the
efficiency of the algorithms, we also intend to perform
different measurements.

REFERENCES

Amazon Web Services (2013). http://aws.amazon.com.
Apache Hadoop (2011). Apache Hadoop Project. http://

hadoop.apache.org/.
Berry, J. W. (2010). Practical heuristics for inexact sub-

graph isomorphism.
Berry, J. W., Hendrickson, B., Kahan, S., and Konecny, P.

(2007). Software and algorithms for graph queries on
multithreaded architectures. In International Parallel

and Distributed Processing Symposium, pages 1–14.
IEEE.

Coffman, T., Greenblatt, S., and Marcus, S. (2004). Graph-
based technologies for intelligence analysis. Commu-
nications ACM, 47(3):45–47.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113.

Dörr, H. (1995). Efficient Graph Rewriting and Its Imple-
mentation. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006).
Fundamentals of Algebraic Graph Transformation
(Monographs in Theoretical Computer Science. An
EATCS Series). Springer-Verlag New York, Inc., Se-
caucus, NJ, USA.

Fehér, P., Vajk, T., Charaf, H., and Lengyel, L. (2013).
Mapreduce algorithm for finding st-connectivity. In
4th IEEE International Conference on Cognitive Info-
cocommunications - CogInfoCom 2013.

Karloff, H., Suri, S., and Vassilvitskii, S. (2010). A model
of computation for mapreduce. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 938–948. Society for Indus-
trial and Applied Mathematics.

Kim, S.-H., Lee, K.-H., Choi, H., and Lee, Y.-J. (2013).
Parallel processing of multiple graph queries using
mapreduce. In DBKDA 2013, The Fifth International
Conference on Advances in Databases, Knowledge,
and Data Applications, pages 33–38.

Liu, Y., Jiang, X., Chen, H., Ma, J., and Zhang, X. (2009).
Mapreduce-based pattern finding algorithm applied
in motif detection for prescription compatibility net-
work. In Advanced Parallel Processing Technologies,
pages 341–355. Springer.

Mezei, G., Levendovszky, T., Meszaros, T., and Madari, I.
(2009). Towards truly parallel model transformations:
A distributed pattern matching approach. In EURO-
CON 2009, EUROCON ’09. IEEE, pages 403–410.

Plantenga, T. (2012). Inexact subgraph isomorphism in
mapreduce. Journal of Parallel and Distributed Com-
puting.

Plump, D. (1998). Termination of graph rewriting is unde-
cidable. Fundamenta Informaticae, 33(2):201–209.

Tong, H., Faloutsos, C., Gallagher, B., and Eliassi-Rad,
T. (2007). Fast best-effort pattern matching in large
attributed graphs. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 737–746. ACM.

Windows Azure (2013). http://www.windowsazure.com/
en-us/.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

212


