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Abstract: Deep Brain Stimulation of the sub-thalamic nucleus (STN) has been proven to be effective at reducing 
symptoms of patients with Parkinson’s disease (PD). Currently an implanted pulse generator provides 
chronic electrical stimulation to the STN via an electrode and the stimulation parameters are chosen 
heuristically. Closed-loop Deep Brain Stimulation (DBS) has been proposed as an improvement to this, 
utilising neural signal feedback to select stimulation parameters, adjust the duration of stimulation and 
achieve better patient outcomes more efficiently. In this research, potential neural feedback signals were 
investigated using a computational simulation of the basal ganglia. It was found that the interspike-interval 
in the globus pallidus externus provided a possible metric for ‘on’ and ‘off’ states in Parkinson’s disease. 
This parameter was subsequently implemented as neural feedback in an adaptive closed-loop DBS 
simulation and was shown to be effective. In particular, the thalamic relaying capability was evaluated using 
an Error Index (EI) and the adaptive DBS was found to reduce the EI to 2%, which compared with 20% for 
the PD case without DBS. This was achieved using 58% of the stimulation time used during continuous 
DBS, indicating a large reduction in DBS energy requirements. This selection and implementation of a 
potential neural feedback parameter will assist in developing improved implanted DBS pulse generators.  

1 INTRODUCTION 

Deep Brain Stimulation (DBS) has proven to be an 
effective method for relieving the symptoms of 
patients suffering from Parkinson’s disease (PD), 
Essential Tremor (ET), dystonia (DT) and other 
neurological conditions. During the procedure, 
electrodes are inserted into targeted regions of the 
basal ganglia (Fig. 1) and connected to an Implanted 
Pulse Generator (IPG) positioned subcutaneously 
below the clavicle (Coyne, Silburn et al. 2006).  

Currently the stimulation parameters for DBS are 
chosen heuristically, requiring periodic post-
operative programming sessions to determine the 
optimum settings for symptom reduction for 6 
months (Marjama-Lyons and Okun 2014). Neural 
plasticity effects, progression of the neurological 
disease, patient activity states and changes in the 
medication may all lead to changing stimulation 
requirements over time.  

Closed-loop DBS has been proposed as an 
alternative to chronic open-loop DBS, utilising 
neural feedback signals to regulate the stimulation 
parameters. By sensing symptoms and activating 
stimulation when it is required, it is anticipated that 

the power consumption of the IPG may be reduced, 
symptom reduction may be improved and side-
effects minimised. Figure 1 is a diagram of this 
closed-loop DBS concept with neural feedback 
being used to control the stimulation parameters.    

 

Figure 1: Diagram of closed-loop deep brain stimulation 
(Adapted from Huntington's Outreach Project for 
Education 2010). 

Multiple research groups are currently investigating 
the feasibility of a system (Brain Institute, Utah; 
Neuromedical Control Systems Lab, John Hopkins 
University) and recently closed-loop DBS has been 
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trialled in patients (Little, FitzGerald et al. 2013). 
Prior to this, research has primarily been performed 
on primates or computational models. Carron et al. 
summarises the current closed-loop control 
approaches as delayed and multi-site stimulation; 
optimal control; proportional integral derivative 
control and adaptive stimulation (Carron, Chaillet et 
al. 2013). This work will focus on the latter control 
strategy.  

A major challenge thus far has been determining 
a suitable neural feedback parameter that will 
characterise the severity of PD along with 
progression for the disease. Initial research has been 
conducted, testing the non-markovity spectrum as a 
neural measure however this work was focused on 
measuring linguistic response (Meehan, Bellette et 
al. 2011). It has previously been shown that Local 
Field Potential (LFP) recordings from the sub-
thalamic nucleus (STN) show beta oscillations (8-35 
Hz) in the PD state (Kühn, Kupsch et al. 2006, 
Kühn, Hariz et al. 2008). Recently, Little et al. went 
on further to successfully use this parameter as 
feedback in a clinical trial of adaptive DBS. Results 
showed a reduction in Unified Parkinson’s Disease 
Rating Scale (UPDRS) motor scores by 27% in 
blinded assessment, when compared with continuous 
DBS (Little, FitzGerald et al. 2013). This new 
clinical research testing faces many difficulties and 
limitations that may be overcome with an efficient, 
validated computational model. Hence the present 
research aims to investigate and develop adaptive 
DBS in a computational environment to better 
understand the underlying neural mechanisms 
associated with this method of control.  

This research focuses on the identification of an 
effective feedback parameter for closed-loop DBS 
and quantifying the feasibility of using the parameter 
in an adaptive DBS feedback system. A 
computational model of the basal ganglia based on 
the Rubin-Terman model (Rubin & Terman, 2004), 
is used to simulate DBS for PD in the STN (So, 
Kent et al. 2012). Neural output is then processed 
and feedback parameters for PD are investigated. In 
particular, the interspike interval is subsequently 
implemented as neural feedback in an adaptive 
closed-loop DBS simulation and its effectiveness 
quantified. It is expected that demonstrating the 
feasibility of closed-loop DBS for PD will provide a 
basis for future investigations into more efficient and 
effective systems for the treatment of PD and other 
neurological conditions. 

 

2 METHODS 

This research builds upon a well-developed model of 
the basal ganglia to develop an adaptive DBS 
simulation. The existing basal ganglia model is first 
presented, along with simulation parameters. This is 
followed by details of two signal analysis methods 
used to determine feedback parameters. A third 
signal analysis method is also presented which will 
be used to characterise the effectiveness of DBS. 

2.1 Basal Ganglia Model 

The basal ganglia (BG) is involved in the signal 
processing of a range of neural functions including 
voluntary motor movement, learning, cognition and 
emotion. In the BG, information is transmitted 
between nuclei via inhibitory and excitatory 
projections. Under the canonical model of BG motor 
loops, these projections form direct and indirect 
pathways through the BG. Figure 2 shows these 
pathways and synaptic connections on a cross-
section of the BG.  

 

Figure 2: Diagram of the indirect (blue) and direct (red) 
pathways through the basal ganglia with excitatory and 
inhibitory connections represented with arrows and flat-
ends respectively (Calabresi, Picconi et al. 2014).  

In Figure 2, excitation of the direct pathway from 
the cortex has the effect of exciting the putamen, 
inhibiting the globus pallidus internus (GPi) and 
consequently disinhibition of the thalamus, resulting 
in ease of firing. Conversely, excitation of the 
indirect pathway from the cerebral cortex results in 
excitation of the putamen and consequently 
inhibition of the globus pallidus externus (GPe). 
This in turn leads to disinhibition of the sub-
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thalamic nucleus (STN), excitation of the globus 
pallidus internus (GPi) and inhibition of the 
thalamus. When functioning correctly these 
competing pathways balance so that the thalamus 
operates correctly. A review of indirect/direct model 
suggests that it is still the most plausible BG model, 
although the possible role of pathway interactions 
must be revised in light of recent experimental work 
(Calabresi, Picconi et al. 2014).  

An existing computational model of the BG, 
developed by So et al., was used to simulate neural 
output (So, Kent et al. 2012). This model is based on 
the Rubin-Terman model (Rubin and Terman, 2004) 
and it is a simplified model of the BG with 
components of the classical indirect and direct 
model. The excitatory and inhibitory synaptic 
connections of the computational BG model are 
summarised in Figure 3.  

 

Figure 3: Excitatory and inhibitory synaptic connections 
used in the Basal Ganglia model. 

In this model only the subcortical-thalamic region 
(Tha), subthalamic nucleus (STN), globus pallidus 
externus (GPe) and globus pallidus internus (GPi) 
are modelled. STN neurons are modelled with 
excitatory synapses to two GPe and GPi neurons; 
GPe neurons inhibit two STN, GPe and GPi neurons 
and each GPi neuron inhibits a Tha neuron. The 
DBS stimulation is applied to the STN and 
sensorimotor excitatory stimuli is inputted to the 
Tha.  

The individual neuron membrane potentials were 
modelled using single-compartment conductance-
based biophysical models of the form (Terman, 
Rubin et al. 2002, Rubin and Terman 2004), 

.m L Na K T Ca ahp inC I I I I I I I I
dV

dt

b
a b-= - - - - - - - + (1)

In (1), Cm is the membrane capacitance; Vβ is the 
membrane potential; IL, INa, IK, IT, ICa and Iahp are the 
leak, sodium, potassium, low-threshold calcium, 
calcium and afterhyperpolarization currents 

respectively. Like most conductance based models, 
each of these currents is controlled via a time variant 
channel activation equation. Depending on the 
nuclei, the total cell current is a combination of these 
along with any current inputs, Iin which may include 
DBS, constant bias currents and sensorimotor input. 
The complete equations and model parameters used 
in this model are available in So et al. Synaptic 
currents Iα-β between neurons are represented as 
follows where α is a pre-synaptic and β is a post-
synaptic neuron: 

.j

j
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(2)

In (2), ݃ఈ→ఉ is the maximal synaptic conductance 
and Eα-β is the synaptic reversal potential. The gating 
of neurotransmitter receptors, S, varies from 0 to 1 
and are described using an average response model. 
For STN and GPi efferents, a second order alpha 
synapse was used, where u(t) = 1 if the pre-synaptic 
cell spikes and is otherwise 0: 
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The remaining connections were modelled using 
first order alpha synapses of the form: 
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In the Parkinson’s disease state, the loss of 
dopamine results in disinhibition of the GPi via the 
direct pathway and increased inhibition of the GPe, 
disinhibition of the STN and further increased 
activity of the GPi via the indirect pathway. PD 
states were simulated using a reduction in applied 
currents to the STN, GPe and GPi as summarised in 
Table 1 (So, Kent et al. 2012).  

Table 1: Applied currents in PD and Healthy states. 

Neural State app STNI 
 

app GPeI 
 

app GPiI 
 

Healthy 33 µA/cm2 20 µA/cm2 21 µA/cm 
Parkinson’s 23 µA/cm2 7 µA/cm2 15 µA/cm2 

This produced firing behaviour consistent with 
humans, rodents and primates with PD (So, Kent et 
al. 2012). The reduction in the GPe applied current 
is the largest which corresponds with disinhibiting 
the GPi and STN. 

High-frequency DBS input into the STN was 
modelled using the Heavyside step function, H, 
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(sin(2 t)) 1 (sin(2 ( ))) ,
DBS DBS DBS DBS DBS
I i H f H f tp p dé ù= ´ - +ê úë û (5)

where iDBS is the stimulation amplitude, fDBS is the 
stimulation frequency and δDBS is the pulse width. 
Simulations were run in MATLAB (MATLAB 8.3, 
The MathWorks Inc., Natick, MA, 2014). The 
simulated time was 6000 ms, with 30 neurons per 
nuclei, 130 Hz stimulation and a time-step of 0.01 
ms using Euler’s forward difference method unless 
otherwise indicated.  

2.2 Signal Analysis 

The interspike interval and synchrony measures are 
presented in this section and will be applied to the 
spike-trains from the BG model. The third measure, 
Error Index, tests for relaying fidelity and will be 
used to examine DBS effectiveness.  

2.2.1 Interspike Interval 

The Interspike Interval (ISI) is defined as the time 
between subsequent action potentials of the spike 
train. The mean ISI of a neuron is often calculated to 
be, 

1

1
,

n

i
i

ISI ISI
n =

= å  (6)

where n is the number of spikes and ISIi is the 
interval between two spikes. Whilst regularly used 
for leaky integrate and fire (LIF) models, it requires 
individual spike train data for neurons. This is 
suitable for computational models but difficult to 
obtain from in-vitro microelectrode recordings 
(MER), unless a single-unit MER is used. The 
threshold for peak detection was set at -10 mV and 
the average and standard deviation of the ISI was 
then taken across all 30 neurons, for each nuclei. 
This resulted in a dataset of approximately 2,000 
spikes for the thalamic region to 14,000 spikes for 
the GPi. 

2.2.2 Synchrony 

It has been proposed that in PD states, increased 
synchrony occurs in the GPi and that synchrony is 
reduced in the thalamic region (Rubin and Terman 
2004). Golomb proposes the following measure for 
neuronal synchrony χ (Golomb and Rinzel 1993): 
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In (7) the variance of the total voltage is defined as, 
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Similarly the variance of individual neurons is 
defined as: 

22 2( ) ( ) .
i

i iV tt
V t V ts é ù= - ê úë û  (9)

It can be seen that the neuronal synchrony measure 
relies on voltage data from a population of neurons 
which is only readily obtained from computational 
models. For completely asynchronous behaviour, it 
is expected that the synchrony measure will decrease 
as the number of neurons sampled is increased. 
Otherwise, for synchronous and weakly 
synchronised neurons, the degree of synchrony will 
be constant for varying N.  

2.2.3 Error Index 

Rubin and Terman have proposed an Error Index 
(EI) to characterise the relaying fidelity of the 
thalamic region (Rubin and Terman 2004). The EI is 
determined as, 

( )1
,

misses false
EI E E

n
= +å å  (10)

where n is the number of input stimuli, E is an error 
from either a false positive or a miss. False positives 
are defined as spikes occurring without stimulus and 
multiple spikes in response to a single stimulus. 
Misses are defined as a failure to respond within 10 
ms of a stimulus. High EI values correspond with 
poor thalamic relaying capability of sensorimotor 
input. In this testing, the EI is evaluated over a 
sample size of approximately 800 input stimuli. This 
EI will be used to characterise the effectiveness of 
adaptive DBS in maintaining relaying capacity in the 
thalamic region of sensorimotor input and compared 
with results for healthy, PD and continuous DBS 
states.  

3 RESULTS 

In this section the signal analysis results are used to 
determine an optimum neural feedback parameter. 
After being selected, the parameter is then used as 
neural feedback in an adaptive DBS simulation. The 
effectiveness of the adaptive DBS is compared with 
healthy, PD and continuous DBS states, using the 
Error Index measure to test for thalamic fidelity. 
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3.1 Signal Analysis 

Two signal analysis methods are presented here as 
possible feedback parameters. The results from the 
interspike interval analysis is shown first, followed 
by Golomb’s synchrony measure. 

3.1.1 Interspike Interval 

The Interspike Interval (ISI) results have been 
plotted in Figure 4 for each of the nuclei in the 
healthy, PD and PD with DBS states. When in the 
PD state an increase in ISI can be observed in the 
thalamic region due to misfiring. In the STN, the ISI 
is reduced when DBS is applied since the neurons 
are triggered to fire in unison at the 130 Hz 
stimulation frequency. The GPi has a reduced ISI 
when DBS is applied and the ISI in the GPe 
increases for the PD state.  

All four nuclei have an increase in ISI variance 
(square of the standard deviation) for the PD states. 
In particular, the standard deviation of GPe ISI 
increases the most, rising by 380% in the PD state 
(see error bars in Figure 4). This compares with a 
corresponding 87% increase in ISI. This increase in 
variance can be attributed to periodic periods of 
spiking in the GPe instead of sustained firing. Once 
DBS is applied, GPe ISI and standard deviation of 
ISI return to similar values to the healthy state. ISI 
variance in the thalamic region also exhibits similar 
increases. This could be explained through BG loops 

(Figure 3) as reduced activity in the GPe resulting in 
disinhibition of the GPi and consequently increased 
inhibition of the thalamus. This significant variation 
in variance in the GPe shows potential as a possible 
neural feedback parameter for ‘on’ and ‘off’ PD 
states.  

The response of the ISI was then tested for the 
four nuclei when the DBS frequency is adjusted. 
This was performed to determine if there were any 
relationships between DBS frequency and ISI 
measures. A batch script was run increasing the 
frequency incrementally in intervals of 1 Hz from 0 
to 120 Hz. The STN mean ISI was found to be 
inversely proportional to frequency, as the STN 
neurons are triggered to fire by the DBS.  

In Figure 5, high fluctuating values are observed 
in the ISI variance for thalamic neurons when 
stimulation frequency is less than 52 Hz and 
consistent low values are observed above 70 Hz. 
From the results in Figure 4, it is assumed that low 
variance corresponds with the DBS working 
effectively and returning the BG to a healthy state. 
In Figure 5, a spike in ISI and ISI variance occurs at 
40-50 Hz suggesting that 40-50 Hz DBS may be 
counter-effective.  Similar trends were observed in 
the GP region with stimulation appearing to be 
ineffective for frequencies lower than 50 Hz. This is 
consistent with the current understanding that low-
frequency DBS (<50 Hz) can be counter-effective 
although the neural mechanisms for this are still 
unknown (McConnell, So et al. 2012). 

 

Figure 4: Mean Interspike Interval plotted for each of the four nuclei at healthy, Parkinson’s disease and DBS corrected 
states with the standard deviation represented as error bars. Stimulation parameters are set at 130 Hz with pulse width of 0.6 
ms and amplitude of 350 µA/cm2. 
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Figure 5: Thalamic ISI for varying DBS frequency. 

The ineffectiveness of low-frequency DBS (<50 Hz) 
and consistent effect at high frequencies (>80 Hz) 
suggests that DBS frequency would not be an 
effective stimulation control parameter.   

3.1.2 Synchrony 

The synchrony of the four nuclei in the healthy, PD 
and PD with 130 Hz DBS states can be seen in 
Figure 6. The measure has been plotted as a function 
of N, the number of neurons included in the 
measure. For completely asynchronous systems, it is 
expected that the synchrony measure will go to zero 
as N approaches large values. Clearly in this case 
this testing is limited since only 30 neurons were 
used in each nuclei.  

Monotonic decreasing trends towards zero 
should be observed if the system is asynchronous 

and here it can be seen that the four nuclei are each 
not completely asynchronous. The thalamic nuclei 
has a 37% reduction in synchrony for the PD state 
due to misfiring and GPi inhibition. After DBS is 
applied, synchrony increases to value of 1, 
indicating that sensorimotor input is being 
transferred correctly. In all other regions, the DBS 
results in increased degrees of synchrony, with the 
greatest increase occurring in the STN where the 
DBS is applied.  

It appears that synchrony in the thalamic region 
could be used as a feedback signal for the PD state, 
although the DBS state appears to lead to a higher 
degree of synchrony than the healthy state. It should 
also be noted that this measure requires the 
individual membrane potential data of a large 
number of neurons, which is only obtainable in 
computer simulations at this stage. 

3.2 Adaptive DBS 

An adaptive DBS scheme was implemented utilising 
ISI variance in the GPe as a trigger for stimulation. 
The motivation for this selection was based on the 
largest rise between PD and healthy states. The 
adaptive DBS stimulation threshold was set for a 
GPe ISI standard deviation greater than 13 ms based 
on data from the preceding 500 ms. This threshold 
was chosen to be slightly above the variance of the 
healthy state. A block diagram of this adaptive DBS 
system is shown in Figure 7. 

 

 
Figure 6: Synchrony for the four nuclei plotted as a function of the number of neurons included in the measure. 
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Figure 7: Block diagram of the adaptive DBS system. 

Dynamic Parkinson’s disease conditions were 
created by applying a stepped PD severity input. A 
Parkinson’s Severity Factor (PSF) on a scale of 0-1 
is used to adjust the PD severity and the applied 
current in the STN, GPe and GPi was modified as 
follows: 

.
app PD base PD
I I PSF I

-
= - ´  (11) 

The base current values Ibase in (11) were the healthy 
applied currents and IPD was determined as the 

difference between healthy and Parkinsonian states 
in Table 1. Once stimulation is triggered, the aDBS 
remains on for at least 150 ms before switching off.  

The resulting spike trains in the basal ganglia can 
be seen in Figure 8 for PD, with adaptive DBS using 
GPe ISI variance as a feedback parameter to respond 
to stepped PD severity input. For convenience, a 
close-up of 1000-3000 ms is shown in Figure 9 so 
that the effects of adaptive DBS may be compared 
with the PD state. In Figure 8 [A], between 0 and 
2000 ms, the BG is in the PD state. By comparing 
the neuron spike train (above) with the sensorimotor 
input (below), errors in the thalamic relaying 
capability can be observed. These errors are 
highlighted in Figure 9 [A], with two misfires 
observed between 1000-2000 ms. At the same time 
PD conditions are evident in Figure 8 [C] & [D] 
with bursting firing behaviour in the GPe and GPi. 
This is firing behaviour is seen clearly in Figure 9 
[C] & [D], (left) with varying intervals between 
bursts. 

 

Figure 8: Adaptive DBS (aDBS) using variance of ISI from the GPe as a feedback signal. Between 0-2000 ms the 
Parkinson’s severity is at a maximum and aDBS is not turned on; at 2000 ms the aDBS is initiated; between 4000-6000 ms 
Parkinson’s severity is stepped down to 50% and at 6000 ms the severity is further reduced to 0%. [A] Spike-train from a 
thalamic neuron (above) with sensorimotor input (below); [B] Spike-train from a sub-thalamic nucleus neuron (above) with 
DBS stimulation times (below); [C] Spike-train from a globus pallidus externus neuron and [D] Spike-train from a globus 
pallidus internus neuron. 
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When adaptive DBS (aDBS) is initiated at 2000 ms, 
the STN stimulation triggers periodically to maintain 
consistent firing in the GPe as seen in Figure 8, [B]. 
Figure 9 shows a close-up of this transition for 
thalamic, STN, GPe and GPi neurons. It can be seen 
in Figure 9 [B], (right) that the application of 
stimulation to the STN triggers high-frequency STN 
firing and restores thalamic throughput capability in 
Figure 9 [A], (right). The short periods where the 
aDBS switches off stimulation does not appear to 
lead to errors in the thalamic relaying of 
sensorimotor input. 

 

Figure 9: The transition from adaptive DBS being ‘off’ to 
‘on’ for an [A] thalamic, [B] sub-thalamic nucleus, [C] 
globus pallidus externus and [D] globus pallidus internus 
neuron; misfires in the thalamic region are circled in red. 

In Figure 9 [C], when aDBS control is initiated the 
GPe firing rate is steady during periods when 
stimulation is on. Once the standard deviation of the 
GPe ISI is reduced below the threshold, the 
stimulation switches off and the GPe returns to 
bursting behaviour (e.g. 2370-2460 ms). If the 
standard deviation of the GPe ISI exceeds the 
threshold, stimulation is turned on again and this 
‘on’ and ‘off’ cycle can be seen in Figure 8 [B] until 
the Parkinson’s severity is lowered. The GPi does 
not appear to be affected by the short periods where 
the stimulation is switched off which suggests a 
delayed response. The continuous firing of the GPi 
during these short periods of no stimulation may be 
an important factor in the success of the aDBS in 
maintaining reliable thalamic throughput.   
 

During 4000-6000 ms in Figure 8, the severity of 
Parkinson’s is reduced to 50% and a reduction in 
GPe bursting behaviour is observed in [C] due to the 
increase in applied current. As a result, the period 
between STN stimulation triggering in [B] increases 
since there is less variance in the GPe ISI. This 
reduction in stimulation ‘on’ time does not appear to 
impact the thalamic relaying capability. Finally, 
when healthy conditions are imposed from 6000 ms, 
regular GPe firing is observed in Figure 8 [C] and 
consequently the aDBS control scheme no longer 
triggers stimulation. No bursting is observed in the 
GPe or GPi and the thalamic neuron transmits the 
sensorimotor input correctly.  

 

Figure 10: Error Index results for healthy, Parkinson’s 
disease (PD), PD with adaptive DBS and PD with 
continuous DBS states. 

The Error Index (EI) is used to determine the change 
in thalamic relaying capability when adaptive DBS 
and continuous DBS are applied. These results are 
compared to healthy and PD states in Figure 10 for a 
stepped PSF input identical to Figure 11, [A].  

Figure 10 shows that adaptive DBS was 
successful in reducing the EI from 20% to 2%. The 
healthy state had an error index of 1% and the PD 
with cDBS state had an EI of 0.2%. Although the 
aDBS did not reduce the EI to the levels of cDBS, 
occasional misfiring does occur in the healthy state 
and this is most likely an acceptable result. The clear 
advantage of aDBS here is that only 58% of 
stimulation was used in comparison with the cDBS 
system whilst achieving a 95% of the reduction 
towards the healthy state. If further tuning of the 
aDBS is performed along with the implementation 
of more advanced control methods, it is possible that 
healthy conditions could be achieved with 
substantial power savings.   

The effectiveness of adaptive DBS was further 
quantified by investigating the change in the GPe ISI 
standard deviation with respect to Parkinson’s 
Severity Factor, as shown in Figure 10. A stepped 
PSF input has been inputted to the simulation with 
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and without aDBS applied. When no DBS is applied 
the standard deviation of the GPe ISI remains well 
above the healthy threshold values for a maximum 
PSF. It can be noted that the variance has a delayed 
response to a stepped reduction to the PSF at 2000 
ms. When aDBS is operating, the standard deviation 
reaches the threshold regularly and triggers STN 
stimulation. Comparing Figure 11 [C] and [D] to [B] 
it is deduced that aDBS is effective in maintaining 
healthy levels of variance in the GPe spike train. 

 

Figure 11: [A] Stepped inputs of Parkinson’s Severity 
Factor over time; [B] Standard deviation of GPe ISI 
without aDBS being applied; [C] & [D] Adaptive DBS 
with stimulation time (top) and corresponding Std. Dev of 
GPe ISI (bottom). 

4 CONCLUSIONS 

In this investigation we examined the feasibility of 
interspike interval (ISI) and synchrony as feedback 
parameters for closed-loop DBS. Between the 
healthy, Parkinson’s Disease (PD) and PD with DBS 
states, an 87% increase in interspike interval was 
observed in the globus pallidus externus (GPe). It is 
hypothesised that this increase in interval between 
spikes results in disinhibition of the globus pallidus 
internus (GPi) which in turn inhibits the thalamus 
and prevents the thalamus from relaying 
sensorimotor input effectively. Underlying 
rhythmicity in the GPi appears to further inhibit the 
thalamus. In the PD state, the standard deviation of 
GPe ISI was found to increase by 380% from the 

healthy and PD with DBS states and thus 
demonstrated potential as a feedback parameter.  

Synchrony in the thalamic region was found to 
drop by 37% from the healthy to PD state. It should 
be noted that once DBS was initiated, the synchrony 
measure in the thalamic region exceeded the healthy 
levels. Other regions of the basal ganglia only 
exhibited synchrony changes for the PD with DBS 
state. Due to the practical difficulties associated with 
obtaining multiple neuron recordings in a clinical 
setting for the synchrony measure, the standard 
deviation of ISI in the GPe was thus investigated 
further in a closed-loop DBS simulation.  

An adaptive DBS (aDBS) closed-loop control 
scheme was used, where stimulation was turned on 
or off depending on whether the GPe ISI Std. Dev 
exceeded a threshold of 13 ms. The response of the 
system was tested for stepped inputs for varying 
Parkinson’s Severity Factors (PSF). The aDBS 
scheme was successful in improving the thalamic 
relaying capability, with an Error Index (EI) of 2%. 
This compared with 1% for the healthy state and 
20% for PD with no DBS. In this implementation, 
the aDBS applied stimulation for 58% of the total 
time during a stepped PSF input, indicating a 
substantial reduction in DBS power consumption.  

Challenges still remain between testing in the 
computational environment and implanting this 
technology in patients. Although clinical trials have 
already successfully been performed by Little et al. 
using beta-oscillations as a feedback parameter, 
those trials were performed using a wired connection 
between dedicated signal processing tools, laptop 
and patient. The miniaturisation of these systems 
into an IPG has yet to be achieved and this work 
faces similar challenges with the signal analysis 
tools. The accuracy of ISI interval sampling has also 
not been tested in patients for this work although 
single-cell microelectrode recordings may offer one 
potential solution towards gathering the spike 
interval data. 

In this computational simulation, variance 
(square of the standard deviation) in interspike 
interval of the globus pallidus externus has 
successfully been used as a feedback parameter for 
aDBS. Research into more advanced control 
methods such as Proportional-Integral control of 
stimulation amplitude may offer further 
opportunities to improve stimulation efficiency. 
These alternate control methods will require tuning 
to overcome the highly non-linear ‘all-or-none’ 
firing dynamic of neurons. Despite the widespread 
use of such controllers in other applications, it is 
possible that adaptive DBS may achieve a profile 
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closer to the healthy state, due to the ‘all-or-none’ 
nature of the control method. 
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