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Abstract: Business rules that apply within a business context must be formulated in a comprehensible way to allow 
validation by their stakeholders, but at the same time they must be specified with enough precision to assure 
their correct implementation in computer applications. These opposing demands of business rule modeling 
are not easily reconciled. Formal rule modeling languages may be exact but they are often lacking in 
understandability, whereas controlled natural languages are more easily understood but generally fall short 
in exactness. We use Relation Algebra as the foundation to set up a controlled language for declarative 
business rules that is compatible with practical demands, such as laid out in the Business Rules Manifesto. 
Our version of controlled language comprises just five language statements that are orthogonal by design, 
which makes for a language that is suited for use by novice business rule modelers. The language lets users 
set up a business vocabulary that stakeholders can understand, and it allows to specify business rules about 
the objects in the vocabulary in a comprehensible if-then syntax. Rules expressed in our language are 
precise enough to permit the automatic generation of a prototype information system which is guaranteed to 
comply with the rules. Stakeholders can explore this prototype to verify the vocabulary, and to check 
whether the specified rules are valid and match their original intent of the business context. We show how 
we can ascertain correctness of our language and metamodel, by adopting a reflective approach and subject 
our context to rule analysis and specification, just like any other business context. It provides us with a 
prototype system that lets us explore the rules about rules, and validate the rule compliance. 

1 INTRODUCTION 

Business rules play an important role in day-to-day 
business operations and supportive IT applications. 
Declarative rules restrict what states are permitted in 
the business, and which operations may be executed 
by employees and information systems of that busi-
ness (Hay, Healy 2000).  

There is consensus that the business rules should 
be validated by stakeholders in the organization to 
ensure their overall correctness and coherence (Busi-
ness Rules Manifesto 2003). Therefore, rules must 
be expressed in a way that a target business audience 
clearly understands. But to use those very rules in 
software applications calls for exact specifications 
and computer precision. This poses contradictory de-
mands: comprehensibility for lay users, but perfect 
exactness for programmers and applications.  

The prime deliverable of rule-based design is a 
compliant database application. In practice, the 
informal rules of business behaviour are rephrased 
and transformed in a chain of handovers until their 
encapsulation in an enterprise information system 

(figure 1). At each point in the chain, requirements 
are translated into yet another language, a process 
which is prone to misinterpretations, loss of detail, 
and other problems, even in the presence of a valida-
ted vocabulary (Bajwa et al., 2011).  

 
Figure 1: Chain of handovers of business rules. 

To reduce the need for translation, we propose a 
simple language founded on proven theory to cover 
the major part, if not the entire chain of handovers.  

The business rules considered in this paper are 
declarative: there is no procedural dependence or 
hidden sequencing. The rules are also invariant: they 
concern persistent states only, not some transient 
situations that exist for just a brief moment in time, 
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e.g. only while a data transaction lasts. This differs 
from IT-approaches like the Event-Condition-Action 
(Poulovassilis et al., 2003) paradigm, or 
Communicating Sequential Processes (Hoare, 1985; 
Wedemeijer, 2012). From a business point of view, 
the ECA type of rules have a technical ring, and 
their relevance is experienced as vague, difficult to 
retrace, and hard to explain (Andreescu, Mircea 
2014).  

The paper outline is as follows. Section 2 dis-
cusses some contemporary languages for declarative 
business rules, and design considerations for our lan-
guage. Section 3 describes the proposed language. 
The syntax of each basic statement is depicted as a 
railroad diagram, and we explain core ideas. Section 
4 puts the language to work, by describing features 
of supportive design- or prototype environments. 
Such an environment can be regarded as a business 
context having its invariant rules captured. In section 
5 we pursue this idea by developing a meta-model of 
the language. Section 6 presents conclusions.  

2 RELATED WORK 

Business rule languages must be comprehensible for 
business workers on the one hand, and faultlessly 
exact for computer applications on the other 
(Bjekovic, Proper 2013). Numerous languages to 
express declarative business rules exist (Kardasis, 
Loucopoulos 2004). Our discussion of languages is 
restricted due to lack of space.  

2.1 Declarative Rule Languages 

On one side of the spectrum of languages to express 
business rules are natural and semi-controlled langu-
ages. Prominent Semantics of Business Vocabularies 
and Rules (Object Management Group 2008). One 
of its derivatives is RuleSpeak, 'a set of guidelines 
for expressing business rules in concise, business-
friendly fashion using structured natural language' 
(Ross, Lam 2011). Another derivative is Attempto 
Controlled English (Fuchs et al., 2008).  

These approaches rely on business vocabularies, 
also called 'fact models', in order to capture the true 
meanings and definitions of business data. Hence, 
comprehensibility and business focus is a strong 
point. However, controlled languages still permit a 
large variety in phrasing, and lack uniformity. As a 
result, rules are not always concisely and clearly 
expressed, making validation difficult and leaving 
room for interpretation, two fatal shortcomings for 
IT implementation (Weigand et al., 2011). 

Other standards based on SBVR are FBM (FBM 
Working Group 2011) and Object-Role Modelling 
(Halpin, 2011). Both standards depict conceptual 
models in the customary way, and then depict the 
constraints visually. As a result, the diagrams with 
constraints become quite confusing, and they are 
barely intelligible for lay users.  

A middle field is languages that aim to describe 
enterprise architectures, stakeholder concerns, goals 
and business rules (Quartel et al., 2009). Generally, 
these languages are not geared to capture rules, and 
are too high-level to allow validation by business 
stakeholders, or implementation in IT-systems.  

On the other side of the spectrum are languages 
with an IT-provenance, such as UML- and XML-
based languages or DTD's. Many of these languages 
are 'rich', meaning that a business feature may be 
captured in a variety of ways (Lamrani et al., 2013). 
Hence, it requires a thorough knowledge of imple-
mentation details to disclose the business relevance 
of an implemented rule (Beckner, 2014). Andreescu 
and Mircea (2014) remark on the reluctance to use 
OCL in the early design phases, when IT specialists 
need to cooperate with business people. 

RuleML is an evolving family of XML-based 
languages (Boley et al., 2004). Semantic Web Rule 
Language, SWRL for short, achieves an expressive 
power superior to our language in some areas, e.g. to 
specify derivations, numeric and time calculations 
(Horrocks et al., 2004). SWRL also includes the 
Horn-clause syntax for rules, a strong point that 
which we will employ in our language. Nonetheless, 
the IT-orientation and notational complexity of 
SWRL, and XML-based languages in general, make 
them unsuitable for an average business user or 
novice designer (Akbari et al., 2103).  

We conclude that (controlled) natural languages 
may capture business rules in a comprehensible and 
validatable manner, but not precise enough for 
computer applications. Formal rule modeling 
languages or general IT languages may be exact 
enough, but they lack in understandability.  

2.2 Language Considerations 

With the above in mind, our language for business 
rules was devised with the intention to: 
 ensure comprehensibility for business people by 

relying on business vocabulary (terms and 
phrases of the business context). 

 ensure that business workers can understand and 
validate their rules, and so minimize the need for 
back-and-forth translation of rules. 

 ensure orthogonality of the language, so that 

Fourth International Symposium on Business Modeling and Software Design

64



 

features are always expressed in just one way, 
and so avoid the problems of 'rich' languages. 

 ensure exactness of rules, by founding them on 
rigorous mathematical theory; we opt for binary 
Relation Algebra (Maddux, 2006). 
 

To prevent trivial but cumbersome errors in data 
entry, we prefer names and identifiers to be case-
insensitive. Also, leading and trailing spaces should 
be avoided as much as possible. 

2.3 Way of Working 

Rule design may be conducted in a progressive way 
of working (figure 2). 
 

 
Figure 2: Way of working in rule-based systems design. 

The approach starts at business behaviour, which 
in most cases is only informally understood.  

In the analysis and design phase, a business 
model of concepts and relations is created capturing 
the relevant parts of the business vocabulary. And, 
very important, the declarative rules are captured.  

In the test environment, data for concepts and 
relations is loaded incrementally to test whether the 
predicted rule violations emerge. Rule enforcements 
are specified, determining how workflow processes 
should deal with rule violations in practice.  
 

 
Figure 3: Railroad diagram for script and statements. 

3 PROPOSED LANGUAGE 

Our language provides five statement types that a 
designer may use in the specification of a business 
context. A railroad diagram of the overall language 
set-up is shown in figure 3. 

Statements in a script may appear in arbitrary 
order, to suit an incremental, step-by-step, top-down, 
big-bang, modular, or any other preferred approach 
of the designer. The statements are uniform in make-
up: first a reserved language imperative, identifying 
name(s) next, and then the further particulars.  

3.1 Model 

The model statement defines the concepts and binary 
relations that are part of the business vocabulary 
(figure 4). It sets up the structure of concepts and 
relations that the designer considers to be important.  

 
Figure 4: Railroad diagram for the model statement. 

Concepts have unique names, enclosed in square 
brackets for clarity, and starting with a letter.  

Relations are uniquely identified by a colloquial 
name to call the relation by, plus the names of its 
domain and range concepts. In addition to the 
colloquial name for the relation itself, another name 
may be provided for the inverse relation, indicated 
by the ~ inversion symbol. Uniqueness requirements 
for the relation name also apply to the inverse name.  

We prefer the infix style of notation for relations. 
It enhances readability and prompts designers to 
pick self-explanatory relation names. Technically 
speaking, prefix or other styles are equivalent.  

A script may contain multiple model statements, 
so that concepts and relations can be incrementally 
introduced. And because concepts are easily dedu-
ced from relation domains and ranges, a designer 
may even forego the explicit modelling of concepts. 

By definition, it is impossible to violate a model. 
All true facts observed in the business context, either 
fit perfectly in the structure, or they are irrelevant. If 
some business fact is relevant but still cannot be 
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expressed as atoms or tuples, then the structure is 
wrong: it is an inadequate model of the business 
context. Thus, a model may be regarded as a set of 
structural rules. As no other rules apply to it, we call 
this an Unconstrained Conceptual Model.  

3.2 Rule 

We are now in a position to specify 'behavioural' 
rules that business stakeholders ought to live by. 
These rules should always evaluate to being satis-
fied, but in a running business, they may temporarily 
be violated. The implication is not, that the model is 
wrong. Rather, the business stakeholders should take 
action to remedy the violations. 

The combination of model and rule statements is 
sufficient for business rule analysis and design. The 
joint deliverable may be called a Conceptual Model, 
and a good designer will make sure that it meets the 
usual quality requirements, such as completeness, 
and consistency of its rules (Moody, 2005).  

To emphasize the behavioural aspect of rules, a 
core position is given to the rule keyword 'must' in 
the rule statement. The idea, in accordance with the 
ideas of RuleSpeak (2014), is to help users grasp the 
rule intent: guiding the business behaviour and have 
people refrain from violating the rule.  

Each rule comes with a unique rule identifier, 
starting with a digit 0.9. Other statements can refer 
to the rule by way of this identifier, and it also 
comes in handy when violations are to be reported.  

3.2.1 Simple Rules: Cardinality Constraints 

A single relation may already be subject to a simple 
rule, i.e. cardinality constraints may apply. For and 
understandability, our language provides keywords 
to express cardinalities and common combinations.  

For instance, the keyword 'function' means that a 
relation must be univalent and total. In addition, we 
provided keywords for ruletypes of homogeneous 
relations. And although simple ruletypes usually 
apply to simple relations, a compound expression 
may also be subjected to this kind of rule.  

Combining disparate cardinalities under one 
heading defies the idea of having a unique identifier 
for each distinct rule. The designer should decide 
whether or not to combine rules, depending on how 
the user community understands these rules and 
deals with possible violations.  

Notice that simple ruletypes are syntactic sugar: 
all simple constraints are perfectly expressible in 
mathematically equivalent compound rules. We 
include the rule keywords in our language for the 

sake of simplicity. In practice, it makes little differ-
ence: a rule is referenced only through its identifier, 
independent of the mathematical formulation.  

 
Figure 5: Railroad diagram for the rule statement. 

3.2.2 Compound Rules: If-then Phrases 

The real benefit of Relation Algebra is found in its 
ability to formulate compound rules in the concise 
yet straightforward way of normalized Horn clause 
format (Horrocks et al., 2004):  

 

antecedent ⇒ consequent 

Both the antecedent and consequent are binary 
relations, either a plain relation of the Unconstrained 
Conceptual Model or a compound expression, and 
must have the same concepts for domain and range. 
This format is easily translated to a semi-formal if-
then sentence (1), into which we like to include the 
important rule keyword 'must': 

 

IF the antecedent is confirmed, 
THEN MUST the consequent be confirmed (1)
 

We define a rule violation as: a pair in the ante-
cedent, but absent from the consequent expression. 
With this definition, the text becomes: 

 

IF a pair is present in the antecedent, 
THEN MUST the pair be in the consequent

 

 

The Horn-clause format easily pronounces as 'if... 
then must...', but the mathematical expressions in a 
rule may be quite complex, as seen in the railroad 
diagram of figure 5. Both expressions in the Horn 
clause may be a relation of the Unconstrained 
Conceptual Model, or may combine several relations 
using unary and binary operations. Special relations 
and constants may also be included, as explained 
below. It requires skills and business knowledge to 
translate the complex expressions into terms that the 
user community can understand. Better still is to 
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avoid complex expressions altogether, and find easy-
to-explain, natural rule assertions to begin with.  

3.2.3 Special Relations and Constants 

Complex expressions in rules may call for special 
relations. Our language provides a number of them, 
such as entire Cartesian Product, the empty relation, 
and the identity relation on a concept.  

Expressions may also contain constant values or 
literals. Such values act as atoms or tuples in the rule 
expressions, but they need not be on record as they 
do not necessarily represent true business facts. 
Constant values in rules may force certain tuples to 
be on record. For instance, the rule 'the president of 
the USA must be a citizen', implicitly assumes that a 
nation named 'USA' is recorded. If we eliminate the 
constant by rephrasing the rule to 'the president of a 
nation must be a citizen of that nation', then the em-
pty database no longer violates it. In general, an 
empty database never violates a rule if no constants 
are involved in the rule (Decker, Martinenghi 2006). 

3.3 Explain 

True business relevance means that each node, edge 
and clause in the specifications, can be clearly ex-
plained for, to, or even by the business workers. To 
help the audience grasp the detailed meaning and 
structure, explanatory texts are helpful (figure 6).  

 
Figure 6: Railroad diagram for the explain statement. 

An explain statement addresses either a concept, 
a relation, or a rule, each of which comes with its 
unique identifier. The explanatory texts do not alter 
the contents of the model or the rules and violations 
and therefore any number of explain statements may 
be given for a single concept, relation or rule. The 
aim is to help users in understanding both the details 
and the overall structure of the model. 

 
 

3.4 Load 

An important means to put a model and rules to the 
test is by loading data and check for rule violations. 
The ability to load data is also useful when a design 
is demonstrated to the business stakeholders.  

 
Figure 7: Railroad diagram for the load statement. 

The load statement places sets of atoms, delimi-
ted by curly brackets { .. }, into a concept extension, 
or sets of tuples in relation extensions (figure 7). 

Loading of data is not obligatory, but if data is 
loaded, then entity integrity and referential integrity 
is required (Date, 1981). At design time however, 
there is no need to worry about this, because it can 
be automatically ensured at load- and runtime.  

3.4.1 Specifying Data 

Like concepts, the atoms in our language are self-
identifying: an atom is fully specified by its name, 
which is merely a text string, plus (the name of) the 
concept it belongs to. We do not distinguish between 
atom, atom-name, atom-value, or identity, distinc-
tions that are hard to explain to lay users. Moreover, 
the atoms and their distinguishing names, or id's, or 
values must be linked tightly. Links that, on a meta-
level, prove to be isomorphisms, or almost so. We 
think that such intricacies are better avoided.  

Writing lots of data for loading is boring, and 
prone to typing errors. Our language provides two 
shortcuts. First, several relations may be loaded at 
once, provided of course that the domain and range 
are identical for all of them. Second, instead of 
specifying one tuple at a time, a set of tuples can be 
specified in one go, by combining a set of atoms 
from the domain with a set of atoms of the range.  

3.5 Enforce 

Enforcement is how runtime violations of the rules 

A Relation-Algebra Language to Specify Declarative Business Rules

67



 

should be dealt with from the business point of view. 
In realistic business environments, enforcement may 
range from 'avoid violation at all cost' to 'comply or 
explain' or even 'ignore all violations'. From the IT 
perspective however, there are just three main 
strategies called 'projector', 'rejector', and 'producer' 
(Dietz, 2008).  

 
Figure 8: Railroad diagram for the enforce statement. 

Our language provides for variants for all three 
variants. Figure 8 depicts the railroad diagram for 
the enforce statement in our language.  

Enforce is not an incremental statement: a rule is 
subjected to one enforcement strategy at most, and 
specifying multiple enforcements for one rule has no 
use. If no enforcement option is specified for a rule, 
then the 'report' strategy applies by default.  

3.5.1 Report 

We call 'report' what the literature is referred to as 
'projector'. This strategy for a rule means that after 
some edited data is committed, the rule is assessed, 
meaning that all violations are 'projected' into a 
special database table. Next, that listing is reported 
to the stakeholders. Notice that all violations ought 
to be reported, not just the new ones caused by the 
latest data edit.  

Generally speaking, the 'report' strategy is easy 
to understand and robust to implement, which is why 
it is the safe choice for any business rule. For this 
reason too, this strategy is the default at load time.  

3.5.2 Reject 

The 'reject' type of enforcement strategy means that 
the rule must be checked prior to committing a 
change of data. If the change would result in a new 
violation for this rule, then the change should be 
rejected offhand, and the data not recorded.  

The assumption underlying reject is that data 
violating this particular rule cannot even be valid in 
the business context. Rejection may be bothersome 
for business workers because this assumption is 
sometimes wrong, so that perfectly valid data is 
rejected for a bad reason.  

There is another loophole: data may actually be 

in conflict with the rule, but if by coincidence the 
violating tuple is already present for another reason, 
then the erroneous data can be recorded nonetheless. 

3.5.3 Resolve by 

We introduce 'resolve' as final enforcement strategy 
for rules, referred to in the literature as 'producer'. 
The idea here is that sometimes in the business 
context, there is only one viable way to resolve a 
violation. And if the solution is known, why not let 
the computer apply it automatically?  

We recall our definition of violation as a pair in 
the antecedent expression of a Horn clause, but not 
in the consequent. Hence, adding the offending pair 
into the consequent is a straightforward solution, and 
this is exactly what the enforcement strategy 'resolve 
by addition' intends. The strategy called 'resolve by 
deletion' takes the opposite tack and bluntly deletes 
the pair from the antecedent. As expressions in 
general cannot be edited, a necessary restriction is 
that the expression being edited must be a relation of 
the Unconstrained Conceptual Model.  

A data-edit transaction is produced and in fact, 
this may result in the violation of some other rule. 
The automatic transition may even be rejected by 
another rule, or a subsequent transaction may be 
produced, and so on, potentially creating deadlocks 
or interminable loops. While compliant with the 
theory of Relation Algebra, this strategy goes 
beyond our context of invariant, i.e. state-oriented 
business rules. In defining our language, we did not 
investigate these effects nor have we tools for the 
rule designer to control them.  

4 LANGUAGE ENVIRONMENT 

 
Figure 9: Contributing to the generated prototype. 

The prime deliverable of rule design is a working 
database application that assures rule compliancy. 
Putting our rule language to work requires a design- 
and runtime environment in which all five of our 
statements contribute to that deliverable (figure 9). 
As we strictly adhered to the sound theory of Rela-
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tion Algebra, the generated prototype is guaranteed 
to comply with the invariant rules in the script.  

4.1 Design Time Interface 

A design time interface should support a designer to 
create, expand, refine and correct her script, and also 
to save the script to continue work at a later time.  

A graphic display of the Unconstrained Concep-
tual Model, with drag-and-drop and rearrange featu-
res to uncluttered the diagram, is a wonderful help in 
composing and understanding. Still, it is the model, 
the rule statements and explanations that should be 
at the core of the design effort, not the diagram.  

The rule statement calls for a smart formula 
editor, with an option to link each rule expression to 
corresponding nodes or edges in the model diagram. 
Various flags would also be desirable, such as flags 
for faulty expressions, rule inconsistencies, potential 
simplifications of rules, or unconstrained relations.  

The explain statement can well be supported by 
providing text editing functions in a mouse-over of 
the diagram.  

The load statement needs generous support to let 
a designer include a full load of initial data in the 
script, and integrity should be taken care of 
automatically, at load time at the latest. Copy and 
paste of realistic data acquired from the business 
arena would be greatly appreciated. Automatic 
generation of datasets in compliance or violation of 
a specific rule, would also be desirable.  

Lastly, no special support appears to be required 
for the enforce statement at design time. 

4.2 Load Time Interface 

At load time, all data in the script should be loaded 
into the Unconstrained Conceptual Model. Only the 
'report' enforcement strategy is feasible at this time, 
to prevent undesired outcomes or even deadlocks 
caused by 'reject' or 'resolve' types of enforcement.  

But data integrity must be made to hold. Refe-
rential integrity holds that each tuple refers to atoms 
on record in the domain and range, respectively. One 
option is to apply 'cascading delete', i.e. ignore all 
tuples that refer to a unrecorded atom. The opposite 
option is more attractive, i.e. to automatically insert 
the domain and range atoms of all tuples. Entity 
integrity holds that duplicates of an atom or tuple 
already on record, should not be loaded.  

Once data is loaded into the Unconstrained 
Conceptual Model, only then should the rules be 
checked and violations reported. The report should 
enable the designer to trace each violation: what rule 

is violated, which atoms and tuples play a part.  
A smart designer selects her data for loading in 

such a way that each violation is clearly understood, 
explained, and repaired. If a violation cannot be 
understood, then either the loaded atoms and tuples 
make no sense in the business, or the rule itself is in 
doubt. Or if particular violations can only be 
repaired by rigorously deleting data, then apparently 
some rules are contradictory. In any case, business 
people should be consulted to clarify the issue. 

4.3 Runtime Interface 

The script captures the rules of the business context, 
and a computer interface serves to confront the 
business community with their rules. Conveniently, 
it makes little difference how a designer organizes 
her statements in the script, because the business 
users are not exposed to the script directly.  

A minimal requirement is a browse-and-explain 
interface. This should help users understand their 
exact business rules and violations. It ought to depict 
uncluttered diagrams of the entire Conceptual Model 
or parts thereof. It should display relevant explanati-
ons for all the concepts, relations and rules in the 
diagram. Also for each rule a complete list of all 
persistent violations must be provided, with 
explanations and traces how each violating tuple is 
determined from the corresponding Horn-clause 
formula. From there, the interface should support 
drill-down features to scrutinize partial populations 
or even individual instances in the diagrams.  

Second, a demonstration interface is appreciated 
to emulate a workflow case in a (partial) business 
process. A series of predefined datasets is loaded in 
sequence, showing the emergence and subsequent 
resolution of violations as new data is being entered. 

Adjusting rule enforcements on the fly in the 
runtime interface is still better. This would allow 
experimentation how to deal with rule violations and 
to probe the effects on the workflow processing.  

The real benefit of our language is to generate a 
rule-compliant runtime prototype application with 
full data edit capabilities. Business people can then 
put that prototype to the question by entering all 
conceivable kinds of business data, view the 
responses by the system, and come to understand the 
workflow processes for dealing with the violations 
of their business rules. 

5 LANGUAGE METAMODEL 

So far, we discussed the modelling of an arbitrary 
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business context, its vocabulary and rules. In this 
section, we change the perspective and select 'rule 
design' for our business context.  

5.1 Metamodel 

What is the business vocabulary of design? What are 
its rules? If we could specify this special context in 
perfect detail, and if a compliant tool environment 
would be available, then we could use these... to 
generate the prototype system for rules design, in a 
truly reflective approach.  

 
Figure 10: Metamodel of the language (conjectured). 

The idea, although not new (Schön, 1992), is still 
worthwhile to pursue. Having outlined the relevant 
business context in section 3, we present a conjectu-
red metamodel in figure 10. In the diagram, we use a 
freehand style, and we omitted the meta-relation 
names. Interestingly, the statements of our language 
can be associated with five distinct areas in the 
metamodel.  

Evidently, the metamodel comes with its own set 
of rules constraints on the metamodel concepts, 
associations, and contents. Without being exhaustive 
we outline some major rules per area.  

5.2 Meta-rules and Enforcement 

Entity integrity is an intrinsic demand of relation 
algebra, and it applies in this metamodel as well. 
Duplicate atoms of a concept or duplicate tuples in a 
metamodel association are unacceptable at any time, 
This integrity demand can be enforced as 'reject', in 
other words: duplicate entries are simply ignored.  

In the 'model' area, it is compulsory that each 
relation has exactly one domain concept, one range 
concept. Referential integrity proclaims that both 
concepts must be present in the extension of the 
Concept concept. This rule is easily enforced as 

'resolve by addition', meaning that missing concept 
names are automatically inserted. Moreover, the 
domain concept, range concept, and colloquial name 
together must uniquely identify the relation. And if a 
relation's inverse name is given, then it must adhere 
to the same uniqueness demand.  

In the 'rule' area, a simple rule is associated with 
one expression and one (or more) cardinality- or 
homogeneous-ruletype. The compound rules, i.e. 
those in Horn clause format, are associated with both 
an antecedent and a consequent expression that must 
have the same domain and range concepts. 
Regarding the 'expression' concept, it must first be 
noticed that any particular expression may well be 
associated with several rules. Second, an expression 
can involve many relations, or concepts, or even 
constants, which is why we depict an non-specific 
line from 'expression' to the 'model' area in the 
metamodel diagram. Finally, it must be realized that 
expressions in general will constitute derived 
relations. That is, except in the special case where 
the expression equals a relation defined in the 
Unconstrained Conceptual Model. 

In the 'explain' area, explanatory texts are 
associated to concepts, relations and rules, but no 
particular restrictions apply. In the 'enforce' area of 
the metamodel, only a uniqueness restriction applies. 

5.3 Example of a Meta-rule 

In the 'load' area, referential integrity must again be 
made to hold. As an example how analysis may be 
conducted and how our language supports the rule 
designer in her analysis, let us show how to capture 
referential integrity in a rule enforcement.  

Referential integrity holds that for any tuple in 
any relation, both of its atoms must be on record: 

 

IF the tuple T has the domain atom A, 
THEN MUST that tuple T is contained-in 
some relation R which has domain some 
concept C which contains that atom A. 

 

 

This controlled-language sentence translates to a 
rule in our language as an Horn-clause implication, 
with symbol ; indicating composition of relations: 

rule  2-referential-integrity-domain  as 
 [Tuple] has-domain [Atom] must imply 
    [Tuple] contained-in [Relation] 
  ; [Relation] has-domain [Concept] 
  ; [Concept] ~contained-in [Atom] 

(2)

 

The antecedent expression is a relation in the 
Unconstrained Conceptual Metamodel. Hence, this 
rule assertion (2) permits us to impose the 'resolve 
by deletion' enforcement strategy: any tuple refer-
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ring to an unrecorded atom is immediately deleted. 
This strategy is known as 'cascading delete' in 
relational database technology. A similar meta-rule 
will do for the atoms in the range of the relation.  

The rule of integrity must hold at runtime, but 
still its enforcement strategy can be made to vary. A 
'reject' or 'report' strategy may be better in a running 
business environment. Moreover, at load time the 
'resolve by addition' strategy is to be preferred.  

This illustrates how there are unresolved issues 
in the analysis and design of the metamodel calling 
for further research. Another issue is how to deal 
with constant values in rule expressions. 

6 CONCLUSIONS 

We proposed a rule language to capture and express 
declarative business rules. The language, combining 
business vocabulary with precise mathematical 
features, is comprehensible for business users, and 
precise enough to generate rule-compliant IT appli-
cations. We outlined how the language may be 
employed in design- and runtime interfaces.  

6.1 Expressive Power of the Language 

We claim that the language has adequate expressive 
power for rule design and analysis. 

Following the ideas of SBVR, our language is 
founded on business vocabulary, compelling the 
designer to use the plain business phrases for the 
relevant terms and facts, a major strength of our 
language. Declarative, invariant business rules are 
described in a comprehensible if-then syntax. In our 
experience, this is a great help for people reading a 
script. In particular, the 'must' keyword provides an 
immediate clue of what a rule intends to say, even 
when complicated expressions are involved.  

Our language has a clear, uniform makeup. This, 
and the simple naming regime make for easy-to-read 
scripts that are straightforward to interpret by 
business people, even without supportive IT-tools. 
Each line in a script starts with an imperative 
keyword that clearly indicates the focus of that line, 
underpinning the orthogonality of our language. The 
reserved keywords of our language are concise and 
learnable, appealing for both skilled business 
workers and novice rule designers.  

Statements of our language are orthogonal by 
design. Each statement addresses a single aspect of 
the business context. The language statements are 
loosely coupled, but as some statements necessarily 
depend upon previous ones, complete independence 

is not possible. 
No restrictions apply to the order or sequence of 

statements. The designer may first specify all 
aspects of one business feature, or start a model with 
a few rules in one section of the script and add a 
section with load statements later, etc. Therefore, no 
particular design approach is forced upon the 
designer. Having said that, a strong point of our 
language is that it does force a designer to consider 
all business features of the relevant rules, and to 
capture its aspects in distinct statements. For 
business users, it makes little difference how the 
statements in the script are organized, because in 
theory, users do not browse the script but use a 
dedicated interface to explore the rule-based design. 
In practice however, users will probably read it, and 
even begin to add and amend the script.  

Our statements are devoid of typical IT jargon 
such as primary-keys and attributes, functional 
dependencies, cascading deletes, etc. Imperative 
ECA-type rules cannot be formulated in our 
language, with one exception. The enforce statement 
variant called 'resolve' does initiate data editing 
operations in response to a rule violation. This is a 
digression from the strictly declarative and invariant 
nature of our language, the consequences of which 
need to be further researched.  

In our opinion, rule design for a business context 
is a superior approach than the dual approach of 
creating on the one hand an implementation data 
model with objects, entities, keys, and an activity 
model with data transitions and processing features 
on the other. Business stakeholders have little 
affinity with such refined IT-models, and lack the 
ability to validate the correct implementation in 
computer applications.  

6.2 Language Extensions 

Several extensions to the language may be 
considered to enhance usability for stakeholders and 
compliancy of the implementations. Of course, 
expressive power and understandability for business 
users should not be affected.  

Support for specialization/generalization relati-
ons among concepts is one possible extension. This 
is somewhat problematic for Relation Algebra 
theory because an atom might belong to more than 
one concept for some time, or even switch over 
time: a person is student at one time, and teacher at 
another. Specialization/generalization is relatively 
unimportant in business practice, where models 
often do not need it or can use a work-around.  

Better support for the 'resolve' enforcement 
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strategy is needed. Fundamental research is called 
for to understand the coordination of rules, and to 
prevent contradictory enforcement strategies.  

Support for the Role-based Access standard 
(Edward et al., 2011) is also suggested. Instances of 
a Role concept should be assigned the right to access 
all contents of certain concepts and relations in the 
Unconstrained Conceptual Model. It calls for a mix 
of model and metamodel capabilities, thus extending 
the ideas exposed in section 5.  

A serious shortcoming of Relation Algebra is 
that it lacks arithmetic and temporal capabilities: it 
cannot express calculations such as 'add 18% VAT' 
or comparisons like 'if born before 1980'. Support 
for this kind of rules will greatly enhance usability, 
provided that the orthogonality of the language and 
most importantly, the clear and uniform expression 
of declarative rules in if-then syntax is safeguarded.  

6.3 Future Research 

We indicate some areas of ongoing research that 
may improve the applicability of our approach, 
methods, and tools for business rules design.  

Currently, texts available for explanations in the 
user interface are only static. Ongoing research aims 
to determine what instructions or explanations in 
which interfaces are most helpful to achieve high-
quality designs (Michels, 2011). 

Integration of our language with the typical IT-
domain of Semantic Web Rule Language is being 
researched (Grosof, 2013). The aim is to improve 
the expressive power without compromising 
orthogonality of the language and comprehensibility 
of the if-then syntax of rules.  

Interface design is an ongoing area of research. 
In this paper, we proposed to compose and then 
compile scripts. But instead of compiling, an inter-
pretative way of working might provide better 
support for the designer and business stakeholders.  

Research is being conducted to develop the 
reflective meta-modelling approach, its vocabulary 
and the rules of rule design. The idea is to build a 
generator from this; a generator that is capable of 
converting any rule-based design into a fully 
functional and compliant prototype application.  

The vision is that in the future, stakeholders may 
formulate and validate their own business rules, and 
do so in a language with enough precision to enable 
a straightforward implementation in computer appli-
cations, without the intervention of IT specialists.  
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