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Abstract: Bio-signal or bio-medical pattern recognition includes uncertainty. Intuitionistic fuzzy sets (IFSs) are 
effective representation of the uncertainty factor. We present a pattern recognition method based on the 
weighted distance of intuitionistic fuzzy sets (IFSs) in dealing with the fuzzy recognition problem. The 
proposed method has a particular focus on handling the problem of choosing feature weights and feature 
selection in the framework of IFSs. Depending on the idea of information-theoretic entropy and relative 
entropy, a method is presented in dealing with the said two key problems, i.e., choosing feature weights and 
feature selection. The proposed pattern recognition method in the framework of IFSs can not only represent 
the dissimilarity between pair of features based on choosing feature weights but also reduce the 
computational complexity depending on feature selection. Finally, a numerical example is utilized to 
validate the proposed pattern recognition method. 

1 INTRODUCTION 

Zadeh (1965) and Yager (2000) emphasized the 
importance of fuzzy set and its extended fuzzy sets 
in the field of recognition technology. In many 
domains such as finance, medicine, bio-medical, 
defence, politics and marketing, a central problem is 
object recognition under uncertainty (Larsen and 
Yager, 2000). In the bio-medical diagnosis, many 
problems include imprecise and imperfect facts. 
How to model these problems with uncertainty and 
hesitancy is still a challenge (Shinoj,2013) (Szmidt 
and Kacprzyk, 2001) (Chung-ming, 2009). 
Presently, fuzzy set and its extended fuzzy sets (such 
as interval-valued fuzzy sets, intuitionistic fuzzy 
set,L*-fuzzy set, intuitionistic[0,1]−fuzzy set, vague 
set, grey set) have been tobe effective techniques in 
dealing with above-mentioned classification 
problems with uncertainty (Deschrijver and Kerre, 
2007). Among them, intuitionistic fuzzy sets (IFSs), 
proposed by Atanassov (1986; 1993), provide a 
flexible mathematical way to cope with the 
hesitancy originating from imperfect or imprecise 
information. In an IFS, the membership degree and 
non-membership degree are more or less 
independent, and the only constraint is that the sum 
of the two degrees must not exceed 1. 

Various aspects of IFSs have been utilized for 
decision making, pattern classification, and fuzzy 
reasoning, where imperfect facts coexist with 
uncertain knowledge (Li, 2010) (Hung and Yang, 
2008) (Ciftcibasi and Altunay, 1998) (Cornelis, 
Deschrijver and Kerre, 2004). In the context of 
pattern recognition and classification, distance 
measures, similarity measures, and correlation 
measures of IFSs have been utilized aiming at the 
pattern recognition problems under fuzzy 
environment successfully (Hung and Yang, 2008) 
(Liang and Shi, 2003) (Xu, 2007) (Wang and Xin, 
2005) (Park et al., 2009). In the category of IFSs, the 
weighted distance measure, proposed by Xu (2007), 
takes into account the every element’ s weight. 
However, it is difficult to choose appropriate weight 
of each element aiming at certain pattern recognition 
problem under fuzzy environment. In this paper, we 
shall present a framework for recognition 
technology based on the weighted distance in the 
category of IFSs, especially emphasized on the 
choosing the feature weights and feature selection 
depending on information entropy and its relative 
theory(Hung and Yang, 2008)(Szmidt and Kacprzyk, 
2001). 

The remainder of this paper is organized as 
follows: In Section 2 we introduce some preliminary 
concepts. A distance measure of IFSs is introduced 
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for pattern recognition problem using intuitionistic 
fuzzy information particularly emphasized on the 
choosing the weight of each feature and feature 
selection in Section 3. In Section 4, we utilize some 
pattern classification examples to validate the 
pattern recognition model. Finally the article 
concludes with a brief summary in Section 5. 

2 PRELIMINARY 

2.1 Review of IFSs 

Since fuzzy set only gives a membership degree to 
each element of the universe (Zadeh,1965), 
Atanassov introduces the concept of IFS 
characterized by a membership function and a non-
membership function, where non-membership is less 
thanor equals to one minus the membership degree 
(Atanassov, 1986). The concept of IFS is as follows: 

Let Xbe a set. An IFS A in X is defined with the 
form 

ܣ ൌ ሼሺݔ, ,ሻݔ஺ሺߤ ߭஺ሺݔሻ|ݔ ∈ ܺሻሽ            (1) 

where 

μ୅: X → ሾ0,1ሿ, υ୅: X → ሾ0,1ሿ               (2) 

are two maps satisfying 

0 ൑ μ୅ሺxሻ ൅ υ୅ሺxሻ ൑ 1,for	all	x ∈ X.   (3) 

The numbers ߤ஺ሺݔሻ and ߭஺ሺݔሻ  denote the 
membership degree and nonmembershipdegree of x 
to A, respectively. For each IFS A in X, we call 

π୅ሺxሻ ൌ 1 െ μ୅ሺxሻ െ υ୅ሺxሻ               (4) 

The intuitionistic index of x in A. If ߨ஺ሺݔሻ = 0, the 
IFS A reduces to a fuzzy set (Atanassov, 1986).  

2.2 Relative Entropy 

Relative entropy represents the amount of 
discrimination between two probability distributions 
(Shannon and Weaver, 1949).Let X be a discrete 
random variable, and p(x) and q(x) be two 
probability distributions for X. Kullback defined the 
relative entropy between p(x) and q(x) as 

Dሺp, qሻ ൌ ∑ pሺxሻlog
୮ሺ୶ሻ

୯ሺ୶ሻ୶∈ଡ଼ ,               (5)	

where 	0log
଴

௤ሺ௫ሻ
ൌ 0  and ݌ሺݔሻlog

௣ሺ௫ሻ

଴
ൌ ∞ሺ݌ሺݔሻ ്

0ሻ. 
Lin(1991), Hung and Yang(2008) pointed out 

that p must be absolutely continuous with respect to 
q, that is q(x)= 0 whenever p(x) =0. To overcome 
this restriction, a modified cross-entropy measure 
was introduces as (Hung and Yang, 2008) (Lin, 
1991) (Vlachos and Sergiadis, 2007):  

,݌ሺܫ ሻݍ ൌ ∑ ሻlogݔሺ݌
௣ሺ௫ሻ

భ
మ
௣ሺ௫ሻା

భ
మ
௤ሺ௫ሻ௫∈௑ .          (6) 

Since	ܫሺ݌,  ሻis not a symmetric measure, Hungݍ
et al. introduced a symmetricmeasure H as follows:  

,݌ሺܪ ሻݍ ൌ
ଵ

ଶ
ሺܫሺ݌, ሻݍ ൅ ,ݍሺܫ  ሻሻ.          (7)݌

According to the above-mentioned 
analysis, ,݌ሺܪ ሻݍ  is a symmetrical functionand 
provides a measure to represent the divergence 
between p and q. 

3 PATTERN RECOGNITION 
UNDER INTUITIONISTIC 
FUZZY ENVIRONMENT 

Distance measure is a term that represents the 
difference between pair of IFSs. As an important 
concept in the category of fuzzy sets, distance 
measures of IFSs have also gained much attention 
due to their extensive applications, such as decision 
making, pattern recognition, clustering and market 
prediction. So far, various calculation methods of 
distance measures between IFSs have been proposed 
in the latest decades. In the following part, we 
introduce several classical distance measures. Let 
ܣ ൌ ሼሺݔ, ,ሻݔ஺ሺߤ ߭஺ሺݔሻ|ݔ ∈ ܺሻሽ  and ܤ ൌ
ሼሺݔ, ,ሻݔ஻ሺߤ ߭஻ሺݔሻ|ݔ ∈ ܺሻሽ  be two IFSs in ܺ ൌ
ሼݔଵ, ,ଶݔ … ,  ௡ሽ. Bustince and Burillo(1995) proposedݔ
the following two distance measures between A and 
B. The Hamming distance and the Euclidean 
distance are defined by Eq. (8) and (9). Szmidt and 
Kacprzyk(2000) extended the work of Bustince and 

݀ଵሺܣ, ሻܤ ൌ
ଵ

ଶ௡
∑ ሺ|ߤ஺ሺݔ௜ሻ ൅ |௜ሻݔ஻ሺߤ ൅ ௜ሻݔ஺ሺߤ| െ ௜ሻ|ሻݔ஻ሺߤ
௡
௜ୀଵ                                      (8) 

݀ଶሺܣ, ሻܤ ൌ
ଵ

ଶ௡
∑ ሺሺߤ஺ሺݔ௜ሻ ൅ ௜ሻሻଶݔ஻ሺߤ ൅ ሺߤ஺ሺݔ௜ሻ െ ௜ሻሻଶሻݔ஻ሺߤ
௡
௜ୀଵ                                   (9) 

݀ଷሺܣ, ሻܤ ൌ
ଵ

ଶ௡
∑ ሺ|ሺߤ஺ሺݔ௜ሻ െ |௜ሻݔ஻ሺߤ ൅ |߭஺ሺݔ௜ሻ െ ߭஻ሺݔ௜ሻ| ൅ ௜ሻݔ஺ሺߨ| െ ௜ሻ|ሻݔ஻ሺߨ
௡
௜ୀଵ                  (10) 

݀ସሺܣ, ሻܤ ൌ
ଵ

ଶ௡
∑ ሺሺሺߤ஺ሺݔ௜ሻ െ ௜ሻሻଶݔ஻ሺߤ ൅ ሺ߭஺ሺݔ௜ሻ െ ߭஻ሺݔ௜ሻሻଶ ൅ ሺߨ஺ሺݔ௜ሻ െ ௜ሻሻଶሻݔ஻ሺߨ
௡
௜ୀଵ

భ
మ															(11) 

݀ହሺܣ, ሻܤ ൌ ሺ
ଵ

ଶ
∑ ߱௜ሺ|ሺߤ஺ሺݔ௜ሻ െ ௜ሻ|ఒݔ஻ሺߤ ൅ |߭஺ሺݔ௜ሻ െ ߭஻ሺݔ௜ሻ|ఒ ൅ ௜ሻݔ஺ሺߨ| െ ௜ሻ|ఒሻሻݔ஻ሺߨ

భ
ഊ௡

௜ୀଵ            (12)

Intuitionistic�Fuzzy�Sets�with�Shannon�Relative�Entropy

151



Burillo, the improved Hamming distance and 
Euclidean distance are formulated by Eq. (10) and 
(11), respectively. Basing on the above-mentioned 
work, Xu (2007) introduced the distance measure by 
Eq.(12) where	ߣ ൒ 1, and ߱௜  (i=1, 2,…,n) denotes 
the weight ofݔ௜ (i=1, 2,…,n),which satisfies ߱௜ ൒ 0 
and∑ ߱௡

௜ୀଵ ௜ ൌ 1. According to the distance proposedby 
Xu, (9) and (10) can be obtained from (11). More 
distance measures ofIFSs were proposed in recent 
years from different angles (see (Hung and Yang, 
2008)(Xu, 2007) (Wang and Xin, 2005)(Szmidt and 
Kacprzyk, 2000)(Guha and Chakraborty, 
2010)(Zeng and Guo, 2008). 

In general, the different features have different 
importance in pattern recognition problem. Actually 
a feature having great dissimilarity compared with 
other features should be endowed with great weight 
value (Seoung and Panaya, 2011). Therefore, it is 
necessary to have a feature selection or choose 
appropriate weights of features. Since the weighted 
distance measures takes into account the weights’ 
divergence, it is helpful to describe the importance 
of each feature. However, how to choose the weights 
of features under intuitionistic fuzzy environment 
belongs to a difficult problem which is the research 
focus of this paper. 

In the following part, we establish a pattern 
recognition method based on the weighted distance 
measure of IFSs, and particularly have an emphasis 
on choosing the weight vector. Assume 
ሼܣଵ, ,ଶܣ … , ௠ሽܣ and B be m+1 IFSs in the set 
X=ሼݔଵ, ,ଶݔ … , ௝ܣ ௡ሽ, whereݔ  (݆ ൌ 1,2, … ,݉), B, and 
X denote the prototype, the unknown type and the 
feature set (or attribute set), respectively. 

According to the analysis in 2.2, ܪሺ݌, ሻݍ  is 
symmetrical function andcan be utilized to specify 
the dissimilarity between the probability 
distributionsp and q. For an IFS A in X, for all ∈ ܺ, 
we have ሻݔ߭஺ሺ	ሻ൅ݔ஺ሺߤ	ሻ൅ݔ஺ሺߨ ൌ 1, 			0 ൑
,ሻݔ஺ሺߤ 	߭஺ሺݔሻ, ሻݔ஺ሺߨ	 ൑ 1  .This implies that 
	ሺߤ஺ሺݔሻ, ߭஺ሺݔሻ, ሻሻݔ஺ሺߨ may be regarded as a 
probability distribution. Therefore, we can utilize the 
function H to consider the dissimilarity between 
IFSs. Meanwhile, to represent the importance degree 
of different attributes for the pattern recognition, the 
weight vector is introduced and defined. 

The weight ௝߱  ( ݆ ൌ 1,2, … , ݊ )is defined as 
follows: 

௝߱ ൌ
ୣ୶୮	ሺఎ∙ఘሺ௫ೕሻሻ

∑ ୣ୶୮	ሺఎ∙ఘሺ௫೗ሻሻ
೙
೗సభ

, ݆ ൌ 1,2, … , ݊        (13) 

where	ߟ ൒ 0and 

௝൯ݔ൫ߩ ൌ
ଵ

ଶ
∑ ∑ ܪ ቀܣ௞൫ݔ௝൯, ௝൯ቁ௠ݔ௦൫ܣ

௦ୀଵ
௠
௞ୀଵ    (14) 

Obviously,ߩ൫ݔ௝൯ ൒0.  Since ߩ൫ݔ௝൯  is the sum of 
symmetric measure, it can indicate the dissimilarity 
degree of an attribute ݔ௝ . So ߩ൫ݔ௝൯  is suitable to 
represent the weight of each attribute. Meanwhile 
exponent expression ensures the weight always more 
than zero. So the weight vector ߱  is an alterable 
vector depending on choosing the differentvalues 
of	ߟ. We have the following proposition as follows: 

Proposition 3.1.߱௜ ൌ
ଵ

௡
ሺ݅ ൌ 1,2, … , ݊ሻ, if ߟ ൌ 0 

or ߩሺݔ௜ሻ ൌ ,݅ ௝ሻ for allݔሺߩ ݆ ∈ ሼ1,2, … , ݊ሽ.(2)߱௜∗ ൌ 1, 
if ௜∗ሻݔሺߩ	 ൌ maxሼߩሺݔଵሻ, ,ଶሻݔሺߩ … , ௡ሻሽݔሺߩ ሺ݅∗ ∈
ሼ1,2, … , ݊ሽሻ ௜∗ሻݔሺߩ , ൐ ௝ሻݔሺߩ for all ݆ ് ݅∗ሺ݆ ∈
ሼ1,2, … , ݊ሽሻ, and limߟ ൌ ൅∞. 

For revealing the variety of the weights resulting 
from the different values of	ߟ, in the following we 
introduce an example. 

Example 3.1. The goal of this example is to 
reveal the relationship between feature weight ௝߱ and 
 in equation 13, so we can assume that the value of	ߟ
௜ሻݔሺߩ  ( ݅ ൌ 1,2,3,4,5,6 ) is known, then we will 
analyze the variety of ߱௜  (݅ ൌ 1,2,3,4,5,6) with the 
different values of ߟ. Letߩሺݔ௜ሻ  (݅ ൌ 1,2,3,4,5,6) be 
the following values: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9 and 1.0. 

Now we set	ߟ	to be 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9 and 1.0, respectively and compute the 
corresponding	 ௝߱. Basing on (13), the weights of X 
with different values of		ߟ are listed in Table 1 and 
shown in Figure 1. It implies that on the one hand 
we can adjust the weights of features by choosing 
different 	ߟ, on the other hand it is an effective way 
to have a feature selection. In the following, we 
construct the feature selection model and pattern 
recognition model under intuitionistic fuzzy 
environment. 

Algorithm 1: Feature Selection 
Let δ (0≤δ<1) be a constant as the accepted 

threshold of weights. The feature selection rule is 
defined as follows: 

a) Accept the feature ݔ௜(݅ ൌ 1,2, … , ݊), if ߱௜ ൒ δ  

b) Reject the feature ݔ௜ (݅ ൌ 1,2, … , ݊), if ߱௜ ൏   .ߜ

 
Figure 1: The weights of X with different values of.ߟ. 
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Remark: since δis the threshold of feature selection, 
if߱௜ ൏ ߜ , it means attribute ݔ௜ is considered to be 
useless for classification and will be ignored. 
Thus	δ	should be a positive real number near zero, in 
this paper we let	δ=0.03. Also, there are some other 
methods to decide the value of 	δ , for example, 
δ ൌ meanሺ߱௜ሻ/n , where n is the number of 
attributes. 

Basing on the rule of feature selection rule, we 
construct the pattern recognition method under 
intuitionistic fuzzy environment as below: 

Algorithm 2: Pattern Recognition Based on 
IFS with Shannon Relative Entropy 

Step 1. Initialize	ߣ	and	δ. ߣ		is usually set to be 1 
or 2. 

Step 2. Compute ߱௜(݅ ൌ 1,2, … , ݊) according to 
(13) and (14), and havea feature selection. 

Step 3. Compute the weights of the selective 
features based on (13) and(14). 

Step 4. Compute min{d(A,ܣ௝)} (݆ ∈{1,2,…,m}) 
according to equation (12). 

Step 5. If d(A,ܣ௥) = min{ d(A,ܣ௝)} (ݎ ∈ {1, 2,…, 
m}), then A belongs toܣ௥, ܣ௥is a known pattern. 

Remark: How to choose the parameter ߟ  is a 
difficult problem. Since ߟ is an adjusted parameter, 
we suggest the parameter ߟ  satisfying 

୫ୟ୶	ሺఠభ,ఠమ,…,ఠ೙ሻ

௠௜௡ሺఠభ,ఠమ,…,ఠ೙ሻ
൑ 10 . This strategy ensures a 

majority of attributes to remain their contributions to 
the classification and a minority of attributes to be 
ignored. 

4 NUMERICAL EXAMPLE AND 
ANALYSIS 

In this Section, we utilize two numerical examples in 
the scenarios of the classification of building 
material recognition and medical diagnosis to 
validate the said pattern recognition method in the 
framework of IFSs. Meanwhile we compare the 
results obtained by the Hamming distance and the 
Euclidean distance defined by Szmidt and Kacprzyk 
(2001). 

Example 4.1.There are four material prototypes 
and an unknown type denoted by IFSs in 
X=ሼݔଵ, ,ଶݔ … ,  ଵଶሽin this pattern recognition problemݔ
(Wang and Xing, 2005). The four prototypes and the 
unknown type are represented as Table 2, where ܣ௜ 
( ݅ ൌ 1,2,3,4) and B denote the prototype and the 
unknown type respectively. 

Table 1: The weights of X with different values of.�. 

ଵ ߱ଶ ߱ଷ߱ ߟ ߱ସ ߱ହ ߱଺ 
0  0.1667  0.1667  0.1667  0.1667  0.1667  0.1667  

0.1  0.1279  0.1414  0.1562  0.1727  0.1908  0.2109  
0.2  0.0954  0.1166  0.1424  0.1739  0.2124  0.2594  
0.3  0.0693  0.0935  0.1262  0.1704  0.2300  0.3105  
0.4  0.0491  0.0732  0.1092  0.1629  0.2430  0.3626  
0.5  0.0340  0.0560  0.0924  0.1523  0.2512  0.4141  
0.6  0.0231  0.0421  0.0767  0.1397  0.2546  0.4639  
0.7  0.0154  0.0311  0.0626  0.1260  0.2538  0.5111  
0.8  0.0102  0.0226  0.0504  0.1121  0.2495  0.5552  
0.9  0.0066  0.0163  0.0401  0.0985  0.2424  0.5961  
1.0  0.0043  0.0116  0.0315  0.0858  0.2331  0.6337  

Table 2: Data of the prototypes and the unknown type. 

 ଵଶݔ ଵଵݔ ଵ଴ݔ ଽݔ ଼ݔ ଻ݔ ଺ݔ ହݔ ସݔ ଷݔ ଶݔ ଵݔ 
 ሻ 0.173  0.102  0.530  0.965 0.420 0.008 0.331 1.000 0.215 0.432  0.750  0.432ݔ஺భሺߤ

 ሻ 0.524  0.818  0.326  0.008 0.351 0.956 0.512 0.000 0.625 0.534  0.126  0.432ݔ஺భሺߥ

 ሻ 0.510  0.627  1.000  0.125 0.026 0.732 0.556 0.650 1.000 0.145  0.047  0.760ݔଶሺߤ

 ሻ 0.365  0.125  0.000  0.648 0.823 0.153 0.303 0.267 0.000 0.762  0.923  0.231ݔ஺మሺߥ

 ሻ 0.495  0.603  0.987  0.073 0.037 0.690 0.147 0.213 0.501 1.000  0.324  0.045ݔ஺యሺߤ

 ሻ 0.387  0.298  0.006  0.849 0.923 0.268 0.812 0.653 0.284 0.000  0.483  0.912ݔଷሺߥ

 ሻ 1.000  1.000  0.857  0.734 0.021 0.076 0.152 0.113 0.489 1.000  0.386  0.028ݔ஺రሺߤ

 ሻ 0.000  0.000  0.123  0.158 0.896 0.912 0.712 0.756 0.389 0.000  0.485  0.912ݔ஺రሺߥ

 ሻ 0.978  0.980  0.798  0.693 0.051 0.123 0.152 0.113 0.494 0.987  0.376  0.012ݔ஻ሺߤ

 ሻ 0.003  0.012  0.132  0.213 0.876 0.756 0.721 0.732 0.368 0.000  0.423  0.897ݔ஻ሺߥ
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Table 3: The weights with different.η. 

Table 4: The weights of X with different values of ηafter feature selection. 

 

Aiming at this pattern recognition problem, we 
adopt two cases as follows: 

4.1 Case 1 

Assume that ߣ ൌ 1,2 , and ߟ  be with following 
values: 0, 0.2, 0.4, 0.6, 0.8, 1.0,1.2, 1.4, 1.6, 1.8 and 
2.0. 

Step 1. According to the different values of ߟ, 
the weights of X are shownin Table 3. 

Step 2.Let ߣ ൌ 1,2 , compute the distance 
d(ܣ௜,  .as Table 4 (i=1, 2, 3, 4) (ܤ

Step 3. Since d(ܣସ, ,ଵܣ)min d=(ܤ ܤ ),d(ܣଶ, ܤ ), 
d(ܣଷ, ,ସܣ)d,(ܤ  for (2 ,1=ߣ ;2.0 ,1.8 ,…,0.2 ,0=ߟ) (ܤ
every	ߟ, B belongs to the prototype ܣସ. 

Table 4 shows that d( ,ସܣ ܤ ) is a strictly 
monotone decreasing function with the strictly 
monotone increasing value of ߟ . The result of 
distance measureswith different ߟ  shows that the 
proposed pattern recognition method can represent 
the dissimilarity between pair of features. 
Especially, when ߟ =0 and ߣ =1, 2, the weighted 
distance measures reduce to the improved Hamming 
distance measure and the improved Euclidean 
distance, respectively (Szmidt and Kacprzyk, 2001). 

4.2 Case 2 

Assume that ߜ ߣ ,0.03 = =1, 2, and ߟ be with 
following values: 0, 0.2, 0.4,0.6, 0.8, 1.0, 1.2, 1.4, 
1.6, 1.8 and 2.0. The pattern recognition process is 
asfollows: 

Step 1. The weights of X=ሼݔଵ, ,ଶݔ … ,  ଵଶሽ basedݔ
on the said values of ߟare shown in Table 3. 

Step 2. Let ߜ ൌ 0.03 , the weights of 
X= ሼݔଵ, ,ଶݔ … , 	ଵଶሽݔ are shown in Table 5 after a 
feature selection process. 

Step 3. Compute the distance d(ܣ௜,  ,i=1, 2, 3) (ܤ
4) based on the obtain weights in Step 2 with 1 =ߣ, 
2, and the results are shown in Table 6. 

Step 4. Since d(ܣସ, ,ଵܣ)min{d=(ܤ ,ଶܣ)d,(ܤ  , (ܤ
d(ܣଷ, ,ସܣ)d,(ܤ  for (2 ,1=ߣ ;2.0 ,1.8 ,…,0.2 ,0=ߟ){(ܤ
assumed parameters, B belongs to the prototypeܣସ. 

When ߟ	  = 1.4, 1.6, 1.8, 2.0 and ߜ  = 0.03, the 
pattern recognition method firstly have a feature 
selection. The pattern recognition results are the 
same as the results without feature selection. From 
the above-mentioned theoretical analysis and the 
numerical results, it implies that the proposed 
pattern recognition method provide an effective way 
to have a feature selection and can reduce the 

 ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ ߱଺ ߱଻ ଼߱ ߱ଽ ߱ଵ଴ ߱ଵଵ ߱ଵଶ߱ ߟ
0 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833

0.2 0.0829 0.0878 0.0753 0.092 0.0759 0.0884 0.0728 0.0885 0.082 0.0916 0.0798 0.083
0.4 0.0819 0.092 0.0677 0.101 0.0688 0.0932 0.0633 0.0935 0.0803 0.1001 0.0759 0.0822
0.6 0.0806 0.0959 0.0605 0.1103 0.0621 0.0978 0.0547 0.0982 0.0782 0.1089 0.0719 0.0809
0.8 0.0789 0.0995 0.0539 0.1198 0.0557 0.1021 0.047 0.1026 0.0758 0.1178 0.0677 0.0793
1.0 0.0768 0.1027 0.0477 0.1295 0.0497 0.106 0.0402 0.1067 0.0731 0.1268 0.0635 0.0773
1.2 0.0744 0.1055 0.042 0.1394 0.0441 0.1096 0.0343 0.1105 0.0702 0.1359 0.0592 0.075
1.4 0.074 0.1111 0.0379 0.1538 0.0402 0.1162 0 0.1173 0.069 0.1493 0.0566 0.0746
1.6 0.0708 0.1126 0.033 0.1633 0.0352 0.1185 0 0.1198 0.0654 0.1578 0.0522 0.0715
1.8 0.0694 0.1171 0 0.1779 0.0317 0.1241 0 0.1255 0.0635 0.1712 0.0493 0.0702
2.0 0.0676 0.1208 0 0.1922 0 0.1288 0 0.1305 0.0612 0.1842 0.0462 0.0685

ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ߱ ߟ ߱଺ ߱଻ ଼߱ ߱ଽ ߱ଵ଴ ߱ଵଵ ߱ଵଶ
0  0.0833  0.0833  0.0833  0.0833  0.0833 0.0833 0.0833 0.0833 0.0833 0.0833  0.0833  0.0833 

0.2  0.0829  0.0878  0.0753  0.0920  0.0759 0.0884 0.0728 0.0885 0.0820 0.0916  0.0798  0.0830 
0.4  0.0819  0.0920  0.0677  0.1010  0.0688 0.0932 0.0633 0.0935 0.0803 0.1001  0.0759  0.0822 
0.6  0.0806  0.0959  0.0605  0.1103  0.0621 0.0978 0.0547 0.0982 0.0782 0.1089  0.0719  0.0809 
0.8  0.0789  0.0995  0.0539  0.1198  0.0557 0.1021 0.0470 0.1026 0.0758 0.1178  0.0677  0.0793 
1.0  0.0768  0.1027  0.0477  0.1295  0.0497 0.1060 0.0402 0.1067 0.0731 0.1268  0.0635  0.0733 
1.2  0.0744  0.1055  0.0420  0.1394  0.0441 0.1096 0.0343 0.1105 0.0702 0.1359  0.0592  0.0750 
1.4  0.0718  0.1078  0.0368  0.1493  0.0390 0.1128 0.0291 0.1138 0.0670 0.1449  0.0550  0.0725 
1.6  0.0690  0.1098  0.0322  0.1593  0.0344 0.1156 0.0245 0.1168 0.0638 0.1539  0.0509  0.0697 
1.8  0.0661  0.1114  0.0280  0.1692  0.0302 0.1180 0.0206 0.1194 0.0605 0.1629  0.0469  0.0668 
2.0  0.0630  0.1126  0.0243  0.1791  0.0264 0.1201 0.0173 0.1216 0.0571 0.1717  0.0430  0.0638 
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computational complexity. 
The pattern recognition results of both Case 1 

and Case 2 are the same as the results of (Hung and 
Yang, 2008)(Xu, 2007) (Wang and Xin, 
2005)(Vlachos and Sergiadis, 2007)(Szmidt and 
Kacprzyk, 2000)(Guha and Chakraborty, 2010). 

Example 4.2. In this example we utilize the data 
set from literature (Szmidt and Kacprzyk, 2004) to 
verify the performance of our method in the bio-

medical diagnosis application. Here there are four 
patients: P={Al, Bob, Joe, Ted}. Disease 
classification includes: D={viral Fever, Malaria, 
Typhoid, Stomach problem, Chest problem} 

The symptoms is defined by set S={temperature, 
headache, stomach pain, cough, chest-pain}. The 
relationship between patients and their symptoms, 
symptoms and diseases are represented by IFSs as 
table 7 and 8, respectively. 

Table 5: Distances between ܣ௜(i=1, 2, 3, 4) and B with different parameters. 

η 
λ=1 λ=2 

d(Aଵ, B)  d(Aଶ, B) d(Aଷ, B) d(Aସ, B) d(Aଵ, B)  d(Aଶ, B) d(Aଷ, B) d(Aସ, B) 
0 0.8744 0.8922 0.6434 0.4677 0.9192 0.9301 0.846 0.7901 

0.2 0.8745 0.8935 0.6428 0.4603 0.9183 0.9278 0.8408 0.7826 
0.4 0.874 0.8946 0.6421 0.4529 0.9171 0.9254 0.8357 0.7751 
0.6 0.8731 0.8953 0.6415 0.4456 0.9156 0.9227 0.8306 0.7675 
0.8 0.8715 0.8958 0.6407 0.4384 0.9137 0.9199 0.8257 0.7599 
1 0.8695 0.8959 0.64 0.4313 0.9115 0.917 0.8207 0.7522 

1.2 0.867 0.8957 0.6391 0.4244 0.9089 0.9138 0.8159 0.7445 
1.4 0.8639 0.8952 0.6381 0.4175 0.906 0.9106 0.8111 0.7368 
1.6 0.8605 0.8943 0.637 0.4108 0.9028 0.9072 0.8063 0.7291 
1.8 0.8565 0.8932 0.6357 0.4042 0.8992 0.9036 0.8015 0.7214 
2 0.8522 0.8918 0.6344 0.3978 0.8952 0.9 0.7968 0.7138 

Table 6: Distances between ܣ௜(i=1, 2, 3, 4) and B with different parameters. 

 ߟ
 2=ߣ 1=ߣ

d(ܣଵ, ,ଶܣ)d  (ܤ ,ଷܣ)d (ܤ ,ସܣ)d (ܤ ,ଵܣ)d (ܤ ,ଶܣ)d  (ܤ ,ଷܣ)d (ܤ ,ସܣ)d (ܤ  (ܤ
0 0.8744 0.8922 0.6434 0.4677 0.9192 0.9301 0.846 0.7901 

0.2 0.8745 0.8935 0.6428 0.4603 0.9183 0.9278 0.8408 0.7826 
0.4 0.874 0.8946 0.6421 0.4529 0.9171 0.9254 0.8357 0.7751 
0.6 0.8731 0.8953 0.6415 0.4456 0.9156 0.9227 0.8306 0.7675 
0.8 0.8715 0.8958 0.6407 0.4384 0.9137 0.9199 0.8257 0.7599 
1 0.8695 0.8959 0.64 0.4313 0.9115 0.917 0.8207 0.7522 

1.2 0.867 0.8957 0.6391 0.4244 0.9089 0.9138 0.8159 0.7445 
1.4 0.8629 0.8883 0.6329 0.4084 0.9025 0.9046 0.8015 0.7269 
1.6 1.7223 1.7768 1.2655 0.8114 1.2743 1.2776 1.1311 1.0235 
1.8 2.5935 2.6815 1.9067 1.2151 1.565 1.5691 1.3882 1.2534 
2 3.4475 3.584 2.5377 1.5982 1.8017 1.8075 1.5935 1.4333 

Table 7: The IFSs of patients and their symptoms. 

 Temperature Headache Stomach pain Cough Chest pain 
Al (0.8,0.1) (0.6,0.1) (0.2,0.8) (0.6,0.1) (0.1,0.6) 

Bob (0.0,0.8) (0.4,0.4) (0.6,0.1) (0.1,0.7) (0.1,0.8) 
Joe (0.8,0.1) (0.8,0.1) (0.0,0.6) (0.2,0.7) (0.0,0.5) 
Ted (0.6,0.1) (0.5,0.4) (0.3,0.4) (0.7,0.2) (0.3,0.4) 

Table 8: The IFSs of diseases and the symptoms. 

R Viral fever Malaria Typhoid Stomach problem Chest problem 
Temperature (0.4,0.0) (0.7,0.0) (0.3,0.3) (0.1,0.7) (0.1,0.8) 

Headache (0.3,0.5) (0.2,0.6) (0.6,0.1) (0.2,0.4) (0.0,0.8) 
Stomach pain (0.1,0.7) (0.0,0.9) (0.2,0.7) (0.8,0.0) (0.2,0.8) 

Cough (0.4,0.3) (0.7,0.0) (0.2,0.6) (0.2,0.7) (0.2,0.8) 
Chest pain (0.1,0.7) (0.1,0.8) (0.1,0.9) (0.2,0.7) (0.8,0.1) 
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Table 9: The weights with different.η. 

ଵ ߱ଶ߱ ߟ ߱ଷ ߱ସ ߱ହ 
0 0.2 0.2 0.2 0.2 0.2 

0.2 0.2173 0.1777 0.2188 0.1978 0.1882 
0.4 0.2345 0.1570 0.2380 0.1944 0.1760 
0.6 0.2516 0.1378 0.2571 0.1898 0.1635 
0.8 0.2682 0.1202 0.2761 0.1843 0.1510 
1 0.2842 0.1042 0.2948 0.1778 0.1387 

1.2 0.2996 0.0899 0.3131 0.1706 0.1266 
1.4 0.3141 0.07713 0.3307 0.1629 0.1150 
1.6 0.3277 0.0658 0.3476 0.1547 0.1040 
1.8 0.3404 0.0559 0.3636 0.1463 0.0936 
2 0.3520 0.0474 0.3789 0.1378 0.0839 

Table 10: Distances between the patients and diseases with.η ൌ 1. 

 Viral fever Malaria Typhoid Stomach problem Chest problem 
Al 0.3009 0.2159 0.3268 0.5857 0.5513 

Bob 0.5034 0.6293 0.3835 0.1379 0.4493 
Joe 0.3486 0.3934 0.3312 0.5660 0.5499 
Ted 0.2566 0.2999 0.3339 0.4621 0.5025 

 

Here we assume that λ ൌ 2, and η be 1.0. 
Step 1. According to the different values of η, 

the weights of X are shownin Table 9. 
Step 2. Let λ ൌ 2, compute the distance d(P୧, D୨) 

(i=1, 2, 3, 4,5 and j =1,2,3,4,5) as Table 10. 
Step 3. Since d(Pଵ, Dଶ)=min d(Pଵ, Dଵ),d(Pଵ, Dଶ) , 

d(Pଵ, Dଷ),d(Pଵ, Dସ) , d(Pଵ, Dହ)) (η=1.0; λ=2), so the 
patient P1, that is, Al suffers from malaria. Similarly, 
Bob suffers from stomach problems, Joe from 
typhoid and Ted from fever. 

The diagnosis results are same with the method 
proposed in (Szmidt and Kacprzyk, 2004), which 
illustrates the effectiveness of our method. 
Remark. The pattern recognition method based the 
weighted distance measure of IFSs under 
intuitionistic fuzzy environment not only provides a 
calculation method for choosing weights of features 
but also gives a method for feature selection. 

5 CONCLUSIONS 

In this paper, we construct the pattern recognition 
method based on the weighted distance measures of 
IFSs under fuzzy environment, especially emphasize 
on feature selection and choosing feature weights. 
This pattern recognition method provides a way to 
choose the feature weights and to have a feature 
selection depending on the information entropy 
theory. The proposed pattern recognition method not 
only provides a tool to represent the dissimilarity of 
different features but also can reduce the 

computational complexity through feature selection. 
To illustrate that the pattern recognition method is 
well suited in dealing with the fuzzy recognition 
problems, we borrowed the data set from (Wang and 
Xin, 2005). The results indicate that the proposed 
pattern recognition method is good in representing 
the feature weights and feature selection, and can 
give the accurate pattern recognition results. 
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