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Abstract: The goods structure effect increases the complexity and dynamics of logistic processes. To handle the 
resulting challenges and requirements, planning and controlling of logistic processes have to be reliable and 
adaptive. Especially in these dynamic environments, Multiagent-Based Simulation (MABS) is a suitable 
approach to support decision makers in order to evaluate the companies' processes and to identify optimal 
decisions. This paper presents the PlaSMA multiagent simulation platform, which has been developed for 
the evaluation of logistics scenarios and strategic analyses. As shortest-path searches are an essential but 
cost intensive part of the agents for the simulation of transport processes, we focus on the parallel 
application of a state-of-the-art Hub Labeling algorithm, which is combined with Contraction Hierarchies. 
The results show, that the optimal number of concurrently running routing agents is restricted by available 
cores and/or the number of agents running physically concurrently. Moreover, by slightly restricting the 
agents' autonomy a significant increase in runtime performance can be achieved without losing the 
advantages of agent-based simulations. This allows to simulate large real-world transport scenarios with 
MABS and low hardware requirements. 

1 INTRODUCTION 

The so-called goods structure effect refers to a 
change of the economic and logistic structure: The 
production of bulk goods which are transported in 
large quantities by bulk cargo transport has been 
decreased, while the amount of individualized high-
end products has been increased. This trend is 
aggravated by the so-called Industry 4.0 – the Fourth 
Industrial Revolution and the consequent integration 
of the Internet of Things and Services in production 
and logistics processes based on Cyber Physical 
Production Systems. 

As a result, there is a much higher amount of 
small-sized shipments, which have to be delivered 
within guaranteed time windows and probably 
within a few hours. The demanding customer 
requirements and the growing cost pressure in the 
logistic sector thus forces logistic transport service 
providers to optimize the efficiency of their 
processes. 

Multiagent systems can be used to solve 
complex, dynamic, and distributed problems 

(Müller, 1997) in which agents are a natural 
metaphor for physical objects and actors (Jennings 
and Wooldridge, 1998, p. 7). Consequently, 
multiagent systems are an adequate technology for 
the modeling and the optimization of logistic 
processes. It has been shown that their application to 
logistics increases the efficiency as well as the 
service quality and contributes to reduce the costs 
significantly (cf. Gath et al., 2013; Dorer et al., 
2005; Fischer, 1995; Schuldt, 2011). Multiagent-
Based Simulation (MABS) combines concepts of 
multiagent systems and simulation. Applying MABS 
allows for the analysis of MAS before their 
deployment to real world processes. Thus, it is 
possible to investigate the impact of potential 
changes, to calculate expected benefits, and to 
identify risks that may arise by switching to new 
processes and the integration of new technologies 
such as MAS in advance. This is especially relevant 
in scenarios where the quality of the results depends 
on the outcome and/or sequence of agent 
negotiations that cannot be predicted in advance 
(Jennings, 2001). Moreover, MABS allows for 
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precise scenario investigations and strategic 
analyses. For instance, effects of new pricing models 
or the impact of economic cycles and natural 
disasters on the supply chain can be determined. 

The goal of this research is to optimize the 
runtime performance of MABS in logistics. Section 
2 presents the MABS framework PlaSMA, which 
has been developed for simulations of logistic 
processes. As shortest-path searches are cost-
intensive operations in this domain, Section 3 
provides an implementation of a state-of-the-art 
shortest-path algorithm which applies Hub-Labeling 
in combination with Contraction Hierarchies. The 
advantage of applying a Hub-Labeling algorithm in 
MABS is, that shortest-path queries are calculated 
by fast processed read-only operations on the 
underlying graph (in contrast to classical algorithms 
such as Dijkstra's algorithm (Dijkstra, 1959)). Thus, 
several agents may perform searches on the same 
algorithm concurrently. Section 4 investigates 
established modeling approaches and identifies a 
memory efficient solution, which exploits the 
properties of the algorithm to optimize the runtime 
performance significantly. The result facilitates the 
simulation of real-world multiagent scenarios in 
transport logistics with less hardware requirements 
compared to other established modeling approaches. 

2 THE PlaSMA SIMULATION 
PLATFORM 

The PlaSMA simulation platform (Warden et al., 
2010) is an agent-based event driven simulation 
platform that has been designed for modeling, 
simulation, evaluation, and optimization of planning 
and control processes in logistics. It extends the 
FIPA-compliant Java Agent DEvelopment 
Framework (JADE) (Bellifemine et al., 2007) for 
agent communication and coordination. PlaSMA 
provides discrete time simulations, which allow for 
precise simulations of processes with small 
simulated time intervals (with intervals of at least 
1ms). Furthermore, it ensures correct 
synchronization and reproducibility (Gehrke et al., 
2008). For instance, the simulation framework 
guarantees, that message transfer consumes 
simulated time, because transferring messages 
consumes physical time in real-world processes as 
well. Consequently, the consistency of each agent 
(e.g., no agent receives messages from the future and 
all the agents' knowledge is consistent at a certain 
point of simulated time) is also guaranteed by a 
conservative synchronization mechanisms (cf. 

Gehrke et al., 2008 for more details). The time 
model adequacy is assured by a parameter which 
controls the maximum and minimum simulated time 
interval for the synchronization. Thus, PlaSMA is 
capable to simulate scenarios that require fine-
grained and coarse time discretization as well.  

Moreover, it supports the integration of real-
world infrastructures by the import of geographic 
information from OpenStreetMap and of timetable 
information (e.g., for bus lines or tram lines), which 
matches the standards of the Association of German 
Transport Companies (VDV) (Greulich et al. 2013). 
The transport infrastructure is represented by a 
directed graph where edges represent ways, such as 
waterways, rails, and roads while nodes represent 
traffic junctions that connect edges with each other. 
The type of the road (e.g., highway, inner city road, 
or pedestrian way) including its properties (e.g., 
speed limits, exact distances, and one-way 
restrictions) is further specialized automatically by 
processing the respective information provided by 
the OpenStreetMap (see: http://openstreetmap.org) 
dataset. Thus, PlaSMA allows for modeling fine-
grained infrastructures with road sections whose 
speed limits are changing. As shortest-path searches 
(see Section 3) on models of real-world 
infrastructures are some of the most cost intensive 
operations in logistic transport scenarios, this paper 
focuses on an efficient implementation and 
modeling of multiagent systems for scenarios that 
require shortest-path information. 

 

 

Figure 1: The graphical user interface of the PlaSMA 
simulation platform. 

In order to reliably simulate industrial and 
transport processes, PlaSMA is capable of 
incorporating process data of cooperating companies 
and partners, e.g., customer orders or service 
requests, directly into the simulation platform. This 
allows for a precise analysis of real logistic 
processes with low costs. Batch-runs, process 
visualization, as well as automated measurements of 
individually defined performance indicators allow 
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for fast and significant process evaluations. Figure 1 
shows the graphical user interface of PlaSMA. The 
software can be downloaded at 
http://plasma.informatik.uni-bremen.de. 

3 HUB-LABELING WITH 
CONTRACTION 
HIERARCHIES 

Efficient shortest-path searches are essential for the 
simulation of logistic transport processes, e.g., to 
compute distance matrices for solving the Vehicle 
Routing Problem (Golden et al., 2008; Gath et al., 
2013) or the Pickup and Delivery Problem (Parragh 
et al., 2008). However, they are cost intensive 
operations especially on real-world graphs. XXX 
have shown that particularly in MABS Hub-
Labeling (HL) (Abraham et al., 2011) in 
combination with Contraction Hierarchies (CH) 
(Geisberger et al., 2012) outperforms classical 
algorithms such as the Dijkstra (Dijkstra, 1959) or 
the well-known A-Star algorithm. For the sake of 
completeness, we present the general idea of our 
implemented Hub-Labeling algorithm similarly to 
Gath et al., (2014). 

The idea of distance labeling algorithms is that 
the distance between two nodes is only determined 
by the comparison of their assigned labels, which are 
ideally computed offline. Therefore, search queries 
on the pre-computed labels can be performed online 
efficiently. In our implementation, the Hub Labels 
contain a list with references to multiple other nodes 
(the hubs). Within the construction process of the 
labels, the so-called cover property has to be 
fulfilled. Thus, both labels of any two vertices 
 must contain the same vertex that is on the ݐ	and	ݏ
shortest ݐ-ݏ path (Abraham et al., 2012, pp. 25-26). 
Thus, it is guaranteed that all shortest paths in a 
graph can be determined by the labels of the source 
and target nodes. The challenge is to create memory-
efficient labels that fulfill the cover property. 

Applying the labeling algorithm on nodes which 
are saved in Contraction Hierarchies (CH), allows 
for memory-efficient label representations. In order 
to build the CH, the original graph ݃ is extended to a 
larger graph ݃' which contains direct shortcuts 
between nodes instead of shortest paths in	݃. The 
algorithm iterates over all nodes and saves each 
node in the next higher level of the hierarchy. In this 
process, it calculates possible shortest path shortcuts 
to other nodes. Therefore, the current node is 
considered to be removed from the graph and it is 

checked if all other shortest paths would still be 
included within the graph without this node. If a 
shortest path originally passed the "removed" node, 
a new shortcut is created to retain this shortest path.  

In general, the performance of the algorithm 
depends on the sequence of nodes in which they are 
added to the CH (Geisberger et al., 2012). To 
determine the next node that will be processed, all 
unprocessed nodes are sorted by a priority value. 
The node with the highest priority is processed next. 
The priority value of a node is mainly computed by 
the edge difference between the current graph and 
the graph with the shortcuts that result from 
processing that node. Some priorities have to be 
updated continuously after adding a new node to the 
CH, because in every iteration the graph might be 
extended by a new shortest path. Due to the fact that 
the computation of the priorities is a cost-intensive 
operation, the value is estimated. The better the 
sequence of the iterated/selected nodes is, the less 
shortcuts are determined, and the more efficient is 
the memory consumption and the search on the CH. 
In addition, there are also approaches which can be 
applied to time-dependent graphs (Batz et al., 2008) 
or to dynamically changing graphs (Geisberger et 
al., 2012). 

Next, the Hub-Labels are computed. This process 
starts at the highest level of the CH. For each level 
(node) a label is created. The label contains all 
references and information about the shortest 
distance to nodes of higher levels. Further 
optimization techniques to reduce the memory are 
not implemented yet, but provided by Abraham et al. 
(2012) (pp. 26).  

4 PARALLEL SHORTEST-PATH 
SEARCHES IN AGENT-BASED 
SIMULATION 

In numerous multiagent-based approaches in 
logistics, the decision making of agents requires 
shortest-path information (cf. Gath et al., 2013; 
Dorer et al., 2005; Fischer et al., 1995). In general, 
there are only two options to acquire this 
information. On the one hand the agent can compute 
the shortest paths by itself. On the other hand the 
agent might ask a service provider agent (a so-called 
routing agent) which receives a routing request, 
computes the shortest path, and finally sends the 
result back to the respective agent. The goal is to 
determine an adequate way of modeling for a 
scenario in which numerous routing requests have to 
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be answered immediately (e.g., to compute distance 
matrices of cities). Especially if we apply the Hub-
Labeling algorithm in combination with Contraction 
Hierarchies, it is not sufficient to consider the 
performance to handle search queries online, but 
also necessary to include the time for the creation of 
the Hub-Labels and CH as well as the memory 
consumption, which is required to save all the labels. 
In the following, we will investigate several 
scenarios. 

In the first case, each agent has its full autonomy 
and relies not on other agents. However, each agent 
has to build and save its own Hub-Labels. This is 
time- and memory-intensive. In the second case, the 
memory and time consuming shortest-path 
operations are sourced out to one or several routing 
agents. Each routing-agent must build and save the 
Hub-Labels. The optimal number of parallel running 
routing agents has to be determined.  

Beside the above mentioned options, there is 
another modeling approach that slightly violates the 
agent's autonomy. It is possible to build the Hub-
Labels by a single agent and save it in a static 
variable. While classical routing algorithms such as 
the Dijkstra algorithm manipulate the graph by 
saving distance information at the nodes to compute 
the shortest paths, the HL algorithm performs 
instead read-only operations on the graph. Thus, 
each agent can directly access this static variable and 
perform the routing requests by their own in parallel. 
Depending on the computer architecture the 
multiagent system is running on, these operations 
are performed also physically concurrently. 
However, this slightly violates the agent's autonomy, 
because all agents (running on the same JVM) share 
the same component. Thus they are not fully 
independent of each other. Note, that PlaSMA 
extends JADE, thus, each static variable is only 
visible on the Java Virtual Machine (JVM). 
Nevertheless, distributed simulations on multiple 
machines are supported by PlaSMA. In this case, 
each machine requires its own static routing 
algorithm.  

4.1 Experimental Setup 

In this chapter, we will investigate a scenario with 
1,000,000 routing requests of several agents, which 
have to be answered immediately (e.g., to compute 
distance matrices of cities). The goal is to determine 
an adequate model which optimizes the run-time 
performance of the simulation with a reasonable 
memory consumption. 

In order to satisfy real word requirements, we 

modeled the whole transport infrastructure of 
Liechtenstein with 3,607 nodes and 8,401 edges. For 
the evaluation in reasonable time on conventional 
hardware, we chose this area with a restricted 
number of nodes and edges, because this allows to 
pinpoint significant results by measuring average 
values of 10 runs in each setting. Nevertheless, the 
algorithm has successfully been applied to larger 
infrastructures with more than 300,000 edges and 
200,000 nodes. The 1,000,000 search queries are 
requested by 50 agents. Thus, each agent asks for 
20,000 shortest paths. The simulation is started with 
an agent, which generates 20,000 search queries 
with randomized start and end nodes for each of the 
50 consumer agents which are created. In order to 
guarantee the reproducibility of runs, the random 
seed in each experiment is fixed.  

In Scenario 1, each consumer agent applies its 
own shortest-path algorithm. Thus, the agents start a 
preprocessing step to build up the Hub-Labels as 
well as the Contraction Hierarchy and process all 
their queries by themselves. 

In Scenario 2, the shortest-path algorithm is 
implemented by the Singleton Pattern (Gamma et 
al., 1995, pp. 127). As a result, there exists only a 
single instance of the algorithm on each JVM. All 
consumer agents process their queries by 
themselves, but operate on the same algorithm saved 
in a static variable. 

In Scenario 3 - 12, a varying number of routing 
agents are created. They maintain their own shortest-
path algorithm and receive all the queries from the 
consumer agents by a FIPA-compliant ACL-
Message. Next, the routing agents compute the 
shortest path of the assigned requests and send an 
ACL Message with the answer back to the agent. 
The assignment of search requests to routing agents 
is uniformly distributed. The reproducibility of this 
assignment is also ensured by applying a fixed 
random seed. 

All the simulations run on a notebook computer 
with an Intel quad-core i5-2500k processor, 
Windows 7 64bit, and 16 GB RAM. 

4.2 Results 

In each scenario four performance indicators were 
measured. The most significant is the total (physical) 
simulation time. Moreover, two performance 
indicators determine the time required for 
preprocessing. This is the earliest time an agent ends 
its preprocessing step and the elapsed time for all the 
agents to finish building the Hub-Labels and 
Contraction Hierarchies. The measured performance
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Figure 2: The average simulation time and the time required to create the Hub-Labels (of 10 runs). 

indicators are average values of 10 runs. The results 
are shown in Figure 2. 

As the shortest-path algorithm only performs 
read-only operations, the memory requirements of 
the whole agent system, increases proportional to the 
number of graph instances, which are created and 
saved concurrently by all the agents. This is obvious, 
but also rechecked in these investigations.  

4.3 Discussion 

The results show that providing the full autonomy of 
agents requires a higher memory utilization and 
longer runtime. Each agent must create and maintain 
its own routing algorithm. On a quad-core 
architecture, this process cannot be parallelized 
physically on 50 agents, but has to be performed 
sequentially. Thus, sourcing out the cost-intensive 
operations to routing agents is reasonable. As a 
result, the preprocessing time as well as the total 
simulation time is reduced. In JADE each agent has 
its own process. However, if there is just a single 
routing agent, the hardware utilization is only about 
25% on a quad-core processor, because all the 
search queries are executed by a single agent on a 
single core. Thus, the preprocessing time and the 
total simulation time can be reduced by physically 
concurrently running routing agents as long as the 
number of routing agents is lower or equal to the 
number of available cores. Consequently, the search 
queries are answered in parallel and the hardware 
utilization is increased. If the number of routing 
agent exceeds the amount of cores, the 
preprocessing for the creation of the Hub-Labels 
cannot be performed in parallel anymore and the 

total time for preprocessing and simulation is 
increased. If each consumer agent has its own 
routing agent, the performance is even higher 
compared to the case that each agent has its own 
algorithm. This is explained by the fact, that the 
message transfer within the multiagent system 
consumes additional time. 

Moreover, the results show that the shortest 
running time (and also the lowest memory 
utilization) is reached by the static implementation 
of the routing algorithm. Note that this is only 
possible if the shortest-path algorithm performs 
read-only operations during the search such as Hub-
Labeling on CH. Even if we compare the result of 
this modeling approach to the outcome of the 
scenario with four routing agents (where all the 
preprocessing steps are performed concurrently), the 
running time is significantly lower. This has two 
reasons: On the one hand, no communication 
between agents is required. On the other hand, the 
capacity utilization of the hardware is higher, 
because the algorithm answers four requests in 
parallel at any time. When a computation is finished, 
the next shortest path is computed immediately 
afterwards. In contrast, with four routing agents each 
agent computes its assigned shortest-path requests 
and when they are finished they have to wait until 
the last agent has finished its computation as well.   

5 CONCLUSION AND OUTLOOK 

MABS is a promising approach to evaluate and 
optimize logistic processes. Although it is possible 
to increase the scalability of MABS platforms in 
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general (Ahlbrecht et al., 2014) or adding some 
optimization support for executing them on parallel 
processors (e.g. Sano et al., 2014), shortest-path 
searches remain one of the most cost-intensive 
operations of the agents in logistic scenarios. 
Therefore, we investigated and compared several 
modeling options for shortest-path searches in the 
PlaSMA simulation platform.  

The implemented shortest-path algorithm is a 
state-of-the-art algorithm, which applies Hub-
Labeling with Contraction Hierarchies. As Hub-
Labeling algorithms apply read-only operations for 
answering search requests, several agents can share 
the same (static) algorithm and perform their queries 
concurrently. The results reveal that slightly 
restricting the autonomy of agents by applying a 
single algorithm saved in a static variable (which is 
part of all the agents) leads clearly to the lowest 
runtime of the simulation and lowest memory 
consumption. 

As long as all agents run on the same machine 
(and same JVM), the disadvantage of less autonomy 
in this modeling approach is of more theoretical 
meaning than practically relevant. For instance, the 
robustness could even be guaranteed by a second 
redundant static instance of the algorithm. The 
privacy is also guaranteed, because the agents must 
not reveal their search queries to any other agent. 

However, if the “full” autonomy of the agents 
has to be guaranteed, another option is to create 
several routing agents that receive routing requests, 
perform shortest-path searches, and provide the 
results. Although this approach consumes more time 
for the whole simulation, i.e., because of the 
increased time for message transfer and 
synchronization of agents, it can still profit from 
concurrent calculations as long as the number of 
routing agents is equal or lower than the number of 
available cores. Otherwise, the redundant algorithms 
consume a high amount of memory (in particular if 
the shortest-path searches are performed on large 
graphs), and time for communication and 
computation, because shortest paths are not 
performed physically concurrently. In an extreme 
case it is even preferable that each consumer agent 
has its own algorithm. In this case the autonomy of 
the agents is maximized and less communication is 
required. 

In conclusion, applying a static Hub-Labeling 
algorithm in MABS, which is part of all agents, 
allows for concurrent calculations, improves the 
runtime performance of the simulation significantly, 
and reduces the memory usage. In contrast to the 
other established modeling approaches, this 

facilitates the simulation of large real-world 
scenarios with less hardware requirements. 

Future research will focus on the application of 
shortest-path algorithms on several distributed 
machines. For instance, the PlaSMA simulation 
platform supports the simulation of multiple agents 
that run on containers located on different machines. 
Moreover, we will investigate the behavior of 
shortest-path algorithms for dynamically changing 
graphs. In this case, the Hub-Labels have to be 
updated after the preprocessing is finished. 
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