On MODAC]louds’ Approach
for Application Design and Execution on Multi-clouds

Elisabetta Di Nitto!, Arnor Solberg? and Dana Petcu®

I Politecnico di Milano, Italy
2SINTEF, Norway
3Institute e-Austria Timigoara and West University of Timisoara, Romania

Abstract. The design, deployment and control of new applications in Cloud en-
vironments still requires a deep understanding of the underneath technologies.
Moreover, the interfaces and tools that are provided by the resource owners or
third parties are highly coupled to the various exposed services to a level that hin-
ders their easy adoption. Abstraction layers in form of models, semantic reposi-
tories or uniform interfaces are therefore build today. In particular the adoption
of the model-driven engineering concepts has recently been proved to be benefi-
cial for Cloud computing. In this paper we present the latest achievements of an
initiative which has adopted a model-driven oriented approach for the design and
execution of Cloud applications.

1 Introduction

Model-driven development combined with model-driven risk analysis have been re-
cently introduced to Cloud computing application cycle. The vision of the marriage
of model-driven architecture and Cloud computing includes the application developers
that will be able to specify in a vendor agnostic manner the models of Cloud services
in which they are interested, as well as to be able to enrich these models with quality
parameters. Moreover, to close the current gap between the design and run-time stages
of an application, both performing quality predictions, as well as run-time monitoring
and optimization can provide valuable information to the design time environment and
hence help in filling the gap between design and run-time. To prove that this vision
can be applied in practice is the main aim of a recently started research initiative, the
MODACIouds project*. MOdel-Driven Approach for design and execution of applica-
tions on multiple Clouds (MODAC]louds) aims to provide methods, a decision support
system, an open source IDE (Integrated Development Environment) and run-time envi-
ronment for the high-level design, early prototyping, semi-automatic code generation,
and automatic deployment of applications on Multi-Clouds with guaranteed quality of
service (QoS). The project is partially funded by the European Commission during
October 2012 until September 2015 (ten companies and research institutions are partic-
ipating).

MODACIouds concept and a motivating scenario were presented for the first time in
[1], while the solution architecture was detailed in [2]. Several recent papers (complete

4 http://www.modaclouds.eu

Di Nitto E., Solberg A. and Petcu D.

On MODACloudsaAZ Approach for Application Design and Execution on Multi-clouds.

DOI: 10.5220/0006183100490060

In European Project Space on Information and Communication Systems (EPS Barcelona 2014), pages 49-60
ISBN: 978-989-758-034-5

Copyright (© 2014 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

49

EPS Barcelona 2014 2014 - European Project Space on Information and Communication Systems

50

50

list available at °) provided details about particular solutions and components. This pa-
per intends to provide an overview of the MODACIouds concept and its implementation
status at the half way through of the project duration.

The paper is organized as follows. Section 2 is describing shortly the state-of-the-
art in model-driven Cloud engineering. Section 3 is describing the MODAClIlouds’ ap-
proach and the implementation status. Section 4 is providing some hints on the next
steps to be followed.

2 First Steps Towards a Model-driven Cloud Engineering

Cloud computing is a computing model enabling ubiquitous network access to a shared
and virtualised pool of computing capabilities (e.g. network, storage, processing, and
memory) that can be rapidly provisioned. However this conceptual model is imple-
mented by a large number of service providers in very different ways. The current soft-
ware stacks of Cloud services are heterogeneous and the provided features that are often
incompatible between different service providers. This diversity is an obstacle with re-
spect to demands such as promoting interoperability and preventing vendor lock-in.

The model-driven approach, often summarized as model once, generate anywhere,
is particularly relevant when it comes to provisioning and deployment of applications
and services across multiple Clouds, as well as migrating the source code and data from
one service provider to another. The model-driven engineering (MDE) approach allows
the developers to build the system at various level of abstractions. In the Cloud context,
three levels are envisioned: CCIM, the Cloud enabled Computation Independent Model
to describe an application and its data; CPIM, the Cloud-Provider Independent Model
to describe Cloud concerns related to the application in a Cloud agnostic way; and
CSPM, the Provider Specific Model to describe the Cloud concerns needed to deploy
and provision the application on a specific Cloud.

CCIM describes Cloud applications at the service level. Hence, for a given appli-
cation it contains the description of the services that compose it, the public interfaces
of each service, the business processes that describe their orchestration and the domain
model of the data exchanged by them through their public interfaces. Services Ori-
ented Architecture related technologies which define applications as sets of services
that communicate through well-defined interfaces can be used to define Cloud-enabled
applications without going into the fine details of deployment. The time services are
usually modeled by means of general purpose languages such as UML. Service-specific
languages have also been designed for SOA (e.g. SoaML®). USDL language [3] goes
even further, by allowing designers to specify, beside services and their interfaces, non-
functional aspects on these services (e.g. pricing, legal, certification, documentation),
however not Cloud specific. Other approaches are related to the specific concept of Web
Service: WSDL language’ which enable the specification of a list of services, interfaces,
data types and orchestration processes at a syntactical level, or OWL? as semantic Web

5 http://www.modaclouds.eu/publications/papers/

® http://www.omg.org/spec/SoaML/1.0/Beta2/

7 http:/fwww.w3.org/TR/wsdl

8 http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

On MODACIoudsaAZ Approach for Application Design and Execution on Multi-clouds

51

language which enable the specification of the semantics of the services, besides their
syntax. The main drawback of these approaches is that they do not allow for the descrip-
tion of non-functional requirements and constraints. However, at the modeling level, the
OMG UML profile for QoS, QFTP?, allows a designer to specify QoS requirements and
to connect them to service descriptions. Reusing and extending such language is part of
the scope of MODAC]louds.

Modeling concepts and technologies for the provisioning, deployment and adapta-
tion of applications in the Cloud (CPIM/CPSM) has been done until recently using the
uniform interfaces provided by various libraries for application development, deploy-
ment and control at run-time. We can mention here the most successful ones: jclouds'”,
libcloud!!, §-cloud'? or fog'3. For example the jclouds model includes: description of
node with metadata such as CPU, RAM, security policy; an abstract representation
of a node with parameters such as minCPU, OS type; group of nodes to be managed
together; set of command to be executed on nodes; information about the provider.
Most of these libraries are language-dependent providing a common access to multiple
Clouds. Typlically they provide provide a code-based model of the infrastructure and
do not offer any mechanism for automatic provisioning and deployment of applications
on the Clouds. Moreover, working at the infrastructure-as-a-service level, applications
and services are not modeled.

Recently developed frameworks for managing Multi-Clouds that provide capabili-
ties for the provisioning, deployment, monitoring, and adaptation without being lan-
guage-dependent, have appeared (a survey is evalaible in [4]). We mention here three
of them: Cloudify'#, Scalr!®> and CloudFoundry'®. For example, the Cloudify model for
deploying applications includes: a recipe for information like required infrastructure
and how it should be used; the cluster of service instances that make up an application
tier; the configuration (including provisioning and scaling rules) of an application and
the services it is made of; the set of services working together; probes used to monitor
the status of the system. These frameworks are important to optimise performance,
availability, and cost of Multi-Cloud systems. However, they do not come with any
structured approach, and the provided methods and tools are at a technical level, thus,
the developer will typically be left hacking at code level rather than engineering Multi-
Cloud systems following a structured tool supported methodology.

The models@runtime [5] paradigm proposes to leverage models during the exe-
cution of adaptive software systems to monitor and control the way they adapt. This
approach enables the continuous evolution of the system with no strict boundaries be-
tween design-time and runtime activities. Models @runtime provide an abstract repre-
sentation of the running system causally connected to the underlying state of the system

® http://www.omg.org/spec/QFTP/
1 http://jclouds.apache.org

" http://libcloud.apache.org

12 http://deltacloud.apache.org

13 http://fog.io

4 http://www.cloudify.org

15 http://scalr.com

16 http://www.cloudfoundry.org

51

EPS Barcelona 2014 2014 - European Project Space on Information and Communication Systems

52

52

which facilitates reasoning, simulation and enactment of adaptation actions. A change
in the running system is automatically reflected in a model of the current system. A
modification applied to this model can be enacted on the running system on demand.
Thanks to the use of models, well-defined interface are provided to monitor the system
and adapt it. The models also provide a way to measure the importance of changes in the
system and analyse the delay before their enactment on the running system. Note that
the libraries and frameworks described above do not provide such level of abstraction.

The concepts manipulated by the above mentioned solutions are serving as a ba-
sis for the definition of MODACloudML models and metamodels. The usage of mo-
dels@runtime concept is promoted by MODACIouds in order to tame the complexity
of adaptation and ease the reasoning process for self-adaptation.

3 MODACIloud’s Concepts, Approach and Implementation Status

The MODAC]Iouds approach enables users to (a) specify service-independent models
enriched with quality parameters, (b) implement these models, (c) perform quality pre-
diction, (d) monitor applications at runtime, and (e) optimise them based on the feed-
back (filling the gap between design and runtime). More specifically, MODAClIlouds
solution targets system developers and operators by providing them with supporting
tools for the following software system life-cycle phases:

Feasibility Study and Analysis of Alternatives: a special tool enabling developers to a-
nalyze and compare various Cloud solutions.

Design, Implementation and Deployment. MODAClouds IDE supports a Cloud-agnos-
tic design of software systems, the semi-automatic translation of design artefacts
into code, and their deployment on the selected target Clouds.

Runtime Monitoring and Adaptation. The runtime layer (i) enables system operators in
overseeing the execution of the system on multiple Clouds; (ii) automatically trig-
gers some adaptation actions (e.g., migrate some system components from one [aaS
to another that offers better performances at that time); and (iii) provides runtime
information to the design-time environment that can inform the software system
evolution process

The expected stakeholders involved in interaction with the MODAC]louds solutions are:

Feasibility Study Engineer: in charge of analysing the high-level requirements for Cloud-
based applications and of identifying an initial set of risks and costs deriving from
the adoption of Cloud technologies;

Application Developer: takes care of defining all functional aspects of the Cloud-based
application;

QoS Engineer: in charge of describing QoS constraints and of analyzing whether and
how these constraints can be fulfilled given the available set of potential providers;

Application Provider: given the definition of the design information concerning the ap-
plication, orchestrates the execution of the application deployment on the selected
Clouds;

Cloud App Admin: oversees the correct operation of the Cloud application.

On MODACIoudsaAZ Approach for Application Design and Execution on Multi-clouds

53

Relevant mopitoring data
‘ » MODAClouds IDE

Monitoring rules and ontology /\ Deployment artefacts

Filling
the Gap

Self-adaptation
policies and initial----
deployment

Execution
Platform

Monitoring
Platform

Models@runtime

Monitored Data Actions

Self-
Adaptation
Reasoner

' Runtime Platform

Cloud App

Cloud App

Fig. 1. High level architecture of MODAC]louds.

The high level architecture of MODACIouds consists of two distinct software levels:
the Runtime platform and the MODAC]louds IDE (Figure 1).

The main component of the Runtime platform are the Monitoring Platform, the
Self-Adaptation Reasoner, the Models @runtime engine, and the Execution Platform:

Monitoring Platform: is responsible for collecting data from the running application
and from the underlying infrastructure, for analyzing them and for defining sum-
mary measures such as application health, QoS, etc. This platform executes mon-
itoring rules that define the QoS constraints to be checked (together with some
frequency of the check) and the actions to be executed in case some constraints are
violated. Such actions can either trigger the self-adaptation Reasoner or results in
the activation of additional monitoring rules. Other components subscribe to mon-
itored data generated by the monitoring platform.

Self-adaptation Reasoner: implements the decision-making process responsible for i-
dentifying suitable changes in the current configuration of the Cloud application to
satisfy the QoS constraints. The self-adaptation reasoner is activated by the moni-
toring platform in response to specific monitorid events and operate on the applica-
tion through the Models @runtime APIs. Note that, the initial deployment decisions,
provided by the MODAC]Iouds IDE, are used to initialize this component.

Models@runtime Engine: is responsible for maintaining an updated version of the ap-
plication model developed at design-time by interacting with the monitoring plat-
form. This model is then used by the Self-adaptation Reasoner to build adaptation
actions and by the execution platform to retrieve new deployment configurations.
The second important task of this component consists in controlling the underlying
Execution Platform.

53

EPS Barcelona 2014 2014 - European Project Space on Information and Communication Systems

54

54

Execution Platform: provisions all services that are needed to deploy applications on
Multi-Cloud environment including the supporting services such as the Monitoring
platform. The initial deployment is provided by the IDE through the Models @run-
time component and translated to the target platform. The execution platform also
offers the services and the API, needed to maintain and change the operational
state of the deployment at runtime, typically triggered by of the Self-adaptation
Reasoner.

The MODAC]louds IDE offers the functions to support the development life-cycle
of a Cloud-based application, from the early assessment of risks and costs to the actual
deployment. The IDE supports the functional and non-functional design of the applica-
tion at the three levels of abstraction (CCIM, CPIM, CPSM). Moreover, it supports the
identification of potential Cloud candidates and the analysis of non-functional charac-
teristics of the application. As a result of the analysis, the IDE is also able to propose
optimized architectural configurations for the application. The IDE is built out of the
integration among six components:

Decision Support System: supports the Feasibility Study Engineer in identifying the
main risks and advantages in adopting specific Cloud solutions and in determining
a first estimate of costs associated to these solutions. The estimated cost will then
be refined by the QoS modelling and analysis tool.

MODACloudML Functional Modelling Environment: supports the modelling of Cloud
applications and of the data they manipulate. It supports the CCIM, CPIM and
CPSM models and the generation of the deployment artefacts from them.

QoS Modelling and Analysis Tool: allows the QoS Engineer to perform the following
operations: modeling of QoS requirements; quality prediction and analysis of QoS
requirements fulfillment; generation of monitoring rules; definition of the goals and
constraints driving the execution of self-adaptation.

Data Mapping Component: 1is able to analyze the data that are going to be manipulated
by the applications and the constraints on them (and on their storage and retrieval).
The result of such analysis should allow the user to decide upon the best Cloud spe-
cific data representation formats and tools that fulfill the application requirements.

MODACloudML Deployment and Provisioning Component: supports the model speci-
fication of deployment and resource provisioning including deployment and provi-
sioning constraints, and interfaces with the MODAClouds runtime components in
order to effectively deploy the Cloud application. The deployment and provisioning
model exploits at runtime to enact adaptation of the application using Models @run-
time technologies [6].

Filling the Gap Design-time Manager: is responsible for retrieving information from
the runtime platform where the Cloud application is deployed. This information is
used for two main purposes: first, to update the parameters of the design-time mo-
dels, allowing these to better capture the actual behaviour of the application; and
second, to provide the Cloud App Admin and the QoS Engineer with information
about the behaviour of the application at runtime.

The shared models (between the above six components of the IDE) are organized
in the three abstraction layers (CCIM, CPIM, and CPSM) as shown in Figure 3. We

On MODACIoudsaAZ Approach for Application Design and Execution on Multi-clouds

55

~
)
A
)

oy

Application Developer

/" Modaclouds IDE
MODACloudML
Functional Modelling
Environment (WP4)

Cloud App Admin Filling the Gap N)
——————————————— - Design-Time Dec'ss'sgtz“mppm —
Manager Pt L L —

Feasibility Study

€ /\ < - I,—l ~ Engineer
o) QoS modelling and \._ Shared Models. ;
— analysis tool o jaal

QoS Engineer N Pahlid

Q

)
.y

N
~ ~
A Data Mapping MODACIoudML Deployment P8
(¢ \ | Component and Provisioning Component] D)

Application Developer \\ A Provider

Design-
L Policies for -
Monitoring Rules IV N Initial Deployment N
self- CostModel ~ }-----------—-
. and Ontology adaptation Model & Artifacts
Runtime

/" Runtime platform

—~ 4{ Self Adaptation Reasoner ‘}
/A —> Runtime GUI

oy

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
time [
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: Cloud App Admin
|

4’{ Models@runtime

Execution Platform

~—

‘ Flexiant ‘ ‘ mOSAIC ‘
PaaS Unified .
‘ Library ‘ ‘ . ‘

Cloud App

loud App

Ny

Fig. 2. Detailed architecture of MODACIlouds.

take here only the example of data models to ilustrate the differences encountered at the
three abstraction layers:

CCIM Data Model: describes the main data structures associated to the software to be.
It is expressed in terms of a typical Entity Relationship diagram and enriched by a
meta-model that specify functional and non-functional data properties.

CPIM Data Model: describes the data model in terms of models being typically of-
fered by Cloud providers, without referring to a particular one. Since the majority
of available data storage software provides services that include distributed file

55

EPS Barcelona 2014 2014 - European Project Space on Information and Communication Systems

56

Business Service Service Service Usage Model CCIM Monitoring
Requirements | | Definition | | Orchestration | | Implementation 9 Rules
CCIM
™\, [compata |[ccmaos
Model Model
CPIM I e CPIM Data | | CPIM QoS | | GPIM Resource | | GPIM Monitoring
. Deployment Model Model Model Model Rules
CPSM Pl CcPSM Cgfs“" CPSM Resource | | CPSM Monitoring
™ Deployment Model Data Model Model Model Rules
MODACIouds Application Deployable '\Rﬂzlr;t;g:g Self-adaptation Data Definition
IDE outcomes e Code Artefacts Ontology Policies Scripts

Fig. 3. Shared meta-models.

system, NoSQL solutions, and blobs, these three models are considered at the
CPIM level that are suitable to represent these different cases. They are: Graph
Data Model, Hierarchical Data Model and Flat Data Model.

CSPM Data Model: describes data structures implemented in the Cloud providers. The
following families are considered: Relational Data Model family, Hierarchical Data
Model family, Flat Data Model family, Key-Value Data Model, Column-based Data
Model family.

The application development workflow based on MODAC]Iouds IDE follows the
approach depicted in Figure 4. Four stakeholders are considered, namely the Feasibi-
lity Study Engineer, the Application Developer, the QoS Engineer and the Application
Provider. These actors play different roles in the development of the application inter-
acting with specific tools, represented by blue circles, the interactions between the tools
is performed by a set of shared models, represented by white rectangles. The design
phase ends with the generation of some artefacts, represented by gray rectangles, that
can be used to deploy and manage the application.

The development process starts at the CCIM level with the Application Developer
building a functional model of the application using the MODACloudML Functional
Modelling Environment. The Application Developer is also in charge of creating the
data model with the Data Mapping tool. The architectural description of the application
is enriched by the Feasibility Study Engineer defining performing a feasibility study
with the help of the Decision Support System, the result of this action provides guide-
lines to the QoS engineer that adds information useful to predict the performance of the
designed application with the help of the QoS Modelling tool. These actors work in an
agile way by re-iterating over the shared models adding incrementally their contribution
to the model of the application.

On MODACIoudsaAZ Approach for Application Design and Execution on Multi-clouds

57

cam ’ ; ; / :

(|

Jit icatio o
Feasibility Study Eng. Application Developer QoS Engineer

N S
Decison Architecture Qo
Summont Feasible N 2 Functiom! N Qos Requirements
uep Services Modelling & Monitoring
System Requirements Rules
T

Data Model

Functional
Modelling
Environment
& Data

Mapping

CPIM
L] . * QoS
- 0!
u Data Deployment Design Qos Requirements
= Mapping & j¢—— Alternatives & > Modelling & Monitoring
% Provisioning Deployment & Analysis Rul
> ules
o
Q
< p
[a) y: ¢ . (
o (W €) [
S Application Developer Application Provider QoS Engineer
CPSM o

v

Data
Definition
Scripts

y
Deployment Design QoS Self-
Code & < Alternatives & > Modelling -+ adaptation
Generation Provisioning Deployment] & Analysis Policies

; : . :

Filling the y
p L —

[‘ el QSLE "
. h . 0S Engineer
Provider
Application Developer

Code & ; Monitoring
Deployable p L,

2 \ Rules &
Artefact: o Ontoll
Cloud App Admin —

Fig. 4. IDE workflow.

The Application Developer and the QoS engineer also add functional and non-
functional requirements related to the architecture and the behaviour of the application,
from these requirements an initial set of monitoring rules can be derived.

This set of initial models is then refined by adding some Cloud-dependent infor-
mation. This process is performed by the Application Developer that refines the Data
Model and by the cooperation of the QoS engineer and the Application Provider. These
two actors interact with the MODACloudML Deployment and Provisioning Compo-
nent and the QoS Modelling and Analysis tool, respectively. The interactions between
the two actors is aimed at providing an initial deployment model that maps the func-
tional components modelled at the CCIM level to Cloud resources. Note that at this
abstraction level no information on specific Cloud providers is available. When the
deployment model has been built, the QoS engineer can refine the non-functional con-
straints specified at the CCIM level or build new ones. The monitoring rules generated
at the previous level can now be refined. The last modeling phase is aimed at adding
Cloud provider specific information to the previously built models and derive artefacts
used to develop and deploy the application. The Data Mapping component generates
a set of Data Definition Scripts specific to the data storage technology and the Cloud
provider. The application developer makes use of the code generation capability of the
MODACIloudML functional modeling environment to derive the structure of the appli-
cation code. The Application provider and the QoS engineer continue their interaction
in order to define the final Design Alternatives and Deployment model. This model is
used by the QoS engineer to map the CPIM non-functional requirements and derive the
final Self-adaptation Policies. The QoS Engineer and the Cloud Application Adminis-

57

EPS Barcelona 2014 2014 - European Project Space on Information and Communication Systems

58

58

Table 1. MODACIouds’ components availability at the half time of the project.
Component Status Public deliverables
Monitoring Platform Final release D6.3.2
Self-Adaptation Reasoner Under construction D6.4
Models @runtime engine Proof of concept -
Execution Platform Initial release D6.5.1
Decision Support System Proof of concept D2.3.1
MODACIloudML Functional Modeling Env. Proof of concept D4.3.1
QoS modeling and analysis tool Initial release D5.2.1
Data Mapping Component Under construction D6.6
MODACIloudML Deployment & Provisioning Proof of concept D4.3.1
Filling the Gap Design-Time Manager Initial release D5.3.1
Integrated solution Proof of concept D3.5.1

trator interact with the Filling the Gap Design-Time Manager to configure the Filling
the Gap Analysis, which is translated in a set of Monitoring Rules, making use of the
QoS Model and the Deployment Model.

The artefacts generated at design-time by the different tools composing the IDE are
deployed into the runtime platform that takes care of managing the application execu-
tion.

The status of the component implementation is exposed in Table 1. The Dx.y.z from
the last column are refering to user-guides and codes available at '7> 18). Note that most
components are available already as open-source codes and can be used as stand-alone
tools.

4 Conclusions and Future Steps

The MODAC]Ilouds was designed to support application designers in the development
of a Multi-Cloud application and operational personnel in the execution of such appli-
cation.

Compared with other current approaches for the model-driven engineering of Cloud
applications, the following main novel ideas are proved by MODAC]Iouds to be viable:

At Design Time. MODAC]louds toolset allows a development team to design and imple-
ment an application in a cloud-agnostic way and supports the deployment of such
application on a multi-cloud environment. Moreover, it allows designers to express
QoS requirements and to run proper analyses to identify the best configuration of
the application on a set of suitable Clouds. Furthermore, the tools are integrated
through the sharing of a set of common metamodels. This integration approach en-
ables an asynchronous interoperability between the various tools and allows for an
easy extension of the toolset. It allows therefore to deliver, promote and adopt each
of the design-time tools belonging to the MODAC]Iouds solution separately from
the others.

17 http://www.modaclouds.eu/publications/public-deliverables/
18 http://www.modaclouds.eu/software/

On MODACIoudsaAZ Approach for Application Design and Execution on Multi-clouds

59

At Run Time. At runtime MODAC]Iouds focuses on three main issues: the management
of the execution, intended as the set of operations to instantiate, run, stop services
on the Cloud, the monitoring of the running application and the self-adaptation
of the application to ensure the fulfillment of the QoS goals. The corresponding
components interact based on the Models @runtime engine. This engine keeps alive
a model of the system and uses it to control all management operations on the
actual execution platforms. This model is updated according to the results gathered
by the monitoring platform and is modified as a result of a self-adaptation action.
The innovation points of this runtime platform concern the highly configurable and
scalable monitoring platform, the live model of the application that is suitable for
supporting the decisions concerning self-adaptation, as well as the sophisticated
optimization approaches to support self-adaptation process.

Moreover, MODAC]Iouds offers the possibility (to be exploited in near future) for
the runtime to provide data back to the design-time (feedback loop) enabling continuous
design of the Cloud application and its deployment configuration and provisioning on
a Multi-Cloud infrastructure. Its main advantage concerns the possibility for the design
time tools to learn from previous execution experiences and to use them both to optimize
the configuration of the currently operated application and to improve the analyses on
applications to be developed in the future.

Acknowledgement

The work reported in this paper is partially funded by the grant EC-FP7-ICT-2011-8-
318484 (MODACIouds). The paper resumes the main concepts and approaches detailed
in public deliverable D3.2.2 of the project.

The list of this paper author do not reflect all the contributors to the project and the
above mentioned deliverables. We express our gratitude to all the project members who
have make this paper possible.

References

1. Ardagna D., Di Nitto, E., Casale, G., Petcu, D., Mohagheghi, P., Mosser, S., Matthews, P.,
Gericke, A., Ballagny, C., D’Andria, F., Nechifor, C.S., Sheridan, C.. MODACLOUDS:
A Model-Driven Approach for the Design and Execution of Applications on Multiple
Clouds. In: Procs. 2012 ICSE Workshop on Modeling in Software Engineering (MISE), doi:
10.1109/MISE.2012.6226014, IEEE (2012) 50-56

2. Di Nitto, E., Almeida Da Silva, M.A., Ardagna, D., Casale, G.; Craciun, C.D., Ferry,
N., Muntes, V., Solberg, A.: Supporting the Development and Operation of Multi-
cloud Applications: The MODACIlouds Approach, In: Procs. 15th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), doi:
10.1109/SYNASC.2013.61, IEEE (2013) 417-423

3. Cardoso, J., Barros, A.P,, May N., Kylau, U.: Towards a Unified Service Description Lan-
guage for the Internet of Services: Requirements and First Developments. In: 2010 IEEE
International Conference on Services Computing (SCC), doi: 10.1109/SCC.2010.93, IEEE
(2010) 602-609

59

EPS Barcelona 2014 2014 - European Project Space on Information and Communication Systems

60

4. Petcu, D., Consuming Resources and Services from Multiple Clouds Journal of Grid Com-
puting, doi: 10.1007/s10723-013-9290-3, Springer (2014)

5. Blair, G., Bencomo N., France, R.: Models@run.time. Computer 42 (10), doi:
10.1109/MC.2009.326, IEEE (2009), 22-27

6. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards Model-Driven Provi-
sioning, Deployment, Monitoring, and Adaptation of Multi-cloud Systems. 2013 IEEE Sixth
International Conference on Cloud Computing (CLOUD), doi: 10.1109/CLOUD.2013.133,
IEEE (2013), 887-894.

60

