
An Approach to the Context-oriented Use Case Analysis

Kalinka Kaloyanova1 and Neli Maneva2
1Faculty of Mathematics and Informatics, Sofia University, 5 J. Bourchier Blvd., Sofia, Bulgaria

2Institute of Mathematics and Informatics, BAS, Acad. G. Bonchev Str., Bl.8, Sofia, Bulgaria
kkaloyanova@fmi.uni-sofia.bg, neman@math.bas.bg

Keywords: Requirements Engineering, Use Case Analysis, Information Systems Development, Multiple-criteria
Decision Making, Comparative Analysis.

Abstract: The paper describes our efforts to propose a feasible solution of a significant problem in information
systems development – requirements engineering, based on use cases. The adjustable use case quality model
is constructed and used within the Comparative Analysis method to support the decision making during the
use case analysis process. Two real-life problems related to this process are described and their solutions
through the suggested approach are given.

1 INTRODUCTION

Nowadays the volumes of information are
continually increasing, the methods for storing and
searching information become more complex and
the software users - more demanding. One way to
meet their expectations is to assure an effective
engineering of the elucidated user-defined
requirements. Requirements Engineering (RE) as a
subfield of both Information Systems (IS) and
Software Engineering (SE) concerns the real-life
needs of the users and the constraints for the systems
to be built.

Recognizing the importance of the RE in any
software intensive system’s life cycle and
understanding the significant role of the
requirements elicitation activity, we address a
challenging issue – providing systematic approaches
to the construction and constantly improvement of
the requirements for information systems
development.

The goal of this paper is to present our approach
to IS requirements engineering, based on quality use
cases. The applicability of a formal method for the
proposed context-oriented use case analysis is
investigated in Section 2. The most difficult activity
– use case quality modelling in a specified context,
is described in Section 3. Two examples are given,
illustrating how the method can be successfully
applied. In the Conclusions section some directions
for future research and experimental work are
shared.

2 BASIC DEFINITIONS AND
RELATED APPROACHES

Requirements engineering is one of the initial and
very important activities in software development.
Lately its significance is realized and there are
plenty of methods, frameworks, tools, etc.,
supporting RE (Pressman, 2009), (Sommerville,
2011), (Denny, 2005). From practitioner’s point of
view the great variety of approaches and available
tools are more distractive than useful. This is
especially true for information systems
development, where the main requirements come
from end users and usually are ambiguous,
contradictory and incomplete (Pokorny, 2010). Due
to such reasons the iterative approaches usually are
more effective, because they support the
requirements refinement in a more constructive way
(Kaloyanova, 2012).

2.1 Use Case Modelling

A common form for describing functional
requirements for a system is the use case modelling
(Maciaszek, 2005). It captures user requirements of
a new system by detailing all scenarios that the users
will perform. Each use case describes a specific way
of using the designed system by actors – users with
specific roles, trying to achieve their goals (Sinnig,
2010). The set of all use cases defined by actors
describes the system functionality (Cockburn, 2000).

135
Kaloyanova K. and Maneva N.
An Approach to the Context-oriented Use Case Analysis.
DOI: 10.5220/0005425101350141
In Proceedings of the Fourth International Symposium on Business Modeling and Software Design (BMSD 2014), pages 135-141
ISBN: 978-989-758-032-1
Copyright c© 2014 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Use case modelling usually is recognized as a
part of Requirement engineering discipline of the
Unified Process (UP) that is focused primarily on
the functional requirements of the system (Kruchten,
2004). The non-functional requirements are divided
by the UP approach into several categories. The
acronym FURPS+ presents the functional and
several important non-functional requirements,
which are quite relevant to IS development –
usability, reliability, performance, and supportability
of the system (Larman, 2004).

The use case model describes not only the
system behaviour, but it also defines the boundary of
the system and how this system communicates with
different actors.

Besides, as use case modelling is a part of the
UP, starting from the first phase of it - Inception, the
use cases capture functionality of the system in an
iterative process that is not only understandable for
the users, but could also be detailed in the next
phases of the UP – Elaboration and Construction.

Use cases are described in natural language. So
they can be easily understood by non-technical
people and can be further discussed by users, clients,
analysts, designers, developers and their managers.

The use cases can be written with different level
of details (Larman, 2004):
 Brief – one-paragraph summary, focused on the

main success scenario;
 Casual – multiple paragraphs, covered various

scenarios of user-system interaction;
 Fully dressed – all scenarios are written in detail,

comprising some supporting sections, such as
preconditions, post-conditions, special
requirements, etc.

The different forms of use cases description can be
created during successive iterations, following the
UP. In this way, at every step some new information
is added to the use case description. The analysis
usually starts with a set of use cases in brief format
and detail them through the next iterations. In order
to do this systematically, the use cases have to be
ranked, taking into account their significance, risk,
complexity or other criterion of prioritization.

Several questions arise here - how to implement
the use case definition method in practice and how
to evaluate the quality of use case description in
different iterations. The analysts need a technique
that supports a stable evolution of the specifications
of every element of software functionality, described
by the corresponding use case.

A number of works discuss different sides of the
use case development – formalization (Sinning,
2009), content (Cockburn, 2000), inspection

techniques (Anda, 2002), etc. Most of the research
publications about the use case modelling are
summarized in (Torner, 2006). Although the
intensive research in the area it is hard to find a
method that represents a holistic view on all aspects
of the use case transformation.

In this paper we introduce a use case quality
model for the description of the functionality,
presented at different consecutive iterations of the
same use case. Further this quality model can be
built into a method allowing not only to assess the
achieved use case quality, but to facilitate some
decisions, made during the process of quality
improvement. We base our approach on the formal
Comparative Analysis method (Maneva, 2007). This
method was chosen primarily because it shares the
main objectives and methods of the broad theory of
the Multiple Criteria Decision Making, trying to
specify and apply them systematically.

2.2 Comparative Analysis

We will present the essence of the Comparative
Analysis (CA) in order to explain how it can be
used for the activity under consideration – use case
analysis.

Comparative Analysis is a study of the quality
content of a set of homogeneous objects and their
mutual comparison in order to select the best, to
rank them (establishing a preference order) or to
classify each object to one of the predefined quality
categories.

For CA use we distinguish two main roles: the
CA Analyst, responsible for all aspects of CA
implementation, and a CA customer – a single
person or a group of individuals, tasked with making
a decision in a given situation. Depending on the
identified problem to be solved at a given moment, a
case should be opened to determine the context of
the desired Comparative Analysis.

Each case is specified by the following elements:

case={View, Goal, Object, Competitors, Task, Level }

The View describes the CA customer’s role and the
perspective from which the CA will be performed.

The Goal expresses the main customer’s
intentions in CA accomplishment such as to
describe, analyse, estimate, improve, predict or any
other, formulated by the Customer, defining the
case.

The Object represents the item under
consideration. In the field of software engineering
any studied object belongs to one of the following
groups: products, processes or resources. For each

Fourth International Symposium on Business Modeling and Software Design

136

object for CA application, a quality model should be
created – a set of characteristics, selected to
represent the quality content in this context, and the
relationships among them.

According to the goal, the set C of Competitors,
C = {C1, C2, … , Cn} – the instances of the objects to
be compared – should be chosen.

The element Task of a case can be Selection
(finding the best), Ranking (producing an ordered
list), Classification (splitting the competitors to a
few preliminary defined quality groups) or any
combination of them.

The parameter Level defines the overall
complexity of the CA and depends on the
importance of the problem under consideration and
on the resources needed for CA implementation.

Usually the object quality model is presented as a
hierarchy. At the top of the hierarchy is the total
object quality. The first level comprises some user-
oriented attributes, called factors. The next level
describes a number of object-dependent attributes,
providing quality. These criteria can be further
decomposed to more simple and measurable
characteristics. To each node at the hierarchy
structure a weight (a coefficient of importance) is
assigned, and for the leaves of the hierarchy some
appropriate metrics are defined. Starting a bottom-
up evaluation of characteristics at each level in the
hierarchy and applying a modification of the
MECCA (Multi-Element Component Comparison
and Analysis) method, described in (Bowen, 1985),
we can obtain the quantitative measures of all
factors and fill the competitors-factors matrix
E(nxm), where n is the number of the competitors,
defined in the set C, and m is the number of the
quality factors. Each element Ei,j is the measure of
the i-th competitor with respect to the j-th quality
factor. The obtained matrix E is further used as input
to the software tools, implementing the required
selection, ranking or classification methods.

Additional details about the CA method can be
found in a number of recent publications. In this
paper we provide only the information, absolutely
necessary for understanding the CA application as a
method, supporting decision making.

3 A CONTEXT-ORIENTED USE
CASE ANALYSIS

The CA method can be used in any decision making
situation within the use case analysis, after
specifying its context.

According to the definition already given in

Section 2.2, the concrete situation for a particular
decision making can be stated by a case, comprising
six elements:

case={View, Goal, Object, Competitors, Task, Level}

The View describes the CA customer’s role and
focuses on the perspective of the Comparative
Analysis. Taking into account the responsibilities
and typical tasks of the main participants in the use
case analysis, the following Customer’s roles have
been identified till now: Business Analyst, User, IS
developer. Thus a lot of situations can be further
specified, reflecting the specific participant’s point
of view to the analysed context.

As the Goal expresses the main Customer’s
intentions in CA accomplishment and bearing in
mind the goal-oriented use case definition and its
further improvement, the Analyst should decompose
the goal stated for use case analysis to a number of
CA-related goals, e.g. to describe, assess, estimate,
improve, predict, etc.

The element Object, as it was mentioned above,
represents the item under consideration. Particularly
for the use case analysis, the following objects,
classified in three groups, can be studied:

Products – use case, collection of use cases, use
cases source (discussion memos, documentation,
specifications, user’s and developer’s stories),
prototypes for checking selected use case
characteristics, like completeness, usefulness, etc.

Processes, related to use case analysis:
elicitation, quality assessment, prioritization,
documenting, maintenance, tracking, etc.

Resources, related to use case analysis:
technological (e.g. method, technique, tool), or
project-oriented (people, team, performance).

For each studied object a quality model should
be created – a set of characteristics, selected to
represent the quality content, and the relationships
among them.

According to the goal, the set C of Competitors
– the instances of the objects to be mutually studied
and compared – should be chosen. If the Goal is
only to create the quality model of the object under
consideration, the set C is empty.

There are no special considerations, when we
define the element Task of a situation for use case
analysis. As usual, the task can be Selection,
Ranking, Classification or any combination of them.

It is not difficult to define the degree of
complexity (simple, medium or high) presented by
the element Level.

One of the challenges in the implementation of
the CA is the construction of a model, adequate to
the quality content of the object, pointed in a given

An Approach to the Context-oriented Use Case Analysis

137

case. According to the prescriptions, the Analyst is
responsible for accomplishment of this task, which
is with very high cognitive complexity and usually
requires unified efforts of the Analyst and the
Customer, ordered the CA.

3.1 A Quality Model for Object “Use
Case”

As an example, we will describe the basic
hierarchical model, constructed for the quality of
object “use case”. In this model we propose three
user-oriented characteristics (factors) –
Applicability, Validity and Utility.

The factor Applicability concerns the relation
between the use case and the real system
functionality and addresses the question of the use
case legality. Next follows a brief definition of the
quality characteristics selected for this factor and the
corresponding metrics for the leaves of the tree
structure.

The hierarchy obtained after the decomposition
of the Applicability factor is shown in Table 1.

The first level of the hierarchy comprises three
criteria affecting the factor Applicability -
Accuracy, Trackability, and Adequacy.

Table 1: Decomposition of the factor Applicability.

Factor Applicability
Criteria Item-Oriented Characteristics

Accuracy
Trackability
Adequacy Robustness

Completeness
Correctness

Accuracy defines how the use case corresponds
to the reality. It shows whether the goal of this use
case could be reached by the presented use case
description. Accuracy can be measured by the ratio
of correct features to the total number of features,
described in the use case.

Trackability reflects whether the changes in
reality can be accompanied by changes in the use
case.

The Adequacy criterion is more complex. It
should be evaluated by answering several important
questions like:
 Is the use case robust?
 Is the use case complete? Are all possible

scenarios defined?
 Is the use case correct? Is the right sequence of

steps described in the scenarios?
In the frame of Adequacy the characteristic

Correctness can be measured by the ratio of correct

steps to the total number of steps, described in the
use case. More sophisticated evaluation of the
correctness can be done by splitting this
characteristic into two more – Compliance and
Homogeneity, defined as follows:
– Compliance: Does the use case description

follow the proper separation between the positive
scenario and other alternative scenarios?

– Homogeneity: Are the descriptions of all
scenarios with the same level of details?

The second suggested factor Validity concerns the
inner capacity of the use case to produce results
corresponding to the expected ones.

Table 2: Decomposition of the factor Validity.

Factor Validity
Criteria Item-Oriented Characteristics

Reliability
Modifiability Complexity

Modularity
Understandability Self-descriptive

Concise
Structured

Measurability

Table 2 illustrates the proposed hierarchy for this
factor based on the selected quality criteria:
Reliability, Modifiability, Understandability and
Measurability.

The quality criterion Reliability is evaluated
through the answers of two questions:
 Is the use case adequate?
 Is the use case robust?

The next criterion Modifiability shows how easily
the use case can be modified. It is decomposed
further in two measurable characteristics:
- Complexity – can be considered as textual or
algorithmic, measured by the appropriately
constructed metrics;
- Modularity – usually measured by the number of
all alternative scenarios.

Nevertheless the quality criterion Understandability
is well known concept, for the use case analysis it
concerns variety of details, which can be taken into
account:
 Is the use case self-descriptive? Are all steps

clear to follow?
 Is the use case concise? Is the description of the

steps brief and clear?
 Is the use case well structured? Do all scenarios

fit each other? Is the main positive scenario
properly defined and all alternative scenarios are
adequate to it?

Fourth International Symposium on Business Modeling and Software Design

138

The used metrics here reflect the structure – linear
(usually for the brief form of the use case) or
hierarchical (for the description of the alternative
scenarios and their connections to the steps of the
main positive scenario).

When we consider the criterion Measurability, it
is obligatory to select some concrete metrics for use
case assessment like:
 The number of steps of the successfull scenario;
 The number of steps, performed by each actor,

involved into the success scenario;
 The number of system steps, described by the

success scenario;
 The number of all alternative scenarios;
 The number of steps of alternative scenarios;
 The number of steps of the negative alternative

scenarios;
 The number of all steps, described in the studied

use case;
 The number of preconditions in the studied use

case.

The third factor Utility deals with the relation
between use case and users and addresses the
question of the possibility to derive conclusions
from the created use case. The proposed hierarchy
for this factor is shown in Table 3, presenting a
number of quality characteristics.

Table 3: Decomposition of the factor Utility.

Factor Utility
Criteria Item-Oriented Characteristics
Content
Fidelity

Constructiveness
Stability

Usability
Effectiveness

Efficiency
User satisfaction

The Content criterion focuses on the text
description. Several questions arise here:

What does the use case represent?
Is use case detailed enough? Are all steps clear

and described with appropriate level of detail?
The criterion Fidelity answers the question if

different users will get similar results using the same
use case.

The next criterion - Constructiveness explains
how the use case facilitates some future IS-related
activities like design, coding, testing, etc.

The criterion Stability explains if the use case
can be manipulated to obtain false results or if the
new version of the use case corrupts any of the
previous versions.

The last considered criterion Usability can be
evaluated from three different perspectives:
- Effectiveness: Does the use case match the
purpose? Are all steps of the main positive scenarios
leading to the goal?
- Efficiency: Does the use case fulfil the stated
goal with minimal resources? Is the sequence of the
steps is the shortest way to the goal?
- User satisfaction: Can be measured by the
percentage of unsatisfied users and the average
rating, given by users.

3.2 A Quality Model for Object “A Set
of Use Cases”

This object can appear in a situation involving a set
U of interconnected use cases, which can be studied
as a whole due to some customer’s considerations.
For this object a simple linear model can be created,
comprising four quality characteristics -
Completeness, Consistency, Relevance, and
Correctness.

For the purposes of the use case analysis we
define their meaning as follows:
Completeness – the set U comprises all developed
use cases, necessary to described the functionality of
a system or a system’s compound element –
component, subsystem, etc.;
Consistency – all involved in U use cases are in
reasonable and logical harmony, without any
contradictions in their content;
Relevance – all involved in U use cases should
possess a direct and clearly identified connection to
the studied system’s functionality. For this factor
two measures have been applied – Recall and
Precision:

Recall measures how exhaustive a description of
the scenarios is. It can be calculated by the following
formula:

Recall = x / (x+y) * 100%, where
- x is the number of described in U relevant

scenarios,
- y is the number of the relevant, but not

described yet in U scenarios.
Precision measures the amount of noise in

scenarios description, based on the formula:
Precision = x / (x+z) * 100%, where
- x is the number of described in U relevant

scenarios;
- z is the number of described in U, but non-

relevant scenarios.
The last quality characteristic – Correctness, is
related to some scenarios errors in U, which have

An Approach to the Context-oriented Use Case Analysis

139

been found and fixed during the use case analysis. It
can be measured by the ratio of corrected scenarios
to the number of all scenarios described in the set U.

4 EXAMPLES

The usefulness and feasibility of our idea to apply
the CA method to use case analysis have been
examined for solving two real-life problems,
described below.

Case Study 1: How the CA can Support the
Iterative Use Case Development. The iterative use
case development is based on defining the initial
version of the use case and then - a repetitive
process of use case quality assessment and further
refinement. According to the results of assessment,
next iteration of the use case should be created
through some changes that improve the recent
quality content and functionality of the use case.

The CA with properly defined context can be used
as a form of research for communicating and
evolving a use case, as consecutive versions of the
use case are implemented within the following step-
wise procedure:

Step 1. Pre-analysis – description of a number of
real-life problems encountered during the activity
under consideration, for which the CA method
seems to be useful. During the iterative use case
development some additional information about the
current state should be gathered to decide how to
continue. From CA perspective this can be done as
follows:
 Creating a derivative quality model of the use

case, including only those quality characteristics
from the generic model, which are relevant to the
considered context;

 Evaluating the current version of a use case from
the point of view of different actors;

 Comparing two consecutive iterations of the
same use case to observe the effect of the
performed changes on the quality;

 Evaluating the last iteration of a use case to
decide how to proceed. In this situation the use
case estimates are compared with those of a
virtual “perfect” use case, whose current state is
described by the same quality characteristics, but
with preliminary assigned threshold values.

Step 2. Preparation – defining the CA context and
planning the CA implementation. The elements
(View, Goal, Object, Competitors, Task and Level)
of each case must be specified. The relevant sources

of information, needed for the CA performance, are
identified and made available. A CA plan is created,
describing some parameters of the work – duration,
cost, personnel involved, tasks and responsibilities
allocation and schedule.

For the above mentioned activities the possible
elements of a case can be:
View – that of any already identified participant in
use case analysis - user, IS developer or business
analyst;
Goal – to assess, to compare or any other, defined
by the CA Customer;
Object – a use case;
Competitors – an instance of a use case (and a
“perfect” use case for the last action for comparison
of the current use case with the “perfect” one);
Task – usually it is ranking;
Level – simple, middle or high.

Step 3. Construction – building a quality model,
corresponding to use cases quality content for a
defined case.
Step 4. Execution – evaluating the quality factors
and accomplishment of the CA Task.

As an example, let us describe this step in CA for
the case, designed for comparison of the last use
case version and the “perfect” use case. The final
results of the bottom up evaluation are presented in
an objects-factors matrix. In it the first row
comprises the threshold values, assigned to the
perfect use case, and the second row comprises the
results of use case evaluation (see Table 4).

Table 4: A filled objects-factors matrix.

Use case/
Factors

F1 Applicability
weight - 0.3

F2 Validity
weight - 0.2

F3
Utility

weight - 0.5
Perfect
use case

1 1 1

Investigated
use case

0.8 0.7 1

Step 5. Completion - analysis, interpretation and
drawing conclusions from the results.

In the discussed case the deviation of the
estimated measures from the desired values for each
factor are calculated and described, in order to make
decision what to do further. The first possibility is to
continue with new iterations, trying to improve the
values for the second and the third factor. In this
case we have to define the scope and contents of
some additional use case refining activities. The
second possibility is to accept the achieved quality
level as appropriate and to stop analysing this use
case.

Fourth International Symposium on Business Modeling and Software Design

140

Case Study 2: How the CA Can Support the Use
Case Prioritization. One of the most difficult
problems in use case analysis is to create an ordered
list of all identified as important use cases. Such
prioritization will make possible to perform the use
case analysis in a more systematic and efficient way,
facilitating the proper distribution of the planned and
usually insufficient resources.

A Real-life Problem: After the use case quality
content assessment is done, it is necessary to assign
a priority to each use case in a given set of already
developed use cases.

Some cases for this problem can be defined as a
combination of the following elements:
View – can be that of the User, Business Analyst,
Project manager or IS Developer;
Goal – to compare the use cases, selected for
prioritization;
Object – use case;
Competitors – all developed use cases, chosen to be
prioritized;
Task – ranking to produce an ordered list of the
compared use cases;
Level – simple, middle or high.

5 CONCLUSIONS

The main purpose of this paper is to propose a
systematic approach to the creation and continuous
improvement of use cases, based on the
Comparative Analysis method. It supports the
decision making in some significant situations for
the use case analysis.

The basic advantage of the CA is the possibility
for adjustment to the context, specified by the
elements of the investigated case. The most difficult
activity – object quality modelling – has been
described and illustrated with models for two basic
objects – use case and a set of use cases. As
example, three CA successful implementations in
the field of use case analysis have been given.

Some possible directions for future work can be:
 To identify and describe entirely some other CA

situations within the use case analysis, so as to
enrich the collection of the re-used items –
situations, models, metrics, etc.;

 To examine the possibility to apply the CA to
other use case related activities as validating,
tracking, change management, design and
implementation of already defined use cases.

ACKNOWLEDGEMENTS

This work is partly supported by the National
Scientific Research Fund under the Contract ДТК
02-69/2009 and partially supported by Sofia
University “St. Kl. Ohridski” SRF/2014 under the
Contract “Successful Practices for Information
Systems Analysis and Design”.

REFERENCES

Anda, B., D. Sjøberg, 2002. Towards an Inspection
Technique for Use Case Models, In Proceedings of the
14th Int. Conf. on Software Engineering and
Knowledge Engineering, pp. 127-134.

Bowen, T., G.B. Wigle, J. Tsai, 1985. Specification of
software quality attributes, Software quality evaluation
guidebook, RADC-TR-85-37, vol.III.

Cockburn, A., 2000. Writing Effective Use Cases,
Addison-Wesley.

Denny, R., 2005. Succeeding with Use Cases: Working
Smart to Deliver Quality, Addison Wesley.

Kaloyanova, K., 2012. Design from Data: How To Use
Requirements for Better IS Analysis and Design,
Proceedings of the Int. Conference Informatics in
Scientific Knowledge, pp. 189-197.

Kruchten, P., 2004. The Rational Unified Process: An
Introduction, Pearson Education.

Larman, G., 2004. Applying UML and Patterns: An
Introduction to Object-Oriented analysis and Design
and Iterative Development, 3rd Edition, Prentice Hall.

Maciaszek, L., 2005. Requirements Analysis and System
Design, Addison-Wesley Longman, Inc.

Maneva, N., 2007. Comparative Analysis: A Feasible
Software Engineering Method, Serdica J. of
Computing, 1(1), pp. 1-12.

Pokorny, J. at all, 2010. Information Systems
Development: Business Systems and Services:
Modelling and Development, Springer.

Pressman, R., 2009. Software Engineering: A
Practitioner's Approach, 7th Edition, McGraw-Hill.

Sinnig, D., P. Chalin., F Khendek, 2009, LTS Semantics
for Use Case Models, In Proceedings of the 2009
ACM symposium on Applied Computing, pp. 365-370.

Sinnig, D., H. Javahery, 2010. Mastering Use Cases:
Capturing Functional Requirements for Interactive
Applications, In Proceedings of the 2nd ACM SIGCHI
symposium on Engineering interactive computing
systems, pp. 373-374.

Sommerville, I., 2011. Software Engineering, 9th Edition,
Addison Wesley.

Tornew, F., M. Ivarsson, F. Pettersson, P. Ohman, 2006.
Defect in automotive use cases, In Proc. of 2006
ACM/IEEE international symposium on Empirical
software engineering, pp.115-123.

An Approach to the Context-oriented Use Case Analysis

141

