
Model-driven Development of Multi-View Modelling Tools
The MUVIEMOT Approach

Domenik Bork and Dimitris Karagiannis
Research Group Knowledge Engineering, University of Vienna, Währinger Street 29, 1090 Vienna, Austria

Keywords: Multi-View Modelling, Meta Modelling, Modelling Tools, Model-driven Development, MUVIEMOT,
ADOxx.

Abstract: As the complexity of modern computer and enterprise systems is ever increasing due to emerging
technologies and the need to integrate different systems, modelling tools, designed to encourage modellers
in creating models according to the complex reality are of rising importance. Multi-view modelling methods
(MVMM) can cope with this complexity by providing visualization, decomposition, and specialization
functionality. The creation of a model is decomposed into the creation of several views and integrating them
in order to derive the whole model of the system. Keeping the multiple views consistent and providing
suitable visualization means is vital for applicability and usability of MVMMs. By contrast, when designing
such tools, one is forced to adopt conventional software engineering approaches. The paper at hand tries to
contribute filling that research gap by introducing a model-driven approach, tailored to the specifics of
designing multi-view modelling tools. A prototypical implementation of the approach enables automatic
generation of modelling tools for MVMM using the ADOxx meta modelling platform.

1 INTRODUCTION

Modelling of enterprise systems and information
systems is of increasing complexity due to emerging
technologies and standards, increasing heterogeneity
and globalization, and the different stakeholders
involved in creating or processing of the models.
Multi-view modelling methods (MVMM) help to
cope with this complexity by dividing the modelled
system into multiple views. Each view considers
only certain aspects of the system thereby utilizing a
certain perspective on it (Bork and Sinz, 2013). The
views use the abstraction level and concepts most
suitable to map the aspects of the subarea considered
by the view onto the model. Consequently, aspects
not considered by the view are ignored.

An example from the enterprise modelling
domain should help to introduce a common
understanding: In enterprise modelling, structural,
behavioural, technical and organizational aspects are
most commonly present. These aspects are modelled
using specialized views. Integrating these views
manually into one comprehensive model is likely to
overwhelm the modeller. This not only holds for
analysis of the model, it also covers the process of
creating valid models. Most enterprise modelling

methods (e.g., ARIS, MEMO, SOM) therefore
divide the model into several, interrelated, partial
views. Each view is specified by a viewpoint which
depicts the concepts considered by the view and the
rules for combining them. The relationship between
view and viewpoint is analogous to the relationship
between model and meta model.

Using such specialized views enables two major
benefits: First, the viewpoints can utilize several
abstraction and visualisation levels, thereby
fostering analysis and understanding of the model.
Second, the concepts of the viewpoint can be aligned
to the domain or stakeholder, the view is designed
for – cf. the benefits of domain-specific modelling
languages (DSMLs).

However, due to the unifying character of the
viewpoints, correspondences between the different
views are inherently given. The adequate definition
and handling of these correspondences and the
anticipation of inconsistencies adhering from them is
vital for the efficient application of MVMMs.

Specifying these correspondences in a formalised
and machine-processable manner is one of the major
research issues in the currently emphasized research
field of developing multi-view modelling tools
(Frank et al. 2014). Formalisation enables not only

Karagiannis D. and Bork D.
Model-Driven Development of Multi-View Modelling Tools: The MUVIEMOT Approach.
DOI: 10.5220/0006811900010001
In Proceedings of the 9th International Conference on Software Paradigm Trends (ICSOFT 2014), pages 11-23
ISBN: 978-989-758-037-6
Copyright c© 2014 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

machine-processing but also intersubjective
understanding of the specification (Bork and Fill,
2014). Following our introductory example from the
enterprise modelling domain, a behavioural
viewpoint (e.g., for business processes) has relations
to the technical and organizational viewpoints (e.g.,
machines and personnel for the execution of certain
tasks defined in the business process). The
breakdown of a machine is normally captured in the
technical view. However, it is obvious that in case of
a machine breakdown, business process tasks
performed with this machine cannot be performed
until the machine is repaired. Such correspondences
between views do not only effect the operation of
enterprises but also their planning and analysis.

The development of consistency-preserving
multi-view modelling tools is therefore a key factor
for utility and efficiency of MVMM. Currently, this
task is conceptually and technically prominently
supported by meta modelling and meta modelling-
based tool development platforms like ADOxx (Fill
and Karagiannis 2013), Eclipse Modelling
Framework, or MetaEdit+ (Tolvanen and Rossi,
2003). These platforms share the generic steps to be
undertaken in order to create a modelling tool.

However, such platforms concentrate on the late
development steps, i.e., the implementation of
modelling tools. Specifying the requirements and the
functionality is still left to the cognitive capabilities
of method engineers. This is even more a
shortcoming when thinking of the specifics of
MVMMs. There is a significant lack of support
when it comes to the design of multi-view modelling
tools (Bork and Sinz, 2013).

The paper at hand aims to reduce this deficit by
introducing a set of domain-specific modelling
languages (DSMLs) for the model-driven
specification of requirements for multi-view
modelling tools. The DSMLs and a procedural
approach defining their application is in the
following referred to as MUVIEMOT. An
implementation of the approach on the ADOxx meta
modelling platform moreover allows the automatic
transformation of the models into modelling tool
implementations. The paper describes MUVIEMOT
and illustrates its feasibility using a case study from
the enterprise modelling domain.

The rest of the paper is organized as follows:
Section 2 describes the components of modelling
methods and uses these components to further
specify multi-view modelling methods. A brief
introduction to the development of modelling tools
concludes the foundations. In Section 3, the DSMLs
for the specification of multi-view modelling tools

are introduced. The model-driven engineering of
multi-view modelling tools with MUVIEMOT is then
described in Section 4. A case study, follows in
Section 5. Finally, Section 6 concludes the paper and
gives some ideas for further research.

2 FOUNDATIONS

This section outlines the foundations of modelling
methods. Subsequently, the specifics of a multi-view
modelling method are contrasted. Finally, Section
2.3 briefly describes current development
approaches, emphasizing on their inappropriateness
for the development of multi-view modelling
methods.

2.1 Modelling Methods and Meta
Modelling

Due to the increasing complexity of today's
enterprises and the software systems determining
their ability to compete in a global market, models
play a vital role. Models not only help to cope with
the complexity by providing structuring, analysis
and further processing qualities. They are also used
as primary tool for the development of the software
systems, e.g., by following a model-driven
development (MDD) approach.

A modelling method, according to (Karagiannis
and Kühn, 2002) is composed of three major parts:
(1) a Modelling Language, (2) a Modelling
Procedure, and (3) Mechanisms & Algorithms.
Figure 1 illustrates the components of a modelling
method by means of an UML class diagram.

A Modelling Language defines the elements of
the modelling method and the rules for combining
them. For every element, semantics defining their
meaning, and notation, defining their graphical
visualization need to be specified.

The Modelling Procedure then uses the specified
modelling language and defines the steps and results
while actually creating valid models by a modeller.
The combination of the modelling language and the
modelling procedure is referred to as the Modelling
Technique.

Mechanisms & Algorithms "provide the
functionality to use and evaluate the models built by
using the modelling language" (Karagiannis and
Kühn, 2002, p. 4). According to the meta model
level the mechanisms are specified on, three
different classes of mechanisms can be identified.
Generic mechanisms are specified on the meta meta
model. They can therefore be applied on every meta

Figure 1: Components of modelling methods (Karagiannis and Kühn 2002).

model defined using the concepts of the meta meta
model. Specific mechanisms on the other side are
implemented using the concepts of a certain meta
model. Finally, Hybrid mechanisms are defined on
the meta meta model but they can be adopted or
parameterized using the specific concepts of the
meta model, e.g. customization of pre-defined
analysis queries.

Based on the definitions of modelling methods,
we now describe our understanding of meta models
and meta modelling. In contrast to modelling, where
the application of a modelling method is centred, i.e.
the creation of a model as an instance according to a
meta model, meta modelling is concerned with the
formalized specification of a modelling method.
This specification covers all components of Figure
1.

In this context, meta models are generally
referred to as "a model used to model modelling
itself" (Fill and Karagiannis, 2013, p. 6f). In more
detail, a meta model defines the abstract syntax of a
modelling language (Harel and Rumpe, 2000; Harel
and Rumpe, 2004; Sprinkle and Rumpe, 2010).
Accordingly, meta meta models then define the
language that is used to describe this abstract syntax.
Whereas in some approaches separate meta models
are used for distinct domains, e.g. in the area of
model transformation by using meta models for
software engineering and meta models for database
modelling (Romeikat et al., 2008), other approaches
use integrated views on one meta model whereby
domains are distinguished by using different model
types (Fill et al., 2012). These model types can be
referred as viewpoints on the model.

2.2 Multi-View Modelling Methods

During the design and analysis of complex informa-

tion systems (e.g., enterprise information systems,
knowledge systems) multiple aspects need to be
taken into account simultaneously (Alter, 2008).
This includes information about the subject, usage,
systems, and development world of these systems.
By reverting to multi-view modelling approaches,
multiple structural and behavioural aspects can be
represented using different, inter-connected
modelling languages (i.e., viewpoints). Historically,
the multi-view modelling approach can be aligned to
the database engineering domain. In relational
databases, a view is a non-materialized subset of the
attributes of a database table, derived by a projection
or selection operator. Over the last decades,
MVMMs have been successfully applied in different
domains like requirements engineering (Finkelstein
and Fuks, 1989; Finkelstein et al., 1992),
architecture management (Kruchten, 1995), software
modelling (Dijkman et al., 2008; Nassar, 2003), or
software development (Mili et al., 1999) A more
comprehensive overview on the application domains
of viewpoint modelling can be seen in (Kheir et al.,
2013).

Multi-view modelling methods help to cope with
the complex reality by providing specialized
viewpoints. Each view is focusing only on certain
aspects of the reality, therefore enabling a
highlighting of the considered aspects by explicitly
omitting other aspects. The combination of the
views gives the whole model of the system. As a
consequence of the interrelated views,
correspondences need to be specified in order to
prevent inconsistencies (cf. the discussions on the
view-update problem in database engineering
(Carlson and Arora, 1979; Dayal and Bernstein,
1978; Dayal and Bernstein, 1982; Lechtenbörger,
2003).

Generally, two oppositional categories of multi-
view modelling methods can be identified: selective
and projective multi-view modelling (Cicchetti et al.,
2011):

 Selective: Each viewpoint is implemented as a
distinct meta model and the overall system is
obtained as synthesis of the information carried
by the different viewpoints.

 Projective: Modellers are provided with virtual
views made up of selected concepts coming
from a single base meta model by hiding
details not relevant for the particular viewpoint.

From a meta modelling perspective the two
categories can also be classified by either providing
the combination of several loosely coupled meta
models (i.e., selective MVM), or by the availability
of one single, integrated meta model the views are
derived from by a projection operator (i.e.,
projective MVM). Whereas the integrated meta
model of the former category already defines some
of the consistency constraints a supporting
modelling tool should respect, the second category
abandons the specification of all consistency
constraints to the method engineer. Multi-
Perspective Enterprise Modelling (MEMO) (Frank,
1994) and the Semantic Object Model (SOM) (Ferstl
and Sinz, 2013) are two modelling methods from the
enterprise modelling domain adopting the projective
approach, whereas the Orthographic Software
Modelling (OSM) approach creates a single-
underlying model (SUM) for a set of loosely coupled
meta models (Atkinson et al., 2013) in the software
engineering domain.

Multi-view modelling methods do not only
require specific thoughts considering the definition
and integration of the views, i.e., the specification of
the multi-view modelling language by means of a
combination of meta models. They also effect the
specification of the other two major components of
modelling methods, the modelling procedure and the
mechanisms & algorithms.

The actions a modeller can perform must be
specifically aligned to the characteristics of
MVMMs. For each modelling action, it should be
decided in which viewpoints they can be triggered
and on which viewpoints the execution of an action
has an effect on. Bork and Sinz proposed two
categories of performing multi-view modelling,
referred to as multi-view modelling principles:
system-oriented and diagram-oriented multi-view
modelling (cf. Bork and Sinz, 2013). In the former
case, an operator is applied to a specific diagram or
to the model itself. Its effects can be seen in all

corresponding diagrams" (Bork and Sinz, 2013).
The modelling tool automatically ensures a
consistent model state for all views automatically. In
order to do this, all correspondences between the
viewpoints must be specified formally. In the latter
case, "editing of a model is done by applying an
operator to a single diagram. The effects of the
operator can only be seen in the diagram" (Bork and
Sinz, 2013). The modelling tool explicitly allows
temporarily inconsistencies between the views, i.e.,
due to usability. The modeller must perform
additional actions in related views in order to obtain
a consistent model state for all views. Figure 2
illustrates the dependencies between views in a
multi-view modelling setting.

Figure 2: View dependencies in multi-view modelling.

Figure 2 illustrates the interplay of viewpoints,
correspondences, and meta models using a
conceptual model (the visualization is an analogy to
the view-update problem, described in relational
databases in the late 1980s (Keller, 1985).

Compared to models, which are instances of a
meta model, the constituents of a view are specified
by a Viewpoint (VP). View v1 is an instantiation of
the Viewpoint VPj, View v2 is of type VPk. The
application of an operator (Op) on v1 transforms
view v1 into a new model state, referred to as v1'. A
modelling tool supporting system-oriented multi-
view modelling should provide a transformation of
operator Op (T(Op)) that can be applied on view v2,
transforming the view into the new state v2'. The
overall goal of a consistency-preserving multi-view
modelling tool is highlighted by the dotted lines be-
tween v1 and v2, and v1' and v2', respectively. These
lines indicate a semantic consistency relationship

between the views, i.e., the information covered in
the views does not contradict each other.

Considering mechanisms & algorithms of a
multi-view modelling method, additional thoughts
must be given e.g., to the view-specific visualization
of concepts that are included in several viewpoints.
A tool development environment should provide the
possibility to define a view-dependent visualization
in order to visualize the concepts most appropriately
to the semantic domain the viewpoint is defined for.

2.3 Development of Modelling Tools

Although the benefits of using modelling methods
are clearly documented in the research community,
methodical support in the early phases of modelling
tool development is rarely given.

Currently, the support of a method engineer,
trying to implement a modelling tool supporting his
or her method, is basically the technical
specification of tool development environments. The
development of modelling tools is, up to now, seen
as a special kind of conventional software
engineering. Meta modelling platforms have enabled
a more sufficient support in the late development
steps, however, they lack at support for the
requirements engineering and conception of
modelling tools.

Traditional software development procedure
models like the Waterfall Model (Benington, 1983)
or the newer approaches subsumed under the term
agile software development however cannot consider
the specifics of MVMM appropriately. Due to the
even more challenging characteristics of multi-view
modelling methods (cf. Section 2.2) the gap in
methodical support is even more serious.
MUVIEMOT, proposed in the following Section, and
the underlying methodical approach contribute to
close that research gap.

The concepts of meta models and meta
modelling do not only provide abstraction
mechanisms for human beings, they are also
commonly used as conceptual foundation for tool
development platforms. Such platforms often
provide a fixed meta meta model (Sprinkle et al.,
2010). Tool developers then integrate the meta
model of their modelling method by using the
concepts provided in the platform's meta meta
model. The platform generates the visual graphical
editor based on the meta model and the notation
defined for its elements. This enables modellers to
create models according to the meta model.

The ADOxx meta modelling platform follows
the same procedure. ADOxx has emerged from

Adonis, a business process management tool which
is in commercial use until now. A free of use version
of ADOxx is available for academic purposes. This
version can be used to easily develop a graphical
modelling tool using the meta modelling concept.
Figure 3 illustrates the roles and languages of the
ADOxx meta modelling hierarchy.

Figure 3: Roles and languages of the ADOxx meta
modelling hierarchy (Fill and Karagiannis, 2013).

On top of the hierarchy is the ADOxx meta meta
model which is created by the ADOxx developers
and implemented using the programming language
C++. As an instance of this meta meta model, the
ADOxx meta model has been created. This meta
model can be used by meta modellers to create their
own meta model. The creation is performed by
mapping the user-specific meta model elements to
the elements provided within the ADOxx meta
model. The resulting meta model is described in the
ADOxx Library Language (ALL), a platform-
specific language for describing meta models using
the concepts of the ADOxx meta meta model.
Finally, the modeller can create instances of the
user-specific meta model, i.e. create actual models.
These models can be described using the pre-defined
standard export formats XML or ADL. Adonis
Description Language (ADL) is a ADOxx-specific
XML format.

The mapping of the concepts between the user-
specific meta model and the ADOxx meta model is
now explained in more detail. Central concepts of an
ADOxx library are Modeltypes, Modelling Classes,
Relation Classes, and Attributes (cf. Junginger et al.,
2000). Modelling and Relation Classes are
composed of attributes. Some of them are already
mandatory by the platform, e.g. the GraphRep
attribute for the definition of the graphical
representation or the AttrRep attribute for the

visualization of an object's attributes by means of an
ADOxx Notebook. Other attributes can be
introduced by the method engineer. For each
Relation Class from and to which Modelling Classes
the relation can be modelled must be specified. A
modeltype in ADOxx delimits which Modelling
Classes and Relation Classes should be included
within a certain model in the ADOxx Modelling
Toolkit.

3 MUVIEMOT: A DSML FOR
MULTI-VIEW MODELLING
TOOLS

Domain-specific languages (DSLs) enable the
declaration of concepts that describe the intended
usage most appropriately. The resulting language is
precisely tailored to a certain domain, fulfilling a
pre-defined purpose. By definition, this is something
general-purpose languages cannot provide. DSLs are
widely used in software development projects in a
diverse set of domains.

Following the definition of DSL, a domain-
specific modelling language (DSML) can be defined
as "a modelling language that is intended to be used
in a certain domain of discourse. It enriches generic
modelling concepts with concepts that were
reconstructed from technical terms used in the
respective domain of discourse. A DSML serves to
create conceptual models of the domain, it is related
to" (Frank, 2010, p. 4). Moreover, DSMLs enable
the model-driven development of systems by
providing a higher abstraction level (Tolvanen,
2005).

3.1 Requirements on a DSML for
Multi-View Modelling Methods

Before we describe the MUVIEMOT approach, we
first briefly discuss some requirements a
requirements modelling for multi-view modelling
methods should adhere. From a functional point of
view, a DSML for MVMM should be able to capture
all facets of the methods. This includes the meta
models, the viewpoint definitions, the consistency
constraints, and the visualization of the views.
Moreover, an emphasis of the DSML should be on
defining the modelling procedure of the MVMM as
actions performed by the modeller on a certain view
(or a set of views) and the effects of these actions
(cf. Figure 2).

Visualization mechanisms play an important role
for conventional modelling methods. This all the
more holds for MVMM, as concepts may be
included in different views using different
visualization paradigms and notations.

From a non-functional perspective, the DSML
should follow its originating purpose, i.e. provision
of an abstraction level and concepts that are strongly
aligned to the domain. In the case of the
MUVIEMOT approach, it is important, to use the
concepts provided with the foundations of
modelling, meta modelling and multi-view
modelling. Classical non-functional requirements
like usability, scalability, and robustness should be
also considered.

3.2 Designing Multi-View Modelling
Tools with MUVIEMOT

The aim of MUVIEMOT is to increase the efficiency
of meta model based specification and model-driven
development of multi-view modelling tools by
providing a more suitable level of abstraction. This
abstraction level enables the specification of the
MVMM in a more efficient way due to the provided
modelling concepts who are strictly aligned to the
domain and the needs of method engineers. Central
models of the DSML focus on the overall setting of
the MVMM, the use cases of applying the MVMM
tool, and the consistency issues a tool developer
should consider during implementation of the tool.
Therefore, the models help to gather all
requirements of a multi-view modelling tool

In the following, the phases of the procedural
approach, the DSML is based on, are described
generally (cf. Bork and Sinz, 2013). Afterwards the
realization of the phases in a supporting modelling
tool is described. The MUVIEMOT tool is
implemented on the ADOxx meta modelling
platform using the facilities of the Open Models
Initiative (Karagiannis et al., 2008) laboratory
(OMiLAB). Although MUVIEMOT is developed on
ADOxx and the transformation only supports the
ADOxx Development environment, the phases are
generically applicable in the early steps of modelling
tool development, independently of the development
platform used.

3.2.1 Modelling Scenario

Due to the complex setting of multi-view modelling
methods (cf. Section 2.2), the first phase in the
procedural approach is trying to obtain an overview
over this complex setting. The Modelling Scenario

model is therefore directed towards supporting
method engineers in defining the overall setting of
the multi-view modelling method. This setting
includes the goals that can be derived by the
stakeholders, the metaphor the modeller should be
guided by and of course the viewpoints and the meta
models they are derived from. Additionally, the sub-
area of the real world covered by the model should
be delimited.

Most of these aspects can be specified
informally, e.g., using natural language. Considering
the meta models, the viewpoints, and the relations
between meta models and viewpoints, a formalized
specification enables machine-processing of the
models. The meta models and the viewpoints are
both specified using the modelling concepts of
ADOxx. Each concept of the meta model is
therefore modelled as either Modelling Class or
Relation Class. MUVIEMOT enables the
specification of the notation, the representation of
the object instance's attributes (i.e., a ADOxx
Notebook), and user-specific attributes. Moreover,
inheritance relationships between Modelling Classes
can be specified. The result of the Modelling
Scenario is a complete specification of all
viewpoints and meta models together with
contextual information.

3.2.2 Multi-View Modelling Use Cases

The second phase uses the Modelling Scenario for
the specification of Multi-View Modelling Use Cases
(in the following referred to as use case). Each use
case depicts a modelling action, realized by an
interaction between the modeller and a viewpoint of
the modelling tool.

For each use case the method engineer can depict
in which viewpoints it can be triggered and on
which the execution of the use case has an effect on.
Moreover, relationships between use cases can be
defined (e.g., include, extend). The approach
differentiates between a direct effect, no effect, and a
conditional effect (e.g., the execution of an use case
in viewpoint A has only an effect on viewoint B, if
B contains a certain concept c). The different
relationship types are graphically visualized
differently, allowing immediate interpretation of
their semantics.

It is important to note, that the relationships
between different viewpoints are very complex. Not
all relationships are bi-directional, i.e., depending on
which view triggers a change, edit operations on
other views are performed or not. Another important
aspect is the fact, that the concepts who have to be
consistent do not always have to be same (e.g., they

have different semantics, only selected attributes are
kept consistent). Experience in the development of
multi-view modelling tools showed, that most of the
relationships are very complex. Often, changing of
attributes in one view results in a set of temporarily
inconsistencies that needs to be resolved by the tool
developer. Therefore, a model-based approach for
defining these dependencies is very useful.

3.2.3 Conceptual Design

The third phase of the approach considers the
information gathered in the preceding two steps and
combines them to a conceptual design specification
of a multi-view modelling tool. The conceptual
design provides all functional requirements derived
from the second step supplemented with non-
functional requirements for a MVM tool.

One emphasis of the conceptual design is on the
consistency between the views. Therefore, especially
the conditional effects defined in the multi-view
modelling use cases must be specified thoroughly.
Consequently, these consistency requirements
enable a tool developer for a more efficient
implementation. As for conventional software
engineering, early conception and design mistakes
are very expensive if they are revealed later.
Concentrating on these early steps in the conception
of a multi-view modelling tool should result in a
more mature and consistency-preserving modelling
tool.

The Conceptual Design model allows the
specification of the requirements in two ways, either
graphical or tabular. First, all functional
requirements derived from the second step, the
multi-view modelling use cases, are included. Then,
the method engineer can further define functional
and non-functional requirements. The constituents of
a requirement in the Conceptual Design model are
function, object, operator, effect, and consistency
(see (Bork and Sinz, 2013, p. 8f) for a
comprehensive description of the constituents).

4 MODEL-DRIVEN
DEVELOPMENT OF MULTI-
VIEW MODELLING TOOLS

The MUVIEMOT approach not only supports
modelling, specification, analysis and
documentation of MVM tools (cf. Section 3). The
generated models can be also used to derive a multi-
view modelling tool following a model-driven
development (MDD) approach. MDD "technologies

offer a promising approach to address the inability
of third-generation languages to alleviate the
complexity of platforms and express domain
concepts effectively" (Schmidt, 2006).

The starting point for the transformation is the
Modelling Scenario model. It includes the
specification of the meta models and the viewpoints.
Viewpoints are realized as model types in ADOxx.

In the following, the algorithm for transforming
the Modelling Scenario model into ADOxx Library
Language (ALL) code is explained.

4.1 Transforming the Modelling
Scenario into ALL Code

First, the algorithm searches for all Viewpoint
objects within the Modelling Scenario model. Each
view is being transformed into a MODELTYPE (cf.
Section 2.3) specification in the resulting ADOxx
library. A modeltype depicts the modelling classes
and relation classes that are considered within a
model in ADOxx. In order to delimit these
constituents, each Viewpoint is referencing a
Viewpoint Model. Within this model, all concepts
considered by the Viewpoint are defined by
projecting or selecting them from the specified meta
models. The algorithm includes all classes into the
ADOxx MODELTYPE, together with some
modeltype attributes the ADOxx platform supports.

After all classes are included, the actual meta
model needs to be specified using the concepts
provided by ADOxx. Therefore, the Meta Model
model referenced in the Modelling Scenario model
is retrieved. Within this meta model all classes are
specified comprehensively, including all user-
defined attributes and the attributes required by
ADOxx (e.g. the graphical representation and the
definition of the Notebook). If an inheritance
relationship is defined for a modelling class, all
attributes specified in the super class are also
included in the sub class. All information is gathered
and appended to the ALL specification of the
library.

The generated ALL specification allows the
immediate construction of an initial modelling tool
for the designed (i.e., modelled) MVMM.
Depending on the complexity of the method and the
constraints for building models according to the
method, additional implementation needs to be
performed. This implementation essentially regards
the modelling procedure and the mechanisms &
algorithms of the method. Consequently, the
generation limits the effort for implementation to a
minimal level. At some points during the modelling

process, the method engineer might be already
aware of functionality the developer needs to
implement on the platform (e.g., considering the
storage of the models or import/export format of the
models). In such cases, the MUVIEMOT tool also
provides the method engineer with the possibility to
define some informal or pseudo-code specification
of the functionality easing the transfer of the
requirements between method engineer and tool
developer. Moreover, including the Multi-View
Modelling Use Cases and the Conceptual Design to
the MUVIEMOT tool in the future will close this gap.

4.2 View Consistency Mechanisms

MUVIEMOT not only transforms the Modeling
Scenario into ADOxx modeltypes, the tool is also
able to compute a View Dependency model. The
algorithm searches in all Viewpoint Models for the
included concepts, i.e., modelling and relation
classes. For each concept, a list of views that include
the concept is generated. After all models are
checked, a new model is created that visualizes the
dependencies between view concepts and views.

The transformation algorithm then uses this
View Dependency model in order to add the
concepts that should be kept consistent when
changes are performed by the modeller in a certain
view. This generated synchronization mechanism is
executed whenever the modeller performs a
modelling action on the platform. If the changes
affect a concept that should be kept consistent, the
propagation of the changes to all corresponding
views is automatically triggered.

Figure 4: MUVIEMOT transformation process.

Figure 4 illustrates the transformation process by
highlighting the different MUVIEMOT models and
the information retrieved from them during
generation of the ADOxx library description in ALL
code. The ALL code can then be converted into an
actual ADOxx library (referred to in the following as
abl). A web converter implemented and operated by
the BOC allows the seamless conversion of ALL
code into an abl file. This file can then be imported
into the Development Toolkit of ADOxx. Within
seconds, the platform integrates the new library and
enables immediate creation of multi-view models

Figure 5: MUVIEMOT models for the SOM bp modelling method.

using the Modelling Toolkit. Of course, the imported
library can be processed further using the
functionality provided by ADOxx.

5 CASE STUDY

In the following, an application of MUVIEMOT by
means of a case study form the enterprise modelling
domain is discussed. For the case study, the
Semantic Object Model (SOM) (Ferstl and Sinz,
2013) enterprise modelling method is selected. The
SOM method is based on a multi-layer approach,
combining the layers enterprise plan, business
processes, and the specification of resources. Each
layer is defined by one or more interrelated
viewpoints. Therefore, SOM is a suitable candidate
for the evaluation of MUVIEMOT in general and the
transformation algorithm in particular. The case
study concentrates on the business process (bp) layer
of SOM (Ferstl and Sinz, .2006). The creation of
SOM bp modelling utilizes a system-oriented multi-
view modelling approach (Bork and Sinz, 2013).

SOM bp models consist of four viewpoints, a
structural viewpoint called Interaction Schema, a
behavioural viewpoint called Task-Event Schema
and viewpoints on the Decomposition of Business
Objects and Business Transactions, respectively. All
viewpoints are derived by a projection on the
integrated SOM bp meta model (see Figure 6). SOM
bp modelling follows the metaphor "of a distributed
system, consisting of autonomous and loosely
coupled business objects. Business objects are
coordinated by means of business transactions

towards the fulfillment of common goals" (Ferstl and
Sinz, 2013). The goals for SOM bp modelling are
manifold and not limited by the authors of SOM.
Initially, SOM was created to enable analysis of
already existing and the specification of to-be
enterprise systems. All components identified have
been modelled in a comprehensive Modelling
Scenario model using the MUVIEMOT tool (see
Figure 5 for an excerpt of the created MUVIEMOT
models).

Figure 6: SOM business process meta model (Ferstl and
Sinz, 2013).

In order to derive an initial implementation for
the SOM method, it was not enough to define the
Modelling Scenario. For each meta model (i.e., the
SOM bp meta model) and for each viewpoint
additional Meta Model models and View models
must be modelled, respectively. The SOM bp meta
model has been realized in the MUVIEMOT tool by
mapping the concepts Business Object, Task,
External Event, Internal Event to the ADOxx
Modelling Class, whereas the concept of a Business
Transaction and Object-internal Event have been
mapped to the ADOxx Relation Class concept (cf.
the model in the lower left side of Figure 5).

Figure 7: Architecture of the MUVIEMOT modelling tool.

Together with attributes describing the elements
and constraints considering the combination of them,
the meta model of SOM has been completely
modelled using the tool. For each of the SOM bp
viewpoints, a Viewpoint model has been modelled.
Each viewpoint is defined as a projection onto the
SOM bp meta model. MUVIEMOT provides an easy
to use copy & paste functionality for copying
elements of the meta model and pasting them into
the Viewpoint model. All selected Modelling Class
and Relation Class concepts are copied together with
their attribute values.

After the generation of the models into over 1700
lines of ALL code, the ALL2ABL converter service
provided by the BOC can be used to generate an
ADOxx application library. This library can then be
imported into the ADOxx Development Toolkit
enabling the creation of models according to the
SOM method.

Due to the experience of implementing a SOM
modelling tool on ADOxx from scratch (cf. Bork
and Sinz, 2010) a comparison according to the
efficiency and the usability of the two development
approaches can be done. MUVIEMOT and the
generation of the ALL extremely foster the
conception and implementation of multi-view
modelling tools on a higher abstraction level in a
more user-friendly way. A method engineer,
following the approach, can concentrate on the
domain-concepts and define the conceptual design
of a MVM tool in an intuitive way. He or she doesn't
have to go into the technical details e.g., how to
define a meta model on the meta modelling platform
or how to generate the multiple modelling editors.
Due to the automatic transformation, most of the
functionality is already generated. A tool developer

therefore only has to concentrate on the very specific
requirements of a modelling method that cannot be
generated or implemented automatically. These
specific requirements concentrate on the modelling
procedure and mechanisms & algorithms of the
method. However, the generated models contribute
to the discussions between method engineer and tool
developer by utilizing documentation and analysis
needs on a high abstraction level.

The case study showed the operability of the
approach and the transformation. The increase of
efficiency and usability in development encouraged
us to develop further functionality for MUVIEMOT
in order to generate even more code automatically.
Consequently, future research will concentrate on
two major issues: First, a comprehensive user test
should be undertaken in order to evaluate not only
the operability but also the efficiency of the
approach compared to conventional implementation
from scratch. This evaluation should include several
different multi-view modelling methods. The divers
set of modelling methods available within the Open
Models Initiative (OMI) eases the access to more
candidates. Second, the model-based definition of
view constraints and the transformation of this
constraint models into AdoScript code should be
emphasized. This would enable the method engineer
to define the complex constraints also on a higher
abstraction level without considering the specific
technical implementation on the platform.

A first prototype of the MUVIEMOT modelling
tool is being implemented within the Open Models
Initiative (Karagiannis et al., 2008) (OMI) at the
University of Vienna.

6 CONCLUSION

The paper at hand introduced MUVIEMOT, a set of
domain-specific modelling languages for the
specification and model-driven development of
multi-view modelling tools. The tool is realized
using the ADOxx meta modelling platform.

Operability and utility of the approach have been
discussed referring to a case study from the
enterprise modelling domain.

The current development status of MUVIEMOT
limits its functionality to the specification of the
modelling language of a multi-view modelling
method. Modelling procedure and mechanisms &
algorithms are not regarded up to now.

As the results of the case study are very
promising, future research will concentrate on
broadening the tool support for MUVIEMOT by
including the Multi-View Modelling Use Cases and
the Conceptual Design phases of the approach.

Recently, researchers have enabled the formal
specification of ADOxx meta modelling methods
using a mathematical notation, called FDMM (Fill et
al., 2012). Introducing the FDMM formalization as
another transformation target and/or enlarging the
FDMM approach to also formalize the specification
of multi-view modelling procedures may contribute
to foster the coupling of the MUVIEMOT approach
and modelling tool development.

Additionally, coupling MUVIEMOT with the
functionality provided by the statistical software
environment R would be a very interesting research
field (cf. the RUPERT modelling tool (Johannsen
and Fill, 2014)).

ACKNOWLEDGEMENTS

The authors would like to thank Hans-Georg Fill,
whose expertise and opinions have had a significant
influence while writing this paper.

REFERENCES

Alter, S. (2008). Defining information systems as work
systems: implications for the IS field. European
Journal of Information Systems, 17(5):448–469.

Atkinson, C., Gerbig, R., and Tunjic, C. (2013). A
Multilevel Modeling Environment for SUM-based
Software Engineering. In Proceedings of the 1st
Workshop on View-Based, Aspect-Oriented and
Orthographic Software Modelling, VAO ’13, pages
2:1–2:9, New York, NY, USA. ACM.

Benington, H. D. (1983). Production of Large Computer
Programs. IEEE Annals of History of Computing,
5(4):350–361.

Bork, D. and Fill, H.-G. (2014). Formal Aspects of
Enterprise Modeling Methods: A Comparison
Framework. In Sprague, R. H. J., editor, Proceedings
of the 47th Hawaii International Conference on System
Sciences, HICSS’2014, pages 3400–3409, Big Island,
Hawaii, USA. IEEE Computer Society Press.

Bork, D. and Sinz, E. J. (2010). Design of a SOM
Business Process Modelling Tool based on the
ADOxx Meta-modelling Platform. In de Lara, J.,
Varro, D., Margaria, T., Padberg, J., and Taentzer, G.,
editors, 4th International Workshop on Graph Based
Tools, (GraBaTs 2010), Enschede, The Netherlands,
pages 90–101.

Bork, D. and Sinz, E. J. (2013). Bridging the Gap from a
Multi-View Modelling Method to the Design of a
Multi-View Modeling Tool. Enterprise Modelling and
Information Systems Architectures (EMISA) - An
International Journal, 8(2):25–41.

Carlson, C. R. and Arora, A. K. (1979). The updatability
of relational views based on functional dependencies.
In Computer Software and Applications Conference,
Proceedings. COMPSAC 79. pages 415–420.

Cicchetti, A., Ciccozzi, F., and Leveque, T. (2011). A
hybrid approach for multi-view modeling. Electronic
Communication of the ECEASST, 50. Dayal, U. and
Bernstein, P. A. (1978). On the Updatability of
Relational Views., pages 368–377. IEEE Computer
Society.

Dayal, U. and Bernstein, P. A. (1982). On the Correct
Translation of Update Operations on Relational
Views. ACM Transactions on Database Systems,
7(3):381–416.

Dijkman, R. M., Quartel, D. A. C., and van Sinderen, M.
J. (2008). Consistency in multi-viewpoint design of
enterprise information systems. Information Software
Technology, 50 (7-8):737–752.

Ferstl, O. K. and Sinz, E. J. (2006). Modeling of Business
Systems Using SOM. In Bernus, P., Mertins, K., and
Schmidt, G., editors, Handbook on Architectures of
Information Systems, pages 347–367. Springer Berlin
Heidelberg.

Ferstl, O. K. and Sinz, E. J. (2013). Grundlagen der
Wirtschaftsinformatik. Oldenbourg, München, 7th
edition.

Fill, H.-G. and Karagiannis, D. (2013). On the
Conceptualisation of Modelling Methods Using the
ADOxx Meta Modelling Platform. Enterprise
Modelling and Information Systems Architectures
(EMISA), 8(1):4–25.

Fill, H.-G., Redmond, T., and Karagiannis, D. (2012).
FDMM: A Formalism for Describing ADOxx Meta
Models and Models. In Maciaszek, L., Cuzzocrea, A.,
and Cordeiro, J., editors, 14th International
Conference on Enterprise Information Systems, pages
133–144.

Finkelstein, A. and Fuks, H. (1989). Multi-party
Specification. SIGSOFT Software Engineering Notes,
14(3):185–195.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L.,
and Goedicke, M. (1992). Viewpoints: A Framework
for Integrating Multiple Perspectives in System
Development. International Journal of Software
Engineering and Knowledge Engineering, 2.

Frank, U. (1994). Multiperspektivische
Unternehmensmodellierung: Theoretischer
Hintergrund und Entwurf einer objektorientierten
Entwicklungsumgebung. Berichte der Gesellschaft für
Mathematik und Datenverarbeitung. Oldenbourg,
München.

Frank, U. (2010). Outline of a method for designing
domain-specific modelling languages. ICB-Research
Report 42, University Duisburg-Essen.

Frank, U., Strecker, S., Fettke, P., Brocke, J., Becker, J.,
and Sinz, E. (2014). The Research Field ”Modeling
Business Information Systems”. Business &
Information Systems Engineering, 6(1):39–43.

Harel, D. and Rumpe, B. (2000). Modeling Languages:
Syntax, Semantics and All That Stuff Part I: The Basic
Stuff. Technical report, The Weizmann Institute of
Science.

Harel, D. and Rumpe, B. (2004). Meaningful Modeling:
What’s the Semantics of „Semantics“? IEEE
Computer, 37(10):64–72.

Johannsen, F. and Fill, H.-G. (2014). RUPERT: A
modelling tool for supporting business process
improvement initiatives. In Proceedings of the 2014
International Conference on Design Science Research
in Information Systems and Technology,
DESRIST’2014, Miami, USA.

Junginger S, Kühn H, Strobl R, Karagiannis Dimitris
(2000) Ein Geschäftsprozessmanagement-Werkzeug
der nächsten Generation - ADONIS: Konzeption und
Anwendungen. Wirtschaftsinformatik 42(5):392–401

Karagiannis, D., Grossmann, W., and Hoefferer, P. (2008).
Open Model Initiative: A Feasilbility Study. http:
//cms.dke.univie.ac.at/uploads/media/Open_Models_F
easibility_Study_SEPT_2008.pdf, last checked: 2014-
06-14.

Karagiannis, D. and Kühn, H. (2002). Metamodeling
Platforms. In Bauknecht, K., Min Tjoa, A., and
Quirchmayr, G., editors, Third International
Conference ECWeb 2002 – Dexa, 2002, page 182,
Aix-en-Provence, France. Springer-Verlag, Berlin,
Heidelberg.

Keller. A. M. Algorithms for Translating View Updates to
Database Updates for Views Involving Selections,
Projections, and Joins. In Proceedings of the Fourth
ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, PODS '85, pages 154-163, New
York, NY, USA, 1985. ACM.

Kheir, A., Naja, H., Oussalah, M., and Tout, K. (2013).
Overview of an Approach Describing Multi-views/
Multi-abstraction Levels Software Architecture. In
Maciaszek, L. A. and Filipe, J., editors, Proceedings of
the 8th International Conference on Evaluation of

Novel Approaches to Software Engineering (ENASE),
pages 140–148.

Kruchten, P. (1995). Architectural Blueprints - The ”4+1”
View Model of Software Architecture. IEEE Software,
12(6):42–50.

Lechtenbörger, J. (2003). The Impact of the Constant
Complement Approach Towards View Updating. In
Proceedings of the Twenty-second ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’03, pages 49–55, New
York, NY, USA. (ACM).

Mili, H., Dargham, J., Mili, A., Cherkaoui, O., and Godin,
R. View programming for decentralized development
of OO programs. In Technology of Object-Oriented
Languages and Systems, 1999. TOOLS 30, pages 210-
221.

Nassar, M. (2003). VUML: a Viewpoint oriented UML
Extension. In Proceedings of the 18th IEEE
International Conference on Automated Software
Engineering, pages 373–376.

Romeikat, R., Roser, S., Muellender, P., and Bauer, B.
Translation of QVT Relations into QVT Operational
Mappings. In Theory and Practice of Model
Transformations 2008, pages 137–151. Springer.

Schmidt, D. C. (2006). Guest Editor’s Introduction:
Model-Driven Engineering. IEEE Computer,
39(2):25–31.

Sprinkle, J., Rumpe, B., Vangheluwe, H., and Karsai, G.
(2010). Metamodelling - State of the Art and Research
Challenges, In Proceedings of the 2007 International
Dagstuhl conference on Model-based engineering of
embedded real-time systems, pages 57–76. Springer.

Tolvanen, J.-P. (2005). Domain-specific modeling for full
code generation. Methods & Tools, 13(3):14–23.

Tolvanen, J.-P. and Rossi, M. (2003). MetaEdit+:
Defining and Using Domain-Specific Modeling
Languages and Code Generators. In Companion of the
18th annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and
Applications, OOPSLA ’03, pages 92–93, New York,
USA. (ACM).

BRIEF BIOGRAPHY

Dimitris Karagiannis is head of the research group
knowledge engineering at the University of Vienna.
His main research interests include knowledge
management, modelling methods and meta-
modelling. Besides his engagement in national and
EU-funded research projects Dimitris Karagiannis is
the author of research papers and books on
Knowledge Databases, Business Process
Management, Workflow-Systems and Knowledge
Management. He serves as expert in various
international conferences and is presently on the
editorial board of Business & Information Systems
Engineering (BISE), Enterprise Modelling and

Information Systems Architectures and the Journal
of Systems Integration. He is member of IEEE and
ACM and is on the executive board of GI as well as
on the steering committee of the Austrian Computer
Society and its Special Interest Group on IT
Governance. Recently he started the Open Model
Initiative (www.openmodels.at) in Austria. In 1995
he established the Business Process Management
Systems Approach (BPMS), which has been
successfully implemented in several industrial and
service companies, and is the founder of the
European software- and consulting company BOC
(http://www.boc-group.com), which implements
software tools based on the meta-modelling
approach.

