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Abstract: The Simple Temporal Network with Uncertainty (STNU) modmtidises on the representation and evaluation
of temporal constraints on time-point variables (timep®)irof which some (i.e., contingent timepoints) cannot
be assigned (i.e., executed by the system), but only besskeMoreover, a temporal constraint is expressed
as an admissible range of delays between two timepointsar@ieg the STNU model, it is interesting to
determine whether it is possible to execute all the timepoimder the control of the system, while still
satisfying all given constraints, no matter when the cain timepoints happen within the given time ranges
(controllability check). Existing approaches assumetthabriginal contingent time range cannot be modified
during execution. In real world, however, the allowed timage may change within certain boundaries, but
cannot be completely shrunk. To represent such possiluilitye properly, we propose Simple Temporal
Network with Partially Shrinkable Uncertainty (STNPSU)asextension of STNU. In particular, STNPSUs
allow representing a contingent range in a way that can henkrdturing run time as long as shrinking does
not go beyond a given threshold. We further show that STNR&#ow representing STNUs as a special case,
while maintaining the same efficiency for both controllapithecks and execution.

1 INTRODUCTION straint community has moved from the problem of
consistencywhich consists of determining whether
For more than a decade, the temporal constraint comthere exists an execution of all timepoints satisfying
munity has focused on the concept adntrollabil- all given constraints (Dechter et al., 1991), to the prob-
ity (Morris et al., 2001). Given a set of temporal lem of controllability; i.e., to determine whether it is
constraints, of which each is expressed as an admissipossible to execute all timepoints under the control of
ble range of delays between two time-point variables the system, while satisfying all given constraints, no
(timepoints for short), we distinguish two types of matter when the contingent timepoints happen within
constraints: contingentand requirement constraints  their given time ranges (Morris et al., 2001).

The latter represent the standard temporal constraints,  \1ost contributions from literature assume that the
where both timepoints are under control of the sys- grginal time range of a contingent constraint cannot
tem that “executes” the timepoints according to the pe mogified during execution. Thus there is no differ-
assigned constraints (i.e., the system fixes the time-gnce petween contingent timepoints given by the en-
points on the time line). This means that, during \;ronment and the ones executed by external agents.
execution, the range admissible for some timepoints |, the real world. however. it is quite common that
could be restricted by the system as it depends ongyring execution the allowed time range may change,
the execution of already executed timepoints. In tum, 4jthough it cannot be completely shrunk. To represent
contingent constraints are related to pairs of time- iha pehavior of external agents more properly, we may
points of which one (i.e., theontingent timepoit  a5sume that an agent accepts certain reductions (i.e.,
is not under control of the system. Contingent time- mqjfications) of the initial execution range, as long
points are either given by the environment (Morris 44 these do not go beyond a given threshold. In other
et al., 2001), i.e., they are related to uncontrollat_)le,wordsy there is an unshrinkable range of execution
but expected, events, or by an external agent (i.€..time the agent can always use. Further, this range is in-
human or software) who may decide autonomously ¢|yded into a larger one, the system may shrink during
yvhen to execute the contingent timepoint. Consider- gyacution. The basic idea of our approach is to repre-
ing this scenario, the attention of the temporal con- gant the fact that both the agent and the system are
*This paper is a short version. A more complete version aware that some timepoints of the larger time range
is described in a technical report (Lanz et al., 2014). may be removed before starting the agent’s activity.
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Simple Temporal Networks with Partially Shrinkable Uncertainty

[25,50] in simple temporal constraint networks with uncer-

/ ) tainty (STNUs), i.e., temporal networks that allow
T1 Biking [L5] (T2 Stretching ‘ representing both requirement and contingent con-
[5,20] straints (Morris et al., 2001). In addition to dynamic
(a) Rigid temporal ranges qontrollability, we discuss that. there are no alterna-

tive representations of such shrinkable contingent con-
[25,50] straints based on compositions of standard require-

/ | ment and contingent constraints. Moreover, we gen-

T1 Biking [L5] (T2 Stretching ‘ eralize shrinkable constraints to represent time ranges
[5,20] [10,[15,20],40] having certain “guards” on their possible lower and
(b) Flexible temporal ranges upper bounds.

Figure 1: A simple physiotherapy. Rangey] represents
the minimum and maximum allowed duration (in minutes)

for the corresponding activity. 2 BACKGROUND AND RELATED
WORK

For example, consider a physiotherapy (cf. Fig. 1)
consisting of two subsequent activities, nantking i
andStretching, with one overall temporal constraint. A Simple Temporal Network (STN) (Dechter et al.,
The first activity has an allowed duration range, while 1991) is @ directed weighted graph where a node rep-
its actual duration is decided by the physiotherapist '€S€nts a time-point variable (timepoint), usually cor-
according to the patient's state. The second activ-responding to the start or end of activities, and an_edge
ity, i.e., the stretching exercise, is performed by the Tépresents a lower and an upper bound constraint on
patient over a time period, which is decided by an- the d|stanqe betwgen the_ two timepoints it connects.
other therapist who considers both the state of the E&ch STN is associated wittdéstance graphderived
patient and the goal of the therapy. Let us assume oM the upper and lower bound constraints, where a
that the given ranges are as depicted in Fig. 1 (a):constraint between a pair 0‘:, timepoirtsandY is
activities are visualized as rounded boxes and subserepresented as two edgeX:— Y, representing the
quent activities are linked to their predecessor through constrainty < X + v, andX <= Y, which stands for
a directed arc. Temporal constraints are representedy > X 4-u, u,v € R. An STN is denoted asonsistent
through arcs together with their related ranges. Ac-if it is possible to execute each node, i.e., to assign a
tivities Biking and Stretching have possible durations  real value to each timepoint such that all temporal con-
within rangeg5, 20] and[10,40], respectively, which  straints are satisfied. The consistency property can be
are autonomously decided by therapists. However,verified by searching fonegative loopsn the graph.
the overall therapy must be within ran{f5,50|, as- It is well known that consistency checking as well as
suming that it may take between 1 and 5 time units to determining the earliest/latest value of each timepoint
startStretching after endingBiking. Note that for this  can be done in polynomial time (Dechter et al., 1991).
scenario it can be easily verified that the correspond-  To represent events that cannot be executed,
ing temporal network is not controllable, as there is but only observed, (Morris et al., 2001) intro-
no way to ask the second activity to have a duration duced Simple Temporal Networks with Uncertainty
depending on the actual duration of the first activity. (STNUs). STNUs augment Simple Temporal Net-
As more realistic representation of this scenario, works (STN) (Dechter et al., 1991) wiitontingent
the second therapist may accept that the allowed dutimepointsrepresenting timepoints whose value is de-
ration range may be shrunk during execution, while cided by the environment. Each contingent timepoint
guaranteeing that the “core” ranffs, 20| can be al-  has one incoming edge, calledntingent link which
ways applied when executingtretching. This sce-  is labeled by a time range. Therefore, any contin-
nario is depicted in Fig. 1 (b) where the range is gent timepoint may assume a value from a bounded
represented ad.0,[15,20],40], highlighting the non-  range, but the exact value is decided by the environ-
shrinkable part. One can easily observe that in this ment at run time. (Morris et al., 2001) provided a for-
case the network can be executed in a way satisfy-mal semantics for thdynamic controllability which
ing all constraints, while still allowing the therapists is discussed in detail in Sect. 2.1. Moreover, (Mor-
to autonomously choose the durations of the involved ris et al., 2001) presentedpseudo-polynomial-time
activities. algorithm, calledDC-checking algorithmthat deter-
This paper discusses how to represent and dealmines whether a given STNU dynamically control-
with the described extension of contingent constraints lable (DC). Further, (Morris and Muscettola, 2005)
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proposed the first polynomial DC-checking algorithm,
which operates it©(n°) time, wheren is the number
of timepoints. In this paper, we denote this algorithm
as MMS5. In turn, (Morris, 2006) and (Morris, 2014)
presented two interesting optimizations of the MM5
algorithm not further discussed in this paper.

(Lanz et al., 2013) showed how Conditional Sim-
ple Temporal Networks with Uncertainty (CSTNUS),

an extension of STNU considering alternative execu-

e Each upper-case edng;XA, represents the
possibility that the contingent duratiorGC — A,
might take on its maximum valuge
An STNU isdynamically controllablef there ex-

ists a strategy for executing its timepoints, in a way
guaranteeing that all constraints in the network can
be satisfied, no matter how the durations of the contin-
gent links actually turn out. The strategy is dynamic
since its execution decisions can react to observations

tion paths, can be applied in the context of time-aware of contingent links that have already been completed,

business processes in order to verify their controllabil-

ity at both design and run time. Concerning temporal

while excluding those not completed yet.
This section presents preliminary notions and in-

aspects of a business process, itis emphasized that ag¢roduces the dynamic controllability of an STNU as
tivity durations usually represent worst case estimates,defined in (Morris et al., 2001) and subsequently fixed
which are either based on the experience of a domainin (Hunsberger, 2009).

expert or extracted from process logs; further, the ex-

ecution times of most activities can be shortened if

required. Accordingly, one may assume that an ac-

tivity has aflexible maximum duratiorMaxDg that
may be restricted up to eontingentminimum and
maximum duration ranggMinDc, MaxDc]. In other

words, they proposed and analyzed a mapping of time-
aware business processes to CSTNU in which activity
durations are expressed in terms of shrinkable time

intervals[[MinDc, MaxDc|MaxDg].

For a more extensive discussion of the related
work please refer to our technical report (Lanz et al.,
2014).

2.1 Dynamic Controllability of STNUs

As proposed by (Morris et al.,, 2001), an STNU is
a set of time-point variables (timepoints) and tempo-
ral constraints together with a set of contingent links.
Each contingent link has the for(@, x,y,C), where

A andC are timepoints and & x <y < o holds. A

is called theactivation timepoinandC thecontingent
timepoint OnceA is executedC is guaranteed to be
executed such th& — A € [x,y] holds. However, the
particular time at whickC is executed is uncontrol-
lable since it is decided by the environment; i.e., it
can be only observed when it happens.

Let s = (7,C, L) be an STNU, withZ being a
set of timepointsC a set of constraints, anda set of
contingent links. The corresponding graph fohas
the form (T, E, E,,‘Ey). Thereby, each timepoint in
T serves as a node in the graphis a set obrdinary
edgesi, is a set olower-caseand %, a set ofupper-
caseedges (Morris and Muscettola, 2005):

e Each ordinary edge has the font+%Y, repre-

senting the constraint — X < v.

¢ Eachlower-case edge has the fokd-%C, repre-
senting theossibilitythat the contingent duration,

C— A, might take on its minimum value
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For an STNU, aituationspecifies fixed durations
for all contingent links.

Definition 1 (Situations) Let S be an STNU
comprising k contingent links{A1,x1,y1,C1), - .-,
(A, X, Yk, C«), with corresponding duration ranges
(X1, Y], - - X Yi]- Then: Qg = [xq,y1] x ... x X, Y]

is' called the space of situations fgf. Any w =
(d1,...,dx) € Qg is called a situation. Where possi-
ble, we may writé instead ofQ.

The concept o6chedulgormalizes the execution
of timepoints.

Definition 2 (Schedule) A schedulefor an STNU is
a mappingy : 7 — R that assigns a real number to
each timepoint inZ .

Given a situationw for an STNU, the replacement
of its contingent links by the durations specifiecuin
determines a projection of the STNU onto situatian

Definition 3 (Situation Projection foran STNUBup-
posesS = (7,C,L) is an STNU ando = (dj,...,dk)
a situation. Theprojectionof § onto w—denoted as
SitPrj (S, w)—is the STNT, ') with:
C=CU{(t<CG-A<d)|1<i<k}
Given an STNU, multiple schedules may exist.

We are interested in finding a strategy that determines
schedules that satisfy all constraints in any situation.

Definition 4 (Execution Strategy for an STNU) et

S =(7,C,L) be an STNU. Aexecution strategfor

S is a mappingo : Q — Y such that for each situa-
tion w € Q, o(w) is a (complete) schedule for the
timepoints inZ. Furthermore, if for each situatiom
schedulea(w) is a solution for the situation projec-
tion sitPrj($, w), theno is calledviable. In any case,
the execution time of timepoint X in schedalev) is
denoted ago(w)|x.

A situation history for an STNU specifies the du-
rations of all contingent links that have finished their
execution prior to a timein schedules(w).
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Table 1: Edge-generation rules of the MM5 algorithm. S must be distinct time-point variables, and does not

Dashed edges are the generated ones. represent a constraint on thialuesof those variables.
S We observe that the edge-generation rules from
No Case: U/' \ Table 1 only generate ordinary or upper-case edges.
Q--- Eietaie T The upper-case edges generated by respective rules
S represent conditional constraints, calledits (Mor-
Upper Case: e w ris et al., 2001). In particular, an upper-case edge
Q--- Ry T T BCI YA represents the following constraint: as long
S as contingent timepoir@ remains unexecuted, time-
SV \ point B must wait at least units after the execution
Lower Case: Q--- o T of A, the activation timepoint fo€.
Applicable if: V< OV (v=0AS%T) Procedure: MM5-DC-Check().

) S ) Input: G= (7,C,L): STNU graph instance to analyze.
Cross Case: SUT R Output: the controliability ofG.
ross Lase: Q--------- -T for 1to |7 |2+ |T||L]+|L£| do
if (AllMax matrix inconsistenthen return false
Generate new edges using rules from Table 1;
if (no edges generatethen return true;

Label Removal: v return false,

Applicable if: v > —X, X is the lower
bound for the contingent link from T to R Procedure MMS'DC'ChePk ShOV\{S the pseu'
docode of the MM5 DC-checking algorithm. Its time
Definition 5 (Situation History for an STNU)Let  complexity isO(n®) (Morris and Muscettola, 2005).

S =(T,C,L) be any STNUg any execution strat- ) o
egy forS, wany situation, and t any real number. The 2.2 Alternative Characterization of an

history of t in situationw for strategyo—denoted as Execution Strategy
sitHst(t, w, 0)—is defined as follows:

As observed in (Hunsberger, 2009), the original defi-
sitHst(t, w,0) = {(A,C, [0(w)]c — [o(w)]A) | nition of dynamic execution stratedPES) obscures
3x,y such thafA x,y,C) € LA [o(w)]c <t} the real-time features of typical execution scenarios
and the kinds of execution decisions an execution sys-
Definition 6 (Dynamic Execution Strategy for an tem may make. Therefore, (Hunsberger, 2009) pro-
STNU). An execution strategy for an STNU is  posed an alternative characterization of a DES to not
called dynamicif for any situationsuy andwy, and  only represent the conditions under which a system
any non-contingenttimepoint X, it holds: must make real-time execution decisions, but also
sitHst [o(en)]x, w1, 0) = sitHst([a(0n)]x, w2, 0) t_he outcomes of th_o_se decisions. Two ki_nds of real-
i e time execution decisions (RTEDSs) are defined: WAIT
= [0(w1)]x = [o(we)]x. and (t,X), which can be described as: “Wait until
some contingent duration completes” or “If nothing
happens before, then execute the (executable) time-
points inx.” The outcome of a RTED depends on
the situation and is represented by a partial sched-
ule that specifies the execution of one or more addi-
In order to determine whether an STNU is dynami- tional timepoints. The outcome of a WAIT decision
cally controllable, (Morris and Muscettola, 2005) pro- solely involves the execution of contingent timepoints,
posed a polynomial-time checking algorithm, MM5, whereas the outcome of(a, X) decision may involve
which works by recursively generating new edges in the execution of contingent as well as non-contingent
the STNU graph according to the rules from Table 1 timepoints. An RTED-based strategy is defined as
and checking whether newly added edges determinea mapping from partial schedules to real-time execu-
negative loops in the graph. For each rule, existing tion decisions. (Hunsberger, 2009) proved that RTED-
edges are represented as solid arrows and newly onebased strategies correspond one-to-one to DESs.
as dashed arrows. Each of the first four rules takestwo  In more detail, given an STNU andartial sched-
existing edges as input and generates a single edge asle: 7 — R (i.e., the domain oy may be a subset
output. Finally, notatiorR # S expresses tha&k and of T), we denote by() = max{y(t) |t € Dom(y)}

Definition 7 (Dynamic Controllability of an STNU)
An STNUS is calleddynamically controllabl¢DC)

if there exists an execution strategy fothat is both
viable and dynamic.
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the maximum execution time of timepoints appearing
in Y, by U(w) = {x| x¢ Dom(y)} the set of unex-
ecuted timepoints i, by U*(@) C U (W) the set of
non-contingent unexecuted timepoints, B§(Y) C

U () the set of contingent unexecuted timepoints,
and byu2(y) C US(w) the set of contingent activated
unexecuted timepoints, respectively.

Let @ be a partial schedule for an STN& and
W= (Wy,...,wy) asituation forS. Y respectso if for
each contingent linkA;, x,y,Ci) one of the following
conditions holds: (1) neithek nor C; appear iny;

(2) only Ai appears inp, and(Ai) + o > H(y); or
(3) bothA; andC; appear inp, andy(A) +w = W(G).

W is calledrespectfulif it respects at least one situa-
tion. If Y is both respectful and partial, it is called
a respectful, partial schedule (RPS). A strategis
respectful if for eachw, o(w) respectso.

Let us recall the definition of WAIT an(i,x) de-
cisions.

WAIT Decision. Let ) be some RPS fa§ such that
U?(y) is non-empty. Then WAIT is an admissible
RTED.

Outcome of a WAIT Decision If U2() # 0 andw

is a situation respected hly, then thetime at which
the next contingentimepoint will execute is defined
astne(y, ) = min{Y(A) +wy | G € U3(Y)}. With
X2(W,w) = {C € UA(W) | Y(A) +w = tno(, w)},
we denote the non-empty set of contingent timepoints
that will be executed at timenc(, w). Then, the out-
come of the WAIT decision fog in situationw is de-
fined to be the execution of contingent timepoints at
timetnc(y, w): YU { (G, tnc(y,w)) | G € X3 (Y, w)}.
(1,X) Decision Lety be some RPS fas such that
UX(W) £ 0. If T> p(g) andy is a non-empty subset
of UX(W), then(t,x) is an admissible RTED fap.
Outcome of a(t,X) Decision Letw be a situation
respected byp. The outcome of &t,X) decision de-
pends on the relationship betwetrc(y, w) and in-
stantt. For the sake of simplicity, let® = tnc(y, w)
andy? = x&(y, w) if U3(Y) # 0; otherwise, let® = .

If T¢ < 1, the outcome solely involves the execution
of the contingent timepoints ig?. In turn, if T < 1€,

the outcome solely involves the execution of the non-
contingent timepoints irx. Finally, for 1° =1, the
outcome involves the execution of the timepoints in
bothx2 andy.

(Hunsberger, 2009) proved that the original
dynamic execution strategy can be described
in terms of RTEDs as shown in procedure
RTEDExecutionStrategy. Thereby, function
RTExecutionDecision is used to determine the
the next RTED. For the sake of brevity, the RTED
WAIT is represented a¢t,X) decision withT := oo
andy := 0in the given context.
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Function: RTExecutionDecisiory , ).

Input: S: STNU. y; partial schedule
Output: d(Y): real-time execution decision

if (UX(y)=0) then /I WAIT RTED!
= (1%,X), Wheret* := 0 andy := 0;
(Y X X), wheret* dx =0
else Il (1,X) RTED!

foreach (x e U*(y)) do

W(X) := —oo;
foreach ((A1,G) | Gi € U3() Ax EY
| W(X) = max{W(x), (A + Wi };
floor(x) := max{m(x),W(x)};
go(x) := min{ floor(x),M(x)};
o(y) := (1%,X), wheret™ := min{go(x) | x e U*(p)}
| andx = {x e UX(W) | ™= go(x)};
return d();

A) do

Procedure: RTEDEXxecutionStrategy

Input: S: STNU.
W= {(Z,0)}; /initial partial schedule
while (U (y) # 0) do
(T%,X) = RT ExecutionDecisidw, );
if (nothing happens before tint&) then
| Execute the timepoints ix;
else
Observe the contingent timepoints executed at
somet® < 1%;
Updatey to include the executed events;
Updates to include the corresponding constraints;

Starting with a partial schedules = {(Z,0)},
which only fixes the initial timepointZ, proce-
dure RTEDExecutionStrategy iteratively determines
an RTED 6(y), considering two possibilities (cf.
function RTExecutionDecision). If all executable
timepoints have already been executd)) = (o0, 0)
holds (i.e., RTED WAIT); otherwised(W) = (T*,X)
with the values oft* andx being computed by con-
sidering all unexecuted timepoints and using an all-
pairs, shortest-path algorithnfloor(x) corresponds
to the earliest time, timepointmay be executed with-
out violating its lower bounan(x) or any of its rele-
vant waits. go(x) is the same, except that it enforces
the constraint that does not violate its upper bound
M(x). It is noteworthy that Morris and Muscettola
showed that a conflict betweefoor(x) and M(x)
is not possible for an STNU accepted by their algo-
rithm. After determining the RTEBR(Y) = (T%,X),
procedureRTEDExecutionStrategy waits for the out-
come ofd(y) and then updateg and.S accordingly.

If there are still unexecuted timepoints, the procedure
iterates, otherwise it terminates.
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3 GUARDED TEMPORAL
CONSTRAINTS

T is a set oftimepoints

C is a set ofrequirement constrains [U—VL Y (i.e.,
STN constraints); and

G is a set ofguarded linkseach having the form
(A, [x,x™], [y™"y],C) where A and C are time-
points, and < X <y < oo, x < XMX 0 <yMM <y,
If (Al,[xl,xlm"’fx],[ylm'”,yl],cl) as well aS(Az,
[%2,%M®, [y2™"y2],Cp) are distinct guarded
links in G, then G and G are distinct timepoints.

Regarding an STNU, the execution of a contingent
timepoint can be thought of as being completely out
of the control of the system that executes the network.
Typically, a system activates a contingent lifk x,

y,C) by executing its activation timepoimt. After-
wards, the execution & is out of the system’s con-
trol. However, the contingent timepoi6tis guaran- Informally, we denote an STNPSU dgnamically
teed to execute such th@t- A € [x,y] holds. controllableif it is possible to execute it such that, no

As motivated in Sect. 1, for real-world problems.matter how the execution of any guarded link turns
this is often too strict. In many cases, the system may out, for any other guarded linkA, [x,x™3, [y™", y],
exercise some control over the execution of the con-C) the lower bound never must be increased beyond
tingent timepoint. As example consider a case where,its guardx™ and the upper boung never must be
at an activation timepoint, the system transfers control decreased below its guay®" in order to ensure con-
to an external agent. The agent is then responsible fortrollability of the network.
executing the corresponding contingent timepoint. In The execution semantics of STNPSU can be sum-
turn, the system waits for the agent to complete its marized as follows: The basic execution semantics is
task (i.e., to execute the contingent timepoint). When the same as for an STNU. However, when executing
transferring the control to the agent, the system may an STNPSU, the outer bounfisy| of a guarded link
inform the agent about the temporal constraints to be (A, [x,x"®, [y™",y],C) may be restricted tdx,y’]
met. The agent then adapts its planin order to com-with x < X' < XM y"N <y <y andx <y in or-
ply with the additional constraints. At the same time, der to ensure controllability of the remaining network.
the system must guarantee that it is able to meet theln turn, when executing the activation timepofbf
commitment made, i.e., it needs to ensure that it cana guarded linKA, [x,x™®, [y™",y],C), the latter is ac-
deal with any decision the agent makes for executing tivated and its current bounds, y’| are fixed. Partic-
timepointC based on the given constraints. ularly, the guarded linKA, [x, X", [y™" y],C) is re-

In many cases, the agent responsible for executingplaced by thestrict guarded link(A, X, X],[y,Y],C).
timepointC cannot completely control the execution The latter is equivalent to a contingent link of STNU.
of C either (e.g., in case the agent is executing a net-As we will show in Sect. 3.3, this change does not
work itself). Particularly, he might only be able to pro- affect controllability of the network.
vide a preferred duration rangey| as well as bounds It is noteworthy that guarded links of STNPSU
X" andy™" to whichx may be increased gr may may be used to represent two different types of con-
be decreased (i.ex,< X" andy > y™). In turn, the straintg:
system executing the network must ensure that, when
executing timepoinA (i.e., when activating the con-
straint betweerA andC), the agent responsible for
executing timepoin€ has at leasg™" time units and
is not required to take more thaf'® time units to shrinkable)core [x™X ymin C [x yI. This repre-
executeC. We denotex™* (y™) as theguard of x sents an e>)<tensi[0n of ¥:e ]C|aS[Sig/2]3| conti_ngeelt links
)- of STNU. Moreover, ifx = XMy = yMin hold,

Note that this e?ample addresses al common SCe- he guarded link is equivalent to a contingent link
nario, i.e., to transfer execution control at run ime ot STNU We call this astrict guarded link

to another agent, which is responsible for executing a _ .
complex task (e.g., another network). Type 2: If X" > y™" holds, a guarded link rep-
The need to model constraints of this type requires ~ résents gpartially shrinkable constrainwith a
an extension of the STNU formalism, we denote as  guarded corely™" x™®{. In detalil, this repre-

Type 1: If X" < ymin holds, a guarded link repre-
sents apartially contingent constraint Particu-
larly, the guarded link represents a temporal con-
straintx < C — A <y with a contingent(i.e., un-

Simple Temporal Network with Partially Shrinkable sents a temporal constrait< C— A <y whose
Uncertainty (STNPSU). In particular, STNPSU ex- bounds cannot be shrunk beyond a certain point
tends contingent links of STNU to guarded links. (i.e., X" andy™", respectively). As opposedto a
Definition 8 (STNPSU) A Simple Temporal Net- contingent link,x may be restricted to be greater
work with Partially Shrinkable Uncertainls TNPSU) Iplease refer to our technical report (Lanz et al., 2014)
is a triple (7, C, G), where: for a more detailed discussion.
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thany™" andy to be lower thark™  This rep-

set of guarded links for which the guar* of the

resents an extension of the classical requirementlower bound is lower than the guardy of the upper

constraints.

As example of a Type 1 guarded link consider
guarded link (A,[10,15],[20,40),C), which repre-
sents the duration of activigtretching (cf. Fig. 1 (b)).
During execution, the outer boundt0,40] of this

guarded link may be shrunk in order to ensure con-

trollability of the remaining network. In the given
case, for example, they may be shrunk£9[7,15],
[20,23,C) or (A,[5,15],[20,20],C). However, the
outer bounds may at most be shrunk to¢betingent
core of the guarded link, i.e., the above guarded link
may at most be shrunk {@\, [15,15],[20,20],C).

In turn, an example of a Type 2 guarded link
is given by (A, [5,20],[10,25],C). In this case, the
lower bound of the guarded link may at most be

bound (i.e., Type 1). Further, l&f" = G\ G° be the
set of guarded links for which{' < x™@ holds (i.e.,
Type 2).
If G° contains k guarded links(Aq, [x1, %™,

1™ y1],Ca), - (A X XM [y ™, Wi, Ck ), then

G =M yr™ x Lo )M y™1 s called the
space of core situatiorisr §. Anyw‘ = (dy,...dy) €
Q¢ is called acore situation

S
Further, if G" contains m guarded links(Ay,

[Xla X_lma)ﬂv [ylminayl]acl)’ RAE] (Am7 [va Xmmaﬂ’

™3 G, then @ = [T x ..«
[Ym™ X" is called thespace of core settings
for S.

Given the space of core situatiof® and the
space of core setting®" of an STNPSU, a projection

increased to 20 and the upper bound may at mostof the STNPSU onto an STNU can be obtained as fol-

be decreased to 10. ThuéA,[15,20],[10,20],C),
(A,[20,20],]10,23],C), and(A, [5,20],[10,10],C) are

lows: First, each guarded link ig€ is replaced by a
contingent link for the range specified @f. Second,

possible values this guarded link may be shrunk to. each guarded link i;" is replaced by a requirement
Note that a Type 2 guarded link may also be shrunk constraint for the range if'.

to a single value, e.g(A,[15,20,[10,15],C). How-
ever, a Type 2 guarded link must always allow for
at least one value within itguarded corefy™n, xmaX
(i.e.,[10,20).

During execution, when activating a guarded link
of Type 1 or 2 (i.e., when executing its activation time-
point), the current outer bounds of the guarded link

Definition 10 (Core STNU of an STNPSU)Let§ =
(7,C,G) bean STNPSU.

Then: Theprojection of § onto its space of
core situations® and its space of core setting¥

—denoted as stnuR, Q¢ Q")—corresponds to an

STNU(T, ", L") with:

are fixed. This is to ensure that the outer bounds of ~ — C~U{(yMN<C - A <x™)|1<i<m,

the guarded link cannot be modified while it is active.

Therefore, the current outer bounds of the guarded

QF :[ylmin7xlmax] ¥ % [ymmin’xmmax]}

link are set to be strict. For example, when execut- £/ = {(Ai,mmax7Yimin,Ci) |1<i<Kk,

ing timepointA, the Type 2 guarded linkA, [15,20],
[10,20],C) is replaced by a strict guarded lin{4,
[15,15],[20,20],C). The latter is equivalent to a con-
tingent link (A,15,20,C) of STNU and ensures that
the agent responsible for executing timepdntnay
now choose any time in rand#5, 20] to execute time-
pointC.

3.1 Dynamic Controllability of STNPSU

This section presents preliminary definitions of basic
concepts required for the definition of dynamic con-
trollability of a STNPSU.

The set ofcore situationsspecifies the contingent
core of all guarded links of Type 1 (partially contin-
gent guarded links), while the setadre settingspec-
ifies the guarded core of all guarded links of Type 2
(partially shrinkable guarded links).

Definition 9 (Core Situations and Core Settings)
Suppose = (7,C, G) is an STNPSU. Lef® = {ge
Glg = (A [x,xT, [y™",y],C) AXT¥ < y™1} be the
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Q¢ :[leax’ ylmin] %% [kaax7 ykmin]}

We denote the respective STNU as¢bee STNUof
STNPSUWS.

Finally, this leads us to the dynamic controllabil-
ity of an STNPSU. We provide a formalization of the
dynamic controllability of an STNPSU based on the
dynamic controllability of an STNU. We choose this
approach since the formalization of dynamic control-
lability of STNU is robust and verified in literature.

Theorem 1 (Dynamic Controllability of STNPSU)
An STNPSUS = (7,C, G) is dynamically control-
lable (DC), if the core STNU that results from the
STNU Projection stnuPfjs, Q¢ Q") of the STNPSU
is dynamically controllable.

Proof. = Itis a matter of definitions to show that, if
the core STNU is DC (cf. Sect. 2.1), the correspond-
ing STNPSU is DC as well: each schedule being a
solution of the core STNU is also a solution of the
STNPSU. Indeed, it is always possible to restrict the
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STNPSU to its core situations. Thus, for each core sit-
uation of the STNPSU, a dynamic execution strategy
(DES), which is a viable DES for the STNU, is also a
viable DES for the STNPSU regarding its core situa-
tions. Hence, if the core STNU is DC, the STNPSU
will be DC as well.

< If the core STNU is not DC (i.e., no viable DES
exists), at least one core situatiafi of the STNPSU

tings. Hence, for core situatianf, one of the partially
shrinkable guarded links must be restricted beyond its
guards to find a DES which returns a solution. As this
is not possible, the STNPSU is not DC either.

3.2 DC-Checking for Guarded
Constraints

This section shows how the dynamic controllability
of an STNPSU may be checked without need to re-
strict the respective STNPSU to its core STNU. First,
we emphasize the close relationship between dynamic
controllability of STNU and the one of STNPSU (cf.
Theorem 1). In turn, this fosters the following graph-
based representation of an STNPSU, which is similar
to the one of an STNU.

Definition 11 (Graph of a STNPSU)The graph for
an STNPSUS has the form(‘T,E,E,, Ey), where
each timepoint inZ corresponds to a node in the
graph; £ is a set ofordinary edgesZ, is a set of
lower-case edgeandZ, is a set ofupper-case edges

50

20;bg:5 5 40; bg:15
— —
Bs Be S B S

—5; Bg:—20 —10; Bg:—20

—25
Bs = Start of Biking; Bg = End of Biking;
Ss = Start of Stretching; S¢ = End of Stretching
exists for which no DES exists within the core set- Figure 2: STNPSU corresponding to the activity sequences

from Fig. 1 (b).

—x; S—ymin
Figure 3: Guarded Link.

of the ordinary edg€ — A pointing in the op-
posite direction (i.e.x = x™®).  Similarly, the
value of any upper-case edg’;:ec'_—yr>n A always
corresponds to the negative value of ordinary edge
A-LsC(i.e.,y=y™". For an STNPSU, this does
not apply. Particularly, we only require< x™&
andy > ymn,

e In an STNU, the value of a lower-case edge

A% c always is lower than the negative value

of the upper-case ed@ciﬂm A pointing in the

opposite direction (i.ex™ < y™" Note that for
an STNPSU this is not required.
In our technical report (Lanz et al., 2014), we

show that, except one minor change regarding one
of the edge generation rules (cf. Table 1), proce-
dure MM5-DC-Check may be reused in order to
check dynamic controllability of a STNPSU. Partic-
ularly, we analyze all possible combinations of edges
between three nodes of an STNPSU graph (i.e., all
possible triangles). Based on this, it can be shown
that the resulting distance graph of the STNPSU has

ymin no negative loops if and only if the distance graph of
- one upper-casg edgeCC—> A. ) the core STNU has no negative loops as well.

As example of this graph-based representation of  cgpsigerthe single guarded link depicted in Fig. 3.
an STNPSU, consider the graph depicted in Fig. 2. It |; comprises two triangle§-Q-S and Q-SQ. Note
shows the STNPSU corresponding to the activity se-hat it is a matter of applying the edge-generation
quence depicted in Fig. 1 (b). If multiple edges exist rjes to these two triangles (i.e., the No Case rule
between two nodes (e.g., an ordinary and an uppery, S-Q-Sand the No Case, Upper Case, Lower Case,
case edge), for the sake of readability, we d_ravx_/ only 5nd Label Removal rules 19-S-Q) to ascertain that
one arrow between the nodes and annotate it with the, y5)ig guarded link does not contain a negative loop.
values of the respective edges. Further, we use bold, c45e of a partially shrinkable guarded link (Type 2),
arrows to highlight edges representing a guarded link.;, addition, the Label Removal (cf. Table 1) rule may

At this point, we want to emphasize important dif- ;4 applied to the upper-case edge betwBemd Q,
ferences between the graph of an STNU and the ON€replacing it with a requirement edge. This poses no
of an STNPSU: problem for checking dynamic controllability, but it

e In an STNU, the value of any lower-case edge is yndesired as it obscures some of the properties of

AL C always corresponds to the negative value the guarded link. Thus, we restrict the Label Removal

e Each requirement constraint )M Y is repre-

sented by two ordinary edgesX> Y and Y—
X.

e Each guarded link A, [x,x™®], [y™" y] C) is rep-
resented by
— two ordinary edges AY» C and C—= A,

o max
— one lower-case edge A C, and
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rule to R# Sto prevent this. Note that this change Procedure: EXRTEDExecutionStrategy().
does not |anuence the appllcab|I|ty of the rule to an Input: 5. STNPSU.

V< —X (i.e., XMaX < ymin. cf, Table 1), i.e., for an 2 while (U ({) # 0) do
STNU, the rule will never be applied R = Sholds. 3 (1%,X) = RT ExecutionDecisidw, ©);
4 if (nothing happens before tint&) then
3.3 EXGCUtIng STNPSUs 2 e||seexecute the time-points iR;
7 observe the contingent timepoints executed at
This section shows how an STNPSU may be exe- somet® < 1%;
cuted by means of an appropriate extension of pro- 8 X = set of executed contingent timepoints;
cedureRTEDExecutionStrategy (cf. Sect. 2.2). 9 Updatey to include the execution eventsyn
Consider procedureExRTEDExecutionStrategy. 10 Updates to include the corresponding
The first part of the procedure executes the same constraints;

11 foreach (A € X) do Il Activate guarded links

foreach (A}, [x, X, [y™" y],Ci) € G) do

actions as procedur®TEDExecutionStrategy (cf.
Sect. 2.2). The second part activates all guarded Iinksi2

(A, [X, X7 [ymin y,Gi) whose activation timepoint 3 R(C,:Iy] = current outer bounds of guarded
Ai has jUSt been executed. The guarded link seman-y, repéat /I Prepare the guarded link for execution

tics requires to allow each of them, once it is acti-
vated, to use any possible value in the range defined:s
by the current outer bounds, i.¢x,y]. By construc-

tion and due to the fact that the network is DC, for a
Type 1 guarded link the possibility of using any pos-
sible value in the range is guaranteed only for the
core range{x™® y™", while for a Type 2 guarded 4
link only the possibility of using at least one value in
the rangey™" x™® is guaranteed. Particularly, the
execution of some other timepoints before the occur-
rence ofC; may modify the bounds of these guarded 17
links making the network not controllable. Therefore, 18
the procedure has to suitably update the bounds of the'®
guarded links (lines 14—20) before transforming them
into strict ones (lines 21-27). Finally, the execution
goes back to the first part until there are no more un-2°
executed timepoints.

The key point of the procedure consists in the ex-
ecution of timepoints subjected to guarded links as
contingent timepoints with suitable ranges; this al-
lows for the exploitation of the correctness proof of 2
RTEDExecutionStrategy (Hunsberger, 2009). In or- 24
der to show that this transformation preserves the con25
trollability of the network, it is sufficient to show 26
that the transformation of any guarded link—during
runtime—into a strict one with a suitable range is al-
ways possible and preserves the dynamic controllabil-

22

/I Determine its maximum controllable range
ranggA,Ci) =min{v—u|ae
U ra—5 GAV> OA (G —

Cj:—u
avG =~ a)}k;
/I Update its bounds to observe max. controll.
range
y'=min{y,max{y™n x'+
range(A,Ci)}};
/I X is update only if the updatg is not
sufficient
X =max{x,y —rangeA,Ci)};
if X or y' is modifiedthen
Updates to include the
modified outer bounds of the
guarded link;

until neither X nor y is modified
/I Consider the max possible wait constraint@r

W(A,G) = —
foreach
(AC)IC; € UAWING, 3 A)do
| W(ALG) := max{W(A,C),w;};
floor(A;,Ci) := max{xX,W(A;,C)};
X' := min{ floor(A;,Ci),y };
Transform the guarded link to the strict

guarded link Ay, [X, ], [y',y'],C);
Updates to include the new constraint;

ity of the rest of network (i.e., the unexecuted subnet-
work).

Theorem 2. Supposé is a dynamically controllable
STNPSUW is a respectful, partial schedule, arfé,

y™" <y and the STNPSY' resulting after the trans-
formation of the guarded linkA, [x,x™& [y™" y'],

X, X" [y \1 C) is a guarded link ofS. Let us C) into the strict ong(A, [X,X],[y,Y],C) is dynami-

assume that A has just been executed and that the
outer bounds x and y of the guarded link AC have

cally controllable as well.

been updated as described in lines 13-25 of proce-Sketch of the proofDue to the lack of space, we only
dure RTEDExecutionStrategy to the values xand Y. give a outline of the complete proof.

Then: The new value$ and y satisfy x < x™®and
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Let us assume that, before the execution of lines
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13-25, the guarded linRC is given as(A, [x,x™®, X
[y™",y],C). Instructions of lines 13-25 update the o
outer boundsgx.y] to [x,y]. Let us assume that the A pe >
guarded link is of Type 2. Since the network is e o

i ax in i
bC before line 13 and the core rangé“_ ’Ym | is Figure 4. STNU pattern representing a shrinkable duration
a contingent range, the update made in lines 13-25ange(xe, [xc + f,Yc], Ve] (0<% <% < X+ f Axe < ye < ye <

cannot reducéx,y] to [x,y] such that< > x™ or ye+f).

y < y™ holds. Hence, the updated rangey’] con-

tains (possibly in a weak way) the core ranggaf A, B, andC.

[x, XM, [y™n y].C). Thus, there are 4 possible cases:  Case (3) can be shown in a similar way taking also
(1) X = XMy — ymin (2) )/ = xMaXpy/ > ymin (3) into account any possible wait constraint that may in-
X < XM&X Ay — yMin and (4)X < XMAXAY > ymin g crease the value of. O
case (1) the guarded link is already strict and, hence,

it is not changed by the procedure. Case (4) is a com-

bination of cases (2) and (3). 4 ON THE EXPRESSIVENESS OF
Hence, let us consider case (2) and (3). In GUARDED CONSTRAINTS

case (2), by contradiction, suppose that the changing

of the guarded link(A, [x™ xMaq [y™" /] C) into : . i i

the strict one(A, [x™¥ x™2q, [y’ y/|.C) makes the re- This section informally discusses the expressiveness
maining network not dynamically controllable. This+ Of STNPSUs. Further, we show that most guarded
means that there exists at least one negative loop inlinks cannot be represented in STNUs by other solu-

volving timepointsA, C, and someB, whereB has . tons.

not yet executed (i.e., it has to occur afédr but has Coqsider again th_e.physioth(.erapy session sqenario
to be executed befor@. All other timepoints, i.e., fom Fig. 1 (b): Activity Stretching has a duration
unexecuted ones that have to be executed@ftean-  fange of[10,40}, which may be shrunk to a core du-

not contribute to form a negative loop since each of ration range of15,20] during run time according to
them—by definition of controllability—must have at the actual duration of activitiking. Fig. 2 depicts
least one possible execution time for each possible exthe témporal aspects of the session in terms of an
ecution time ofC in the range{y(A) -+ X" Y(A) + STNPSU: each of the two activities is represented
y]. through a pair of timepoints, of which one represents
Now, instead of considering the distance graph and the starting instant of the activity and the other one
negative loops in it, let us reason in term of ranges the en_dlng instant. The allowed duration of activity
and their sparfs Given the dynamic controllabil- ~ Stretching is represented as guarded liffs, [10, 15,

ity of the network before the transformation, it is a (20,40}, Se) while the contingent duration of activity
fact thatB has at least one possible execution time Biking is represented as strict guarded lifis, [5, 5/,

for each possible execution time 6fin the range  [20,20);Bg). Based on the results from Sect. 3 one
[W(A) + XM y(A) +yM j.e., with such range there ~ €an easily verify that the STNPSUdgnamically con-

is no negative loop involving\, B, andC. Equiva- trollable, i.e., for each possible execution time of ac-
lently, the span of the constraint betweBrand C tivity Biking, the system is able to determine a suit-
is greater or equal to the spgfi" — x" 1 1 of the able duration range for activitgtretching containing
contingent core of the guarded link betweandC.  the core ranggl5,20] such that each possible execu-
Therefore, a negative loop can only emerge when thetion time in this range satisfies the overall duration
new boundy’ is considered, or, equivalent, when the C€Onstrain{25,50],

span of the constraint betweBrandC is less than the Let us discuss some of the limitations that arise
spany — x4 1 of the outer bounds of the guarded When representing the temporal aspects of the physio-
link betweenrA andC. therapy session in terms of an STNU. The main prob-

However, when preparing the guarded link for ex- lem is how to represent the temporal constraints of
ecution,y is determined such that the span of range activity Stretching. One option to be considered is
[XMaX \/] of the link betweerA andC is lower than or the pattern depicted in Fig. 4. It constitutes a general-
equal to the span of the constraint betw@andC. ization of the pattern proposed by (Lanz et al., 2013).
Thus, there cannot exist any negative loop involving 1hiS pattern is composed of three timepoiAts Ac,

and Ae connected by a contingent link and two re-
2The case of a guarded link of Type 2 can be discussed quirement constraints. More precisely, timepoiAgs

in a similar way. andAg represent the starting and ending timepoint of
3The span of arang@, b isb—a+ 1. the respective activity. In turc is an internal time-
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point that is only used for checking dynamic control- mation Systems currently being developed (Reichert
lability of the STNU, but is not considered when exe- and Weber, 2012). In this context, the extension pro-
cuting the activity. The values of the three constraints posed in this paper may be used to better represent
guarantee that the overall duration range of the pat-the temporal properties of sub processes (i.e., com-
tern lies in rangéxe, yr| and the upper boungk can plex tasks). It is quite common to have sub processes
be shrunk toyc at run time. Moreover, the lower whose allowed durations can be restricted in a limited
boundxr may be shrunk toc + f as well. Hence, way prior to their execution. In turn, once a sub pro-
the overall constraint represented by this pattern is cess starts to execute, it is necessary to guarantee that
similar to guarded linkAs, [xg,Xc + f], [Yc,Ye], Ae) the allowed duration range can be used without any
O<xc <X <xc+fAX <yc <VYr <yc+f) further interference.
This pattern can be used to represent some settings There are different avenues for future work. First,
of both types of guarded links. However, for example, we want to study the applicability of our approach to
it can not be used to represent the duration of activity CSTNU, for which the presence of labeled constraints
Stretching (cf. Fig. 1 (b)). and links requires to consider further and different
Particularly note that, the pattern contains a strict propagation rules that have to be extended to take ac-
dependency between the value of the guard for the count of guarded constraints. Second, the application
lower bound,xc + f, and the distance between the of STNPSU as temporal foundation of Process-Aware
guard for the upper boung and the upper bouny} Information Systems could be interesting. Particu-
itself. In detail, for the contingent constraint between larly, STNPSU might serve as a tool for an appropri-
As andAc (cf. Fig. 4) it holds 0< xc. Thus, for the ate and scalable analysis of the temporal properties of
guard of the lower boundz + f > f holds as well." the business processes.
Moreover,yg < yc + f holds and thugr —ye < f.
As aresultyr —yc < f < xc+ f must hold, i.e., the
distance between the upper bowdand the guard ACKNOWLEDGEMENTS
for the upper bounglc must be lower or equal to the
value of the guard for the lower bourxd + f. Note
that, it is not possible to extend the pattern to cover
arbitrary guarded constraints as it is not possible to
resolve this dependency between the constraints com-
prising the pattern. Thus, STNPSU is more expressive

than STNU. REFERENCES

The authors would like to thank Luke Hunsberger for
his valuable feedback and suggestions.

Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal con-
straint networks. Artificial Intelligence 49(1-3):61—

5 CONCLUSION 95.

Hunsberger, L. (2009). Fixing the semantics for dynamic
The main contribution of this paper is to present an ex- controllability and providing a more practical char-
tension of STNU that allows for the definition and ef- acterization of dynamic execution strategies. Intl

Symp. on Temporal Repres. and Reasoning (TIME'09)

ficient management of a novel kind of constraints, i.e., pages 155-162. IEEE CPS,

uarded links A guarded link represents an admissi-
g 9 P Lanz, A., Posenato, R., Combi, C., and Reichert, M. (2013).

ble range of delays between two tlmepomts,_where Controllability of time-aware processes at run time. In
each bound of the range can be shrunk during run On the Move to Meaningful Internet Systems: Proc.
time, but not beyond a given threshold. A guarded Coopsl|S’13pages 39-56. Springer.
link constitutes a generalization of the two kinds of | anz A, Posenato, R., Combi, C., and Reichert, M. (2014).
STNU constraints, i.e., requirement and contingent Simple temporal networks with partially shrinkable
constraints, in the sense that a contingent link may be uncertainty (extended version). Technical Report UIB-
represented as a simple form of a guarded one and that ~ 2014-05, UIm University.
a guarded link may represent a requirement constraintMorris, P. (2006). A structural characterization of temgor
An STNU where it is possible to define guarded links dynamic controllability. In Benhamou, F., editdnl
is denoted as Simple Temporal Network with Partially Conf on Principles and Practices of Constraint Pro-
. . . gramming (CP’06)pages 375-389. Springer.
Shrinkable Uncertainty (STNPSU). In particular, the ) . . .
dynamic-controllability check and the execution of a MO"'E? P. (2014). Dynamic controllability and dispatcha-
. . ility relationships. In Simonis, H., editomtl Conf
STNPSU can be done in polynomial time. on Integration of Al and OR Techniques in Constraint
Networks such as STNU can be used as temporal Programming (CPAIOR’14)volume 8451 ofLNCS
foundation for a broad class of Process-Aware Infor- pages 464—479. Springer.

380



Simple Temporal Networks with Partially Shrinkable Uncertainty

Morris, P. H. and Muscettola, N. (2005). Temporal dynamic
controllability revisited. In Veloso, M. M. and Kamb-
hampati, S., editord\ational Conf on Atrtificial Intel-
ligence (AAAI'05) pages 1193-1198. AAAI Press.

Morris, P. H., Muscettola, N., and Vidal, T. (2001). Dy-
namic control of plans with temporal uncertainty. In
Intl Joint Conf on Atrtificial Intelligence (IJCAI'01)
pages 494-502. Morgan Kaufmann.

Reichert, M. and Weber, B. (2012)Enabling Flexibility
in Process-aware Information Systems: Challenges,
Methods, TechnologieSpringer.

381



