Inconsistency and Sequentiality in LTL

Norihiro Kamide

Teikyo University, Faculty of Science and Engineering, Department of Human Information Systems,
Toyosatodai 1-1, Utsunomiya-shi, Tochigi 320-8551, Japan

Keywords: Linear-time Temporal Logic, Paraconsistent Logic, Sequent Calculus, Completeness Theorem, Cut-elimination Theorem.

Abstract: Inconsistency-tolerant temporal reasoning with sequential (ordered or hierarchical) information is of gaining increasing importance in the areas of computer science applications such as medical informatics. A logical system for representing such reasoning is required for obtaining a theoretical basis for such applications. In this paper, a new logic called a paraconsistent sequential linear-time temporal logic (PSLTL) is introduced extending the standard linear-time temporal logic (LTL). PSLTL can appropriately represent inconsistency-tolerant temporal reasoning with sequential information. The cut-elimination, complexity and completeness theorems for PSLTL are proved as the main results of this paper.

1 INTRODUCTION

Inconsistency-tolerant temporal reasoning with sequential (ordered or hierarchical) information is of growing importance in the areas of computer science applications such as medical informatics and agent communication. A logical system for representing such reasoning is required for obtaining a concrete theoretical basis for such applications. But, there was no logical system that can simultaneously represent inconsistency, sequentiality and temporality. Thus, the aim of this paper is to introduce a logical system for appropriately representing inconsistency-tolerant temporal reasoning with sequential information.

For this aim, a new logic called a paraconsistent sequential linear-time temporal logic (PSLTL) is introduced in this paper extending the standard linear-time temporal logic (LTL) (Pnueli, 1977). Inconsistency-tolerant negation reasoning in PSLTL is expressed by a paraconsistent negation connective, and sequential information in PSLTL is represented by some sequence modal operators. Temporal reasoning in PSLTL is, of course, expressed by some temporal operators used in LTL. As the main results of this paper, the cut-elimination, complexity and completeness theorems for PSLTL are proved using some theorems for semantically and syntactically embedding PSLTL into its fragments SLTL and LTL.

The proposed logic PSLTL is regarded as an extension of both LTL and Nelson’s paraconsistent four-valued logic with strong negation, N4 (Almukdad and Nelson, 1984; Kamide and Wansing, 2012; Nelson, 1949; Wansing, 1993). On one hand, LTL is known to be one of the most useful temporal logics for verifying and specifying concurrent systems and temporal reasoning. On the other hand, N4 is known to be one of the most important base logics for inconsistency-tolerant reasoning. Combining the logics LTL and N4 was studied in (Kamide and Wansing, 2011), and such a combined logic is called a paraconsistent LTL (PLTL). PSLTL is obtained from PLTL by adding some sequence modal operators.

Combining LTL with some sequence modal operators was studied in (Kamide, 2010; Kaneiwa and Kamide, 2010; Kamide, 2013a), and such a combined logic was called a sequence-indexed LTL (SLTL). PSLTL is regarded as a modified paraconsistent extension of SLTL, and hence PSLTL is a modified extension of both PLTL (Kamide and Wansing, 2011) and SLTL (Kaneiwa and Kamide, 2010). In the following, we explain an important property of the paraconsistent negation connective and a plausible interpretation of sequence modal operators.

The paraconsistent negation connective ~ used in PSLTL can suitably be expressed inconsistency-tolerant reasoning. One reason why ~ is considered is that it can be added in such a way that the extended logics satisfy the property of paraconsistency. A semantic consequence relation |= is called paraconsistent with respect to a negation connective ~ if there...
are formulas α, β such that not $\{\alpha, \neg\alpha\} = \beta$. In the case of LTL, this implies that there is a model M and a position i of a sequence $\sigma = t_0, t_1, t_2, \ldots$ of time-points in M with not $([M], i) \models (\alpha \land \neg\alpha) \rightarrow \beta$.

It is known that logical systems with paraconsistency can deal with inconsistency-tolerant and uncertainty reasoning more appropriately than systems that are non-paraconsistent. For example, we do not desire that $(s(x) \land \neg s(x)) \rightarrow d(x)$ is satisfied for any symptom s and disease d where $\neg s(x)$ means “person x does not have symptom s” and $d(x)$ means “person x suffers from disease d”, because there may be situations that support the truth of both $s(a)$ and $\neg s(a)$ for some individual a but do not support the truth of $d(a)$.

If we cannot determine whether someone is healthy, then the vague concept healthy can be represented by asserting the inconsistent formula: healthy(john) $\land \neg$healthy(john). This is well-formalized in PSLTL because the formula: healthy(john) $\land \neg$healthy(john) \rightarrow hasCancer(john) where hasCancer(john) means John has cancer is not valid in PSLTL (i.e., PSLTL is inconsistency-tolerant). On the other hand, the formula healthy(john) $\land \neg$healthy(john) \rightarrow hasCancer(john) where \neg is the classical negation connective is valid in classical logic (i.e., inconsistency has undesirable consequences). For more information on paraconsistency, see e.g., (Priest, 2002).

Some sequence modal operators (Kamide and Kaneiwa, 2009; Kaneiwa and Kamide, 2010; Kaneiwa and Kamide, 2011; Kamide, 2013a; Kamide, 2013b) used in PSLTL can suitably be expressed sequential information. A sequence modal operator $[\beta]$ represents a sequence b of symbols. The notion of sequences is useful to represent the notions of “information,” “trees,” and “ontologies”. Thus, “sequential (ordered or hierarchical) information” can be represented by sequences. This is plausible because a sequence structure gives a monoid (M, \cdot, \emptyset) with informational interpretation (Wansing, 1993): (1) M is a set of pieces of (ordered or prioritized) information (i.e., a set of sequences), (2) \cdot is a binary operator (on M) that combines two pieces of information (i.e., a concatenation operator on sequences), and (3) \emptyset is the empty piece of information (i.e., the empty sequence).

A formula of the form $[b_1 \cdot b_2 \cdot \ldots \cdot b_n] \alpha$ in PSLTL intuitively means that “α is true based on a sequence $b_1 \cdot b_2 \cdot \ldots \cdot b_n$ of (ordered or prioritized) information pieces.” Further, a formula of the form $[\emptyset] \alpha$ in PSLTL, which coincides with α, intuitively means that “α is true without any information (i.e., it is an eternal truth in the sense of classical logic).” Using a sequence modal operator, we can express the formula $[\text{john} : \text{student} : \text{human}] F(\text{happy} \land \neg\text{happy})$ which means “a human student, John, will be both happy and unhappy sometime in the future.” In this formula, the sequence modal operator $[\text{john} : \text{student} : \text{human}]$ represents the hierarchy John \subseteq student \subseteq human.

The structure of this paper is then presented as follows. In Section 2, PSLTL is introduced as a semantics by extending (a semantics of) LTL with a paraconsistent negation connective and some sequence modal operators. Firstly in this section, LTL is presented as the standard semantics, and next, SLTL is presented as the semantics with some sequence modal operators. Finally, PSLTL is obtained from SLTL by adding a paraconsistent negation connective similar to that of N4. In Section 3, a Gentzen-type sequent calculus PSLT$_{\omega}$ for PSLTL is introduced extending a Gentzen-type sequent calculus LT$_{\omega}$ for LTL. Firstly in this section, a Gentzen-type sequent calculus LT$_{\omega}$, which was introduced by Kawai (Kawai, 1987), is presented, and next, a Gentzen-type sequent calculus SLT$_{\omega}$ for SLTL is presented based on (Kamide, 2010; Kaneiwa and Kamide, 2010). Finally, PSLT$_{\omega}$ is obtained from SLT$_{\omega}$ by adding some inference rules concerning the paraconsistent negation connective. In Section 4, the cut-elimination, complexity and completeness theorems for PSLTL (and PSLT$_{\omega}$) are proved using two theorems for semantically and syntactically embedding PSLTL (and PSLT$_{\omega}$) into SLTL (SLT$_{\omega}$) and LTL (LT$_{\omega}$). In Section 5, this paper is concluded.

2 SEMANTICS

Formulas of LTL are constructed from countably many propositional variables, \rightarrow (implication), \land (conjunction), \lor (disjunction), \neg (negation), X (next), G (globally) and F (eventually). Lower-case letters p, q, \ldots are used to denote propositional variables, and Greek lower-case letters α, β, \ldots are used to denote formulas. An expression $\alpha \leftrightarrow \beta$ is used to denote $(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$. We write $A \equiv B$ to indicate the syntactical identity between A and B. The symbol ω is used to represent the set of natural numbers. Lower-case letters i, j and k are used to denote any natural numbers. The symbol \geq or \leq is used to represent a linear order on ω.

Definition 2.1. Formulas of LTL are defined by the following grammar, assuming p represents propositional variables: $\alpha ::= p \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \neg \alpha \mid X\alpha \mid G\alpha \mid F\alpha$

Definition 2.2 (LTL). Let S be a non-empty set of states. A structure $M := ([\sigma], I)$ is a model if
1. σ is an infinite sequence s_0, s_1, s_2, \ldots of states in S.
2. I is a mapping from the set Φ of propositional variables to the power set of S.

A satisfaction relation $(M, i) \models \alpha$ for any formula α, where M is a model $(\{\sigma\}, I)$ and $i \in \omega$ represents some position within σ, is defined inductively by

1. for any $p \in \Phi$, $(M, i) \models p$ iff $s_i \in I(p)$.
2. $(M, i) \models \alpha \land \beta$ iff $(M, i) \models \alpha$ and $(M, i) \models \beta$.
3. $(M, i) \models \alpha \lor \beta$ iff $(M, i) \models \alpha$ or $(M, i) \models \beta$.
4. $(M, i) \models \alpha \rightarrow \beta$ iff $(M, i) \models \alpha$ implies $(M, i) \models \beta$.
5. $(M, i) \models \neg \alpha$ iff not-$(M, i) \models \alpha$.

A formula α is valid in LTL if $(M, 0) \models \alpha$ for any model $M := (\sigma, I)$.

Formulas of SLTL are obtained from that of LTL by adding $[b]$ (sequence modal operator) where b is a sequence. Formulas are constructed from countable atomic sequences \emptyset (empty sequence) and \bowtie (composition). Lower-case letters b, c, \ldots are used for sequences. An expression $[\emptyset] \alpha$ means α, and expressions $[b] \alpha$ and $[b ; \emptyset] \alpha$ mean $[b \alpha]$. The set of sequences (including \emptyset) is denoted by \mathcal{SE}. An expression $[d]$ is used to represent $[d_0][d_1]\cdots[d_i]$ with $i \in \omega$ and $d_0 = \emptyset$. Note that $[d]$ can be the empty sequence. Also, an expression \bar{d} is used to represent $d_0 ; d_1 ; \cdots ; d_i$ with $i \in \omega$.

Definition 2.3. Formulas and sequences of SLTL are defined by the following grammar, assuming p and e represent propositional variables and atomic sequences, respectively: $\alpha ::= p \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \neg \alpha \mid X \alpha \mid G \alpha \mid F \alpha \mid [b] \alpha \mid [b ; \emptyset] \alpha \mid [b ; \emptyset] \alpha$.

Definition 2.4. Let S be a non-empty set of states. A structure $M := (\sigma, \{I^d\}_d \in \mathcal{SE})$ is a sequential model if

1. σ is an infinite sequence s_0, s_1, s_2, \ldots of states in S.
2. $I^d (d \in \mathcal{SE})$ are mappings from the set Φ of propositional variables to the power set of S.

Satisfaction relations $(M, i) \models^d \alpha$ ($d \in \mathcal{SE}$) for any formula α, where M is a sequential model $(\sigma, \{I^d\}_d \in \mathcal{SE})$ and $i \in \omega$, represents some position within σ, is defined inductively by

1. for any $p \in \Phi$, $(M, i) \models^d p$ iff $s_i \in I^d (p)$.
2. $(M, i) \models^d \alpha \land \beta$ iff $(M, i) \models^d \alpha$ and $(M, i) \models^d \beta$.
3. $(M, i) \models^d \alpha \lor \beta$ iff $(M, i) \models^d \alpha$ or $(M, i) \models^d \beta$.
4. $(M, i) \models^d \alpha \rightarrow \beta$ iff $(M, i) \models^d \alpha$ implies $(M, i) \models^d \beta$.
5. $(M, i) \models^d \neg \alpha$ iff not-$(M, i) \models^d \alpha$.

A formula α is valid in PSLTL if $(M, 0) \models^d \alpha$ for any sequential model $M := (\sigma, \{I^d\}_d \in \mathcal{SE})$.

Some remarks on SLTL are given below.

1. SLTL is an extension of LTL since \models^d of SLTL includes \models of LTL.

2. The following clauses hold for SLTL: For any formula α and any sequences e and d,

 a) $(M, i) \models^d \emptyset \alpha \iff (M, i) \models^d \emptyset \alpha$.

 b) $(M, i) \models^d \emptyset \alpha \iff (M, i) \models^d \emptyset \alpha$.

3. The following formulas are valid in PSLTL for any formulas α and β and any $b, c \in \mathcal{SE}$,

 a) $[b] (\alpha \rightarrow \beta) \iff ([b] \alpha \rightarrow [b] \beta)$

 where $\emptyset \in \{\land, \lor, \rightarrow\}$.

 b) $[b] (\alpha \rightarrow [b] \beta)$ where $b \in \{\neg, X, G, F\}$.

 c) $[b] ; c \alpha \iff [b] [c] \alpha$.

Formulas of PSLTL are obtained from that of SLTL by adding \sim (paracomponent negation).

Definition 2.5. Formulas and sequences of PSLTL are defined by the following grammar, assuming p and e represent propositional variables and atomic sequences, respectively: $\alpha ::= p \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \neg \alpha \mid X \alpha \mid G \alpha \mid F \alpha \mid [b] \alpha \mid [b ; \emptyset] \alpha \mid [b ; \emptyset] \alpha \mid e \mid \emptyset \mid b ; b$.

Definition 2.6. Let S be a non-empty set of states. A structure $M := (\sigma, \{I^d\}_d \in \mathcal{SE}, \{I^d\}_d \in \mathcal{SE})$ is a paracomponent sequential model if

1. σ is an infinite sequence s_0, s_1, s_2, \ldots of states in S.
2. $I^d (\star \in \{+,-\}, \bar{d} \in \mathcal{SE})$ are mappings from the set Φ of propositional variables to the power set of S.

Satisfaction relations $(M, i) \models^d \alpha$ ($\star \in \{+,-\}, \bar{d} \in \mathcal{SE}$) for any formula α, where M is a paracomponent sequential model $(\sigma, \{I^d\}_d \in \mathcal{SE}, \{I^d\}_d \in \mathcal{SE})$ and $i \in \omega$ represents some position within σ, are defined by

1. for any $p \in \Phi$, $(M, i) \models^d p$ iff $s_i \in I^d (p)$.
2. $(M, i) \models^d \alpha \land \beta$ iff $(M, i) \models^d \alpha$ and $(M, i) \models^d \beta$.
Inconsistency and Sequentiality in LTL

3. \((M,i) \models ^d \alpha \lor \beta \iff (M,i) \models ^d \alpha \text{ or } (M,i) \models ^d \beta\),
4. \((M,i) \models ^d \alpha \rightarrow \beta \iff (M,i) \models ^d \alpha \implies (M,i) \models ^d \beta\),
5. \((M,i) \models ^d -\alpha \iff \text{not } [(M,i) \models ^d \alpha]\),
6. \((M,i) \models ^d -\alpha \iff (M,i) \models ^d \alpha \),
7. \((M,i) \models ^d X\alpha \iff (M,i+1) \models ^d \alpha\),
8. \((M,i) \models ^d G\alpha \iff \forall j \geq i[(M,j) \models ^d \alpha]\),
9. \((M,i) \models ^d FA\alpha \iff \exists j \geq i[(M,j) \models ^d \alpha]\),
10. for any \(p \in \Phi\), \((M,i) \models ^d p \iff \forall s_i \in I^d(p)\),
11. \((M,i) \models ^d \alpha \land \beta \iff (M,i) \models ^d \alpha \text{ and } (M,i) \models ^d \beta\),
12. \((M,i) \models ^d \alpha \rightarrow \beta \iff (M,i) \models ^d \alpha \text{ and } (M,i) \models ^d \beta\),
13. \((M,i) \models ^d X\alpha \iff (M,i+1) \models ^d \alpha\),
14. \((M,i) \models ^d G\alpha \iff \exists j \geq i[(M,j) \models ^d \alpha]\),
15. \((M,i) \models ^d FA\alpha \iff \forall j \geq i[(M,j) \models ^d \alpha]\),
16. for any atomic sequence \(e\) and any \(* \in \{+, -\}, \)
\((M,i) \models ^d [e] \alpha \iff (M,i) \models ^d \alpha\).
17. for any atomic sequence \(e\) and any \(* \in \{+, -\}, \)
\((M,i) \models ^d [b ; c] \alpha \iff (M,i) \models ^d [b][c] \alpha\).

A formula \(\alpha\) is valid in PSLTL if \((M,0) \models ^0 \alpha\) for any paraconsistent sequential model \(M := (\sigma, \{I^d_i\}_{i \in \Sigma}, \{I^d_i\}_{i \in \Sigma})\).

Some remarks on PSLTL are given below.

1. The intuitive meanings of \(\models ^d\) and \(\models ^d\) are “verification (or justification) with sequential information” and “refutation (or falsification) with sequential information,” respectively.
2. F and G are duals of each other not only with respect to \(\neg\) but also with respect to \(\sim\). X is a self dual not only with respect to \(\neg\) but also with respect to \(\sim\). \([b]\) is a self dual not only with respect to \(\neg\) but also with respect to \(\sim\), \(\neg\) and \(\sim\) are self duals with respect to \(\neg\) and \(\sim\), respectively.
3. The falsification conditions for \(\sim\) may be felt to be in need of some justification. Suppose that \(a\) is a person who is neither rich nor poor and that, as a matter of fact, no one is both rich and poor. Let \(p\) stand for the claim that \(a\) is poor and \(r\) for the claim that \(a\) is rich. Intuitively, a state definitely verifies \(p\) iff it falsifies \(r\), and vice versa. Suppose now that \(\neg p\) is indeed falsified at a state \(i\) in model \(M: (M,i) \models ^d \neg p\). This should mean that it is verified at \(i\) that \(p\) is poor or neither poor nor rich. But this is the case iff \(r\) is not verified at \(i\), which means that \(p\) is not falsified at \(i\).

4. PSLTL is paraconsistent with respect to \(\sim\). The reason is presented as follows. Assume a paraconsistent sequential model \(M := (\sigma, \{I^d_i\}_{i \in \Sigma}, \{I^d_i\}_{i \in \Sigma})\) such that \(s_i \in I^d(p)\), \(s_i \in I^d(p)\) and \(s_i \in I^d(q)\) for a pair of distinct propositional variables \(p\) and \(q\). Then, \((M,i) \models ^d (p \land \neg p) \rightarrow q\) does not hold.

The following clauses hold for PSLTL: For any formula \(\alpha\), any sequences \(c, d\) and any \(* \in \{+, -\}, \)
(a) \((M,i) \models ^d [c] \alpha \iff (M,i) \models ^d c \alpha,\)
(b) \((M,i) \models ^d [d] \alpha \iff (M,i) \models ^d \alpha,\)

3 SEQUENT CALCULUS

Greek capital letters \(\Gamma, \Delta, \Pi\) are used to represent finite (possibly empty) sets of formulas. An expression \(X\alpha\) for any \(i \in \Phi\) is defined inductively by \(X\alpha \equiv \alpha\) and \(X^{n+1}\alpha \equiv X\alpha X\alpha\). An expression of the form \(\Gamma \Rightarrow \Delta\) is called a sequent. An expression \(L \vdash S\) is used to denote the fact that a sequent \(S\) is provable in a sequent calculus \(L\). A rule \(R\) of inference is said to be admissible in a sequent calculus \(L\) if the following condition is satisfied: for any instance \(\frac{\sum_i}{\sum_j}\) of \(R\), if \(L \vdash S_i\) for all \(i\), then \(L \vdash S\).

Kawai’s sequent calculus \(LT_0\) (Kawai, 1987) for LTL is presented below.

Definition 3.1 (LT_0). The initial sequents of \(LT_0\) are of the form: for any propositional variable \(p\),

\[X^i p \Rightarrow X^i p,\]

The structural rules of \(LT_0\) are of the form:

\[\Gamma \Rightarrow \Delta, \alpha, \Sigma \Rightarrow \Pi\] (cut)

\[\frac{\Gamma \Rightarrow \Delta, \alpha, \Sigma \Rightarrow \Pi}{\Gamma, \Sigma \Rightarrow \Delta, \Pi}\] (we-left)

\[\frac{\Gamma \Rightarrow \Delta}{\Gamma, \alpha \Rightarrow \Delta}\] (we-right).

The logical inference rules of \(LT_0\) are of the form:

\[\Gamma \Rightarrow \Sigma, X^i \alpha \quad X^i \alpha, \Gamma \Rightarrow \Delta, \Pi\] (→left)

\[\frac{X^i (\alpha \Rightarrow \beta), \Gamma \Rightarrow \Delta, \Pi}{X^i (\alpha \Rightarrow \beta, \Gamma \Rightarrow \Delta)\] (→right)

\[\frac{X^i \alpha, \Gamma \Rightarrow \Delta}{X^i (\alpha \land \beta, \Gamma \Rightarrow \Delta}\] (∧left)

\[\frac{X^i \beta, \Gamma \Rightarrow \Delta}{X^i (\alpha \land \beta, \Gamma \Rightarrow \Delta}\] (∧left2)

49
\[
\begin{align*}
\Gamma \Rightarrow \Delta, X\alpha & \quad \Gamma \Rightarrow \Delta, X\beta \\
\Gamma \Rightarrow \Delta, X'(\alpha \lor \beta) & \\
\Gamma \Rightarrow \Delta, X'(\alpha \land \beta) & \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \Rightarrow \Delta, X'\alpha & \quad \text{(\textit{right1})} \\
\Gamma \Rightarrow \Delta, X'\beta & \quad \text{(\textit{right2})} \\
\end{align*}
\]

Some remarks on LT_{w} are given below.

1. The rules (Gleft) and (Fleft) have infinite premises.

2. The sequents of the form \(X'\alpha \Rightarrow X'\beta\) for any formula \(\alpha\) are provable in cut-free LT_{w}. This fact can be proved by induction on the complexity of \(\alpha\).

3. The cut-elimination and completeness theorems for LT_{w} were proved by Kawai (Kawai, 1987).

Prior to introducing a sequent calculus for SLT_{w}, we have to introduce some notations. The symbol \(K\) is used to represent the set \(\{T\} \cup \{b \mid b \in SE\}\), and the symbol \(K'\) is used to represent the set of all words of finite length of the alphabet \(K\). For example, \(X'[b][X'[c]]\) is in \(K'\). Remark that \(K'\) includes \(0\), and hence \(\{\tau \mid \tau \in K'\}\) includes \(\alpha\). An expression \(\tau\) is used to represent an arbitrary member of \(K'\).

A sequent calculus SLT_{w} for SLT_{w} is then introduced below.

Definition 3.2 (SLT_{w}). The initial sequents of SLT_{w} are of the form: for any propositional variable \(p\),

\[
\tau \vdash p \Rightarrow \tau.
\]

The structural rules of SLT_{w} are (cut), (we-left) and (we-right) in Definition 3.1.

The logical inference rules of SLT_{w} are of the form:

\[
\begin{align*}
\Gamma \Rightarrow \Sigma, \alpha & \quad \Gamma \Rightarrow \Pi \\
\Gamma \Rightarrow \Delta, \beta, \alpha, \Delta \Rightarrow \Sigma, \Pi & \quad \text{(\textit{we-left}')} \\
\Gamma \Rightarrow \Delta, \beta, \alpha & \quad \Gamma \Rightarrow \Sigma, \Pi & \quad \text{(\textit{we-right}')} \\
\end{align*}
\]

\[
\begin{align*}
\alpha, \Gamma \Rightarrow \Delta & \quad \text{(\textit{left1}')} \\
\beta, \Gamma \Rightarrow \Delta & \quad \text{(\textit{left2}')} \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \Rightarrow \Delta, \alpha & \quad \Gamma \Rightarrow \Delta, \beta \\
\Gamma \Rightarrow \Delta, (\alpha \lor \beta), \Gamma \Rightarrow \Delta & \quad \text{(\textit{right}')} \\
\Gamma \Rightarrow \Delta, (\alpha \land \beta), \Gamma \Rightarrow \Delta & \quad \text{(\textit{right}')} \\
\Gamma \Rightarrow \Delta, \alpha & \quad \Gamma \Rightarrow \Delta, \beta \\
\end{align*}
\]

The sequence inference rules of SLT_{w} are of the form:

\[
\tau \vdash \sigma \Rightarrow \tau.
\]

Some remarks on SLT_{w} are given below.

1. The sequents of the form \(\tau \vdash \sigma \Rightarrow \tau\) for any formula \(\alpha\) are provable in cut-free SLT_{w}. This fact can be proved by induction on the complexity of \(\alpha\).

2. The following rules are admissible in cut-free SLT_{w}:

\[
\begin{align*}
\tau \vdash \sigma & \Rightarrow \tau \Rightarrow \sigma \\
\tau \vdash \sigma & \Rightarrow \tau \Rightarrow \sigma \\
\end{align*}
\]

A sequent calculus PSLT_{w} for PSLTL is introduced below.

Definition 3.3 (PSLT_{w}). PSLT_{w} is obtained from SLT_{w} by adding the initial sequents of the form: for any propositional variable \(p\),

\[
\tau \vdash p \Rightarrow \tau,
\]

and adding the logical and sequence inference rules of the form:

\[
\begin{align*}
\tau \vdash \sigma & \Rightarrow \tau \Rightarrow \sigma \\
\tau \vdash \sigma & \Rightarrow \tau \Rightarrow \sigma \\
\end{align*}
\]

\[
\begin{align*}
\alpha, \Gamma \Rightarrow \Delta & \quad \text{(\textit{left1})} \\
\beta, \Gamma \Rightarrow \Delta & \quad \text{(\textit{left2})} \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \Rightarrow \Delta, \alpha & \quad \Gamma \Rightarrow \Delta, \beta & \quad \text{(\textit{right1})} \\
\end{align*}
\]

\[
\begin{align*}
\tau \vdash (\alpha \rightarrow \beta), \Gamma \Rightarrow \Delta & \quad \text{(\textit{right1}')} \\
\end{align*}
\]

\[
\begin{align*}
\tau \vdash (\alpha \rightarrow \beta), \Gamma \Rightarrow \Delta & \quad \text{(\textit{right2})} \\
\end{align*}
\]
Inconsistency and Sequentiality in LTL

4 MAIN RESULTS

In this section, we introduce a translation function f from SLTL into LTL, and a translation function g from PSLTL into SLTL. Using these functions, we obtain a translation function gf from PSLTL into LTL. Using these translation functions, we will show a theorem for semantically and syntactically embedding PSLTL into SLTL and LTL. Using these embedding theorems, we will show the cut-elimination, complexity and completeness theorems for PSLTL.

Definition 4.1 (Translation from SLTL into LTL). Let Φ be a non-empty set of propositional variables and Φ^d be the set $\{p^d \mid p \in \Phi\}$ (d \in SE) of propositional variables where $p^d \colon p$ (i.e., $\Phi^d \colon \Phi$). The language L^d (the set of formulas) of SLTL is defined using Φ^d, $[b]$, $\land, \lor, \rightarrow, \neg, X, F, G$ and $[\beta]$. The language Γ of SLTL is obtained from L^d by adding Φ^d and deleting \sim.

A mapping f from Φ^d to L is defined by:

1. For any $p \in \Phi$, $f([\overline{p}]) := p^d \in \Phi^d$, esp., $f(p) = p \in \Phi$.
2. $f(\neg([\alpha \circ \beta])) := f(\neg([\alpha])) \circ f(\neg([\beta]))$ where $\circ \in \{\land, \lor, \rightarrow\}$.
3. $f(\neg([\alpha])) := \neg f([\alpha])$ where $\neg \in \{\neg, X, F, G\}$.
4. $f([\vec{b}|; c|[\alpha]]) := f(\exists x)[b]c\alpha$.

An expression $f(\Gamma)$ denotes the result of replacing every occurrence of a formula α in Γ by an occurrence of $f(\alpha)$.

Proposition 4.2 ([Kamide, 2010; Kaniewa and Kamide, 2010]). Let f be the mapping defined in Definition 4.1.

1. (Semantical embedding): For any formula α, α is valid in SLTL iff $f(\alpha)$ is valid in LTL.
2. (Syntactical embedding): For any sets Γ and Δ of formulas in L^d.
 (a) $SLTL_{\Phi} \vdash \Gamma \Rightarrow \Delta$ iff $LT_{\Phi} \vdash f(\Gamma) \Rightarrow f(\Delta)$.
 (b) $SLTL_{\Phi} \vdash\neg([\alpha]) \Rightarrow \Delta$ iff $LT_{\Phi} \vdash\neg([\alpha]) \Rightarrow f(\Delta)$.
3. (Cut-elimination): The rule (cut) is admissible in cut-free $SLTL_{\Phi}$.
4. (Completeness): For any formula α, $SLTL_{\Phi} \vdash \alpha$ iff α is valid in SLTL.

We now introduce a translation of PSLTL into SLTL, and by using this translation, we show some theorems for embedding PSLTL into SLTL. A similar translation has been used by Vorob’ev (Vorob’ev, 1952), Gurevich (Gurevich, 1977), and Rautenberg (Rautenberg, 1979) to embed Nelson’s three-valued constructive logic (Almukdad and Nelson, 1984; Nelson, 1949) into intuitionistic logic.

Definition 4.3 (Translation from PSLTL into SLTL). Let Φ be a non-empty set of propositional variables and Φ^d be the set $\{p^d \mid p \in \Phi\}$ of propositional variables. The language L^{ps} (the set of formulas) of PSLTL is defined using Φ^d, $\neg, \land, \lor, \rightarrow, \neg, X, F, G$ and $[b]$. The language Γ of SLTL is obtained from L^{ps} by adding Φ^d and deleting \sim.

A mapping g from Φ^d to Φ^d is defined by:

1. For any $p \in \Phi$, $g([\overline{p}]) := p^d \in \Phi^d$, esp., $g(p) = p \in \Phi$.
2. $g(\neg([\alpha \circ \beta])) := g(\neg([\alpha])) \circ g(\neg([\beta]))$ where $\circ \in \{\land, \lor, \rightarrow\}$.
3. $g(\neg([\alpha])) := \neg g([\alpha])$ where $\neg \in \{\neg, X, F, G, [\beta]\}$.
4. $g(\neg([\alpha])) := g([\alpha])$.
5. $g(\neg([\alpha])) := \neg g([\alpha])$ where $\neg \in \{\neg, X, F, G, [\beta]\}$.
6. $g(\neg([\alpha \circ \beta])) := g(\neg([\alpha])) \lor g(\neg([\beta]))$.
7. $g(\neg([\alpha \circ \beta])) := g(\neg([\alpha])) \land g(\neg([\beta]))$.
8. $g(\neg([\alpha \circ \beta])) := g([\alpha]) \land g([\beta])$.
9. $g(\neg([\alpha \circ \beta])) := Gg(\neg([\alpha]))$.
10. $g(\neg([\alpha \circ \beta])) := Fg(\neg([\alpha]))$.

51
We have: \(g(\alpha \beta) = \Phi g(\alpha) \) for any formula \(\alpha \) and any \(\beta \in K^* \).

The following is a translation example from PSLTL into LTL, by using the translation functions \(f \) and \(g \).

Example 4.4. We consider a formula \(G(\neg (b \land \neg c)) \) where \(b, c \) are atomic sequences, and \(p, q \) are propositional variables.

Firstly, we translate this PSLTL-formula into a SLTL-formula by the translation function \(g \) as follows.

\[
g(G(\neg (b \land \neg c))) = G(g(\neg(b \land \neg c)))
\]

\[
= G(g(\neg b) \lor g(\neg c))
\]

\[
= G(b \land \neg c)
\]

\[
= G(b) \land \neg G(c)
\]

where \(p' \) is a propositional variable in SLTL.

Next, we translate this SLTL-formula into a LTL-formula by the translation function \(f \) as follows.

\[
f(G(b) \land \neg G(c)) = f(G(b)) \land \neg f(G(c))
\]

\[
= f(b) \land \neg f(c)
\]

where \(p^b, q^c \) are propositional variables in LTL.

Thus, the formula \(G(\neg (b \land \neg c)) \) of PSLTL is translated into the formula \(G(p^b \lor q^c) \) of LTL.

Next, we will show a theorem for semantically embedding PSLTL into SLTL. To show this theorem, we need two lemmas which are presented below.

Lemma 4.5. Let \(g \) be the mapping defined in Definition 4.3, and \(S \) be a non-empty set of states. For any paraconsistent sequential model \(M := \langle \sigma, \{I^d\}_{d \in S}\rangle \) of PSLTL, any satisfaction relations \(\models^d \) \((\in \{+, \neg, \hat{\ }, \hat{\ } \}) \) on \(M \), and any state \(s_i \in \sigma \), we can construct a sequential model \(N := \langle \sigma, \{I^d\}_{d \in S}\rangle \) of SLTL and satisfaction relations \(\models^d \) on \(N \) such that for any formula \(\alpha \) in \(L^p \),

1. \((M,i) \models^d \alpha \iff (N,i) \models^d g(\alpha) \).
2. \(s_i \in I^d(p) \iff s_i \in I^d(p') \).

The lemma is then proved by (simultaneous) induction on the complexity of \(\alpha \).

- Base step: Case \(\alpha \equiv p \in \Phi \): For (1), we obtain: \((M,i) \models^d p \iff s_i \in I^d(p) \iff s_i \in I^d(p') \) (by the def. of \(g \)). For (2), we obtain: \((M,i) \models^d p \iff s_i \in I^d(p) \iff s_i \in I^d(p') \) (by the def. of \(g \)).
- Induction step: We show some cases.

 - Case \(\alpha \equiv \neg \beta \): For (1), we obtain: \((M,i) \models^d \neg \beta \iff (N,i) \models^d g(\neg \beta) \) (by induction hypothesis for 1).
 - Case \(\alpha \equiv \exists \beta \): For (1), we obtain: \((M,i) \models^d \exists \beta \iff (N,i+1) \models^d \beta \) (by induction hypothesis for 1).

Lemma 4.6. Let \(g \) be the mapping defined in Definition 4.3, and \(S \) be a non-empty set of states. For any sequential model \(N := \langle \sigma, \{I^d\}_{d \in S}\rangle \) of SLTL and any satisfaction relations \(\models^d \) \((\in \{+, \neg, \hat{\ }, \hat{\ } \}) \) on \(N \), and any state \(s_i \in \sigma \), we can construct a paraconsistent sequential model \(M := \langle \sigma, \{I^d\}_{d \in S}\rangle \) of PSLTL and satisfaction relations \(\models^d \) \((\in \{+, \neg, \hat{\ }, \hat{\ } \}) \) on \(M \) such that

1. \((M,i) \models^d \alpha \iff (N,i) \models^d g(\alpha) \).
2. \(s_i \in I^d(p) \iff s_i \in I^d(p') \).

Theorem 4.7 (Semantical embedding from PSLTL into SLTL). Let \(g \) be the mapping defined in Definition 4.3. For any formula \(\alpha \), \(\alpha \) is valid in PSLTL if \(g(\alpha) \) is valid in SLTL.

Proof. By Lemmas 4.5 and 4.6. Q.E.D.
Theorem 4.8 (Semantical embedding from PSLT into LTL). Let \(f \) and \(g \) be the mappings defined in Definitions 4.1 and 4.3, respectively. For any formula \(\alpha, \beta \) is valid in PSLT iff \(f g (\alpha) \) is valid in LTL.

Proof. By Proposition 4.2 (1) and Theorem 4.7. Q.E.D.

Theorem 4.9 (Complexity). PSLT is PSPACE-complete.

Proof. By decidability of LTL, for each \(\alpha \), it is possible to decide if \(f g (\alpha) \) is valid in LTL. Then, by Theorem 4.8, PSLT is also decidable. Moreover, the mapping \(f g \) is a polynomial time translation, and LTL is known to be PSPACE-complete (Sistla and Clarke, 1985). Thus, PSLT is also PSPACE-complete. Q.E.D.

Theorem 4.10 (Weak syntactical embedding from PSLT into SLT). Let \(\Gamma \) and \(\Delta \) be sets of formulas in \(L^p \), and \(g \) be the mapping defined in Definition 4.3. Then:

1. If \(\text{PSLT} \vdash \Gamma \Rightarrow \Delta \), then \(\text{SLT} \vdash g (\Gamma) \Rightarrow g (\Delta) \).
2. If \(\text{SLT} \vdash (\text{cut}) \Rightarrow g (\Gamma) \Rightarrow g (\Delta) \), then \(\text{PSLT} \vdash (\text{cut}) \Rightarrow \Gamma \Rightarrow \Delta \).

Proof. (1) : By induction on the proofs \(P \) of \(\Gamma \Rightarrow \Delta \) in PSLT. We distinguish the cases according to the last inference of \(P \), and show some cases.

Case \((\because \Rightarrow) \): The last inference of \(P \) is of the form:

\[
\Gamma \Rightarrow \Delta
\]

By induction hypothesis, we have the required fact:

\[
\text{SLT} \vdash g (\Gamma) \Rightarrow g (\Delta)
\]

Case \((\because \leftarrow) \): The last inference of \(P \) is of the form:

\[
(\because \leftarrow) : \Gamma \Rightarrow \Delta
\]

By induction hypothesis, we have the required fact:

\[
\text{SLT} \vdash (\text{cut}) \Rightarrow g (\Gamma) \Rightarrow g (\Delta)
\]

Proof. Suppose PSLT \(\vdash \Gamma \Rightarrow \Delta \). Then, we have PSLT \(\vdash f (\Gamma) \Rightarrow f (\Delta) \) by Theorem 4.10 (1), and hence SLT \(\vdash (\text{cut}) \Rightarrow f (\Gamma) \Rightarrow f (\Delta) \) by Proposition 4.2 (3). By Theorem 4.10 (2), we obtain PSLT \(\vdash (\text{cut}) \Rightarrow \Gamma \Rightarrow \Delta \). Q.E.D.

Theorem 4.11 (Cut-elimination). The rule (cut) is admissible in cut-free PSLT.

Proof. Suppose PSLT \(\vdash \Gamma \Rightarrow \Delta \). Then, we have SLT \(\vdash f (\Gamma) \Rightarrow f (\Delta) \) by Theorem 4.10 (1), and hence SLT \(\vdash (\text{cut}) \Rightarrow f (\Gamma) \Rightarrow f (\Delta) \) by Proposition 4.2 (3). By Theorem 4.10 (2), we obtain PSLT \(\vdash (\text{cut}) \Rightarrow \Gamma \Rightarrow \Delta \). Q.E.D.

Theorem 4.12 (Syntactical embedding from PSLT into SLT). Let \(\Gamma \) and \(\Delta \) be sets of formulas in \(L^p \), and \(g \) be the mapping defined in Definition 4.3. Then:

1. PSLT \(\vdash \Gamma \Rightarrow \Delta \) iff SLT \(\vdash g (\Gamma) \Rightarrow g (\Delta) \).
2. PSLT \(\vdash (\text{cut}) \Rightarrow \Gamma \Rightarrow \Delta \) iff SLT \(\vdash (\text{cut}) \Rightarrow g (\Gamma) \Rightarrow g (\Delta) \).

Proof. (1) \((\Rightarrow) \): By Theorem 4.10 (1). \((\Leftarrow) \): Suppose PSLT \(\vdash \Gamma \Rightarrow \Delta \). We then have SLT \(\vdash (\text{cut}) \Rightarrow g (\Gamma) \Rightarrow g (\Delta) \) by Proposition 4.2 (3). Thus, we obtain PSLT \(\vdash (\text{cut}) \Rightarrow \Gamma \Rightarrow \Delta \) by Theorem 4.10 (2). Therefore we have PSLT \(\vdash \Gamma \Rightarrow \Delta \).

(2) \((\Rightarrow) \): Suppose PSLT \(\vdash (\text{cut}) \Rightarrow \Gamma \Rightarrow \Delta \). Then we have PSLT \(\vdash \Gamma \Rightarrow \Delta \). We then obtain SLT \(\vdash g (\Gamma) \Rightarrow g (\Delta) \) by Theorem 4.10 (1).
\[\vdash g(\Gamma) \Rightarrow g(\Delta) \text{ by Theorem 4.10 (1).} \] Therefore we obtain SLT_{\omega} - (cut) \vdash g(\Gamma) \Rightarrow g(\Delta) \text{ by Proposition 4.2 (3), (c). By Theorem 4.10 (2). Q.E.D.}

Theorem 4.13 (Syntactical embedding from PSLT_{\omega} into LT_{\omega}). Let \(\Gamma \) and \(\Delta \) be sets of formulas in \(L^{p} \).

Let \(f \) and \(g \) be the mappings defined in Definitions 4.1 and 4.3, respectively. Then:

1. \(\text{PSLT}_{\omega} \vdash \Gamma \Rightarrow \Delta \iff \text{SLT}_{\omega} \vdash fg(\Gamma) \Rightarrow fg(\Delta). \)
2. \(\text{PSLT}_{\omega} - (\text{cut}) \vdash \Gamma \Rightarrow \Delta \iff \text{SLT}_{\omega} - (\text{cut}) \vdash fg(\Gamma) \Rightarrow fg(\Delta). \)

Proof. By Proposition 4.2 (2) and Theorem 4.12. Q.E.D.

Theorem 4.14 (Completeness). For any formula \(\alpha \),

\[\text{PSLT}_{\omega} \vdash \alpha \iff \text{valid in PSLT}. \]

Proof. \(\text{PSLT}_{\omega} \vdash \alpha \iff \text{valid in SLT}_{\omega} \) (by Theorem 4.12) iff \(g(\alpha) \) is valid in SLT_{\omega} (by Proposition 4.2 (4)) iff \(\alpha \) is valid in PSLT (by Theorem 4.7). Q.E.D.

5 CONCLUSIONS

In this paper, the logic PSLTL (paraconsistent sequential linear-time temporal logic) was introduced as a semantics by extending the standard logic (a semantics of LTL) (linear-time temporal logic). PSLTL can appropriately represent inconsistency-tolerant reasoning by the paraconsistent negation connective, and sequential (hierarchical) information by some sequence modal operators. By using the syntactical embedding theorem of PSLTL into LTL, it was shown that PSLTL is PSPACE-complete. The Gentzen-type sequent calculus PSLT_{\omega} for PSLTL was introduced, and the cut-elimination theorem for this calculus was proved using the syntactical embedding theorem of PSLT_{\omega} into its non-paraconsistent fragment SLT_{\omega}. The completeness theorem for PSLTL (and PSLT_{\omega}) was proved using both syntactical and semantical embedding theorems of PSLTL (and PSLT_{\omega}) into SLTL (and SLT_{\omega}). It was thus shown in this paper that PSLTL and PSLT_{\omega} are a good theoretical basis for inconsistency-tolerant temporal reasoning with sequential information.

REFERENCES

