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Abstract: There have been significant advancements in brain computer interface (BCI) techniques using EEG-like 
methods. EEG can serve as non-invasive BMI technique, to control devices like wheelchairs, cursors and 
robotic arm. In this paper, we discuss the use of EEG recordings to control low-cost robotic arms by 
extracting motor task patterns and indicate where such control algorithms may show promise towards the 
humanitarian challenge. Studies have shown robotic arm movement solutions using kinematics and machine 
learning methods. With iterative processes for trajectory making, EEG signals have been known to be used 
to control robotic arms. The paper also showcases a case-study developed towards this challenge in order to 
test such algorithmic approaches. Non-traditional approaches using neuro-inspired processing techniques 
without implicit kinematics have also shown potential applications. Use of EEG to resolve temporal 
information may, indeed, help understand movement coordination in robotic arm.  

1 INTRODUCTION 

Brain Computer Interfaces (BCI) is a novel fast 
evolving technology connecting the brain to a 
computing devices (Birbaumer, 2006; Wolpaw et al., 
2002), now seen as a ubiquitous detection and 
diagnostics tool. The domain of EEG-based BCIs 
include several applications like controlling a cursor 
on the screen (Yuanqing Li et al., 2008), selecting 
letters from keyboard playing games (Donchin et al., 
2000), controlling a prosthetic arm (Bi et al., 2013; 
Muller and Blankertz, 2006). BCI devices are used 
in multiple modes including invasive or non-
invasive (Leuthardt et al., 2004; Owen and Coleman, 
2008; Pfurtscheller et al., 2010), synchronous and 
asynchronous (Md Norani et al., 2010) modes in 
current BCI applications. Prosthetic articulators 
based on EEG play a vital role in the area of haptics 
and sensorimotor control (Wolpert and Flanagan, 
2010). In this position paper, we discuss the 
evolution of EEG-based BCI techniques for control 
of neuro-prosthetic articulators and include our case 
study on a low-cost robotic arm model.   

Electroencephalography (EEG) is a widely used

neuroimaging technique, owing to its high temporal 
resolution, low cost, high portability and has become 
a practical choice for BCI. The quality of EEG 
signals are usually affected by noise from scalp, 
skull and  a significant contribution from 
background noise (Nicolas-Alonso and Gomez-Gil, 
2012). Various EEG-based BCIs differ based on 
user intent to extract neuro-electrical activity. 
Techniques commonly used are based on 
recognition of specific pattern in EEG to a particular 
task (Millán et al., 2002; Pfurtscheller et al., 2003; 
Wolpaw et al., 2002), identification of characteristic 
waveforms in EEGs which follow an event 
(Birbaumer et al., 2003; Farwell and Donchin, 
1988),  and the presence of periodic waveforms in 
EEGs in the range of frequencies of an oscillatory 
signal corresponding to a light flash stimulus 
(Friman et al., 2007).  EEG signals, based on 
specific responses related to a task-related stimulus, 
serve as an input for BCI systems to control 
prosthetic arms (Figure 1). EEG patterns can be 
extracted using Sensory Motor Rhythms (SMR).  
Motor movement or imaginary movement changes 
the oscillatory patterns of EEG, resulting in 
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suppression of amplitude (ERD) or enhancement in 
amplitude (ERS) for mu or beta rhythms.  
(McFarland et al., 2000; Pfurtscheller et al., 2006; 
Wolpaw et al., 2002).  

1.1 Implementation Issues regarding 
EEG Based Techniques 

Although EEG is portable (Nicolas-Alonso and 
Gomez-Gil, 2012; Tanaka et al., 2005) and cost 
effective  (Bi et al., 2013; Vespa et al., 1999) for 
research purposes, poor signal to noise ratio or 
artefacts are recorded during signal acquisition. For 
statistical significance, EEG analysis require 
complex data analytics and significantly large 
dataset with a fair number of subjects (Schlögl et al., 
2002). Due to low spatial resolution, EEG signals 
need elaborate interpretation in order to functionally 
hypothesize on areas activated by particular 
response (Srinivasan, 1999). Pre-recording setup 
times are also significantly long. 

Noise in the signals plays an important role in 
EEG signal analysis and interpretation of data 
(Repovs, 2010). There is a necessity for efficient 
strategies towards noise prevention and removal.  

1.2 Neurological Mechanisms Used in 
BCI 

Control signals generated by BCI methods 
correspond into 5 main categories namely 
sensorimotor activity (ERD/ERS), VEP, P300, SCP, 
activity of neural cell (Wolpaw et al., 2002), and 
furthermore into two additional categories, mental 
arithmetic tasks (non-movement) and multiple 
neural mechanisms (Anderson, 1995; Gysels et al., 
2005). 

Previous studies (Anderson, 1995; Choi, 2012; 
Craig and Nguyen, 2007; Leeb et al., 2007; Pires et 
al., 2008; Tanaka et al., 2005) have shown that these 
neurological mechanisms were used in different 
motor-related tasks. A previous work (Tanaka et al., 
2005) had extracted ERD/ERS neurological 
phenomena for pattern classification of turn-left and 
turn-right events concerning a BCI-enabled wheel 
chair. Similar methods were employed for moving-
forward and moving-backward tasks but used SVM 
(Choi, 2012), Linear classifier (Leeb et al., 2007), 
Artificial Neural Network(ANN) (Craig and 
Nguyen, 2007). Methods using EEG-based 
techniques involved  low-pass filtering(7 Hz) of the 
P300 wave and feature-extraction using windowing 
or normalization (Pires et al., 2008).  
 

 

Figure 1: Schematic representation of a BCI-controlled 
low-cost robotic upper arm model. 

Datasets were then classified using Bayesian 
classifier for categorizing multi-class movement 
data. A motor–task study using SSVEP-based 
methods (Middendorf et al., 2000), employed feature 
extraction using Welch periodogram (512 FFT 
points) and involved SVM-based classification of 
turning right/going forward and stopping (Dasgupta 
et al., 2010). Neural Networks with back-
propagation learning have been shown to classify 
arithmetic calculation task features, extracted using 
Burg method/Levison algorithm (auto-regression 
models) (Anderson, 1995). Studies on word-
generation and motor activity used Butterworth filter 
(1-40 Hz) coefficients and phase locking 
values(PLV) (Lachaux et al., 1999) as features and 
classified the dataset using  SVM (Gysels et al., 
2005). Laplacian algorithms have also been used for 
movement-related tasks (McFarland et al., 2000).  

1.3 Prosthesis & Control with EEG 
Signal 

Brain computer interface (BCI) have been employed 
to control prosthetic arms (Wolpert and Flanagan, 
2010) in order to do specialized tasks, namely, 
reaching the target with an optimal feedback 
(Mitrovic et al., 2010), examining the different 
parameters of an object (Saal and Vijayakumar, 
2010). Prosthetic or robotic arms consist of a series 
of links which were equipped by an end-effector to 
move in a 3D space (AbuQassem, 2010; Wolpert 
and Flanagan, 2010). Links were driven by motors 
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changing the orientation of the manipulator 
(Megahed, 2013). 

Modeling of robotic arm behavior for prosthetic 
devices involved kinematics of the robotic links 
(Kay, 2005). Different algorithms have been 
proposed to solve the robotic kinematics; DH 
method (Iqbal et al., 2012), homogenous method 
(Mitra, 2012) for forward kinematic model and 
analytical method  (Iqbal et al., 2012) for inverse 
kinematics model. Analytical methods are 
subcategorized into geometric and algebraic 
approaches. Geometric approach has been applied to 
simple robotic structures with few DOF, whereas 
algebraic approach were used for greater DOF 
(Kucuk and Bingul, 2006). Triangulation and CCD 
(Cyclic Coordinate Descent) algorithms (Muller-
Cajar and Mukundan, 2007) have been used to solve 
inverse kinematics with a scalable number of links. 
Quaternion algebraic approach (Sahu et al., 2008) 
has been shown to be computationally cost-effective 
compared to homogenous methods. 

A feedback system was shown to control grip 
force of a gripper/ grasper (Westling and Johansson, 
1984). Controllers like PID (open loop 
optimization), OFC (closed loop optimization) have 
been used to optimize the motor commands with the 
help of cost functions like iterative linear quadratic 
Gaussian (ILQG) which use trajectory planning and 
execution in multiple steps (Mitrovic et al., 2010) 
instead of using sensors. Stochastic optimal control 
is another application which is now widely being 
used for planning and controlling of robotic systems 
(Rawlik et al., 2012). It has been demonstrated that 
Kullback-Leibler divergence minimization algorithm 
could present a solution towards stochastic optimal 
control (Rawlik et al., 2012). 

1.4 Non-Traditional BCI Methods 

Models of spiking neural networks (SNN) take 
advantage of precise timing of spikes to produce rich 
dynamic behavior(Kasabov et al., 2013). The study 
of enriched cognitive systems embodied interaction 
with environment could be achieved by employing 
SNN. Futuristic design of hybrid architecture 
inspired by the working human brain have led to 
complex structures and significant models of 
internal dynamics has seen in representation of the 
model kinematics structures such as the cerebellum 
(Furber et al., 2014; Shepherd et al., 1998).  

The key contribution to this direction of study 
will be a method for simulating a spiking neural 
network with high parallelism relying on data 
organization has seen in internal representation 
mimicking the motor circuit in the brain. An 

evaluation of user configurable structures resemble 
primary circuit of movement coordination such as 
the cerebellum or the V1 motor cortex may suggest 
discrete spike based transformation models 
generating responses appropriate to kinematic 
algorithms via data classification technique such 
circuits may have ranges modified by nature of input 
and delays configuring the plasticity of adaptive 
responses as seen in biological neural circuit.  

CMAC (Albus, 1975) had proposed a pattern 
separation algorithm based on internal representation 
model of the cerebellar neurons that perform 
movement coordination tasks. While spiking neuron 
models of CMAC-like algorithms are being 
elaborated, benchmark nonlinear tests have shown to 
function using simple neural microcircuit models 
(Joshi and Maass, 2005).Such neural circuits may 
perform indifferently to the kind of feedback 
received compared to the control performance of 
traditional techniques. A trend of novel spiking 
neural circuit based methods for SLAM techniques 
may help bridge the gap for the BCI devices and 
such low-cost articulator models. 

1.5 Implementation Issues for Low 
Cost Prosthetic Devices 

For sensorimotor control, the primary aim was to 
accomplish a task of reaching a specified target. 
Targets for low economic cost prosthetic arms 
include an ability of generalization of tasks (say 
grasp task) without significant precision or high 
accuracy. Adapting variability models in kinematic 
algorithms and using learning methods, some of the 
issues may be overcome (Vijayan et al., 2013). 
Position feedback is measured in some robotic arms 
using sensors (Mitrovic et al., 2010). In devices 
without sensor-based feedback of real-time 
localization, effective prediction-correction schemes 
may be needed (Kalanovic et al., 2000).  

Although a major humanitarian necessity, the 
major challenges faced when designing a low cost 
prosthetic devices include the economic cost for 
research and development, local availability of 
components, device functionality, prediction of time 
of failure, design simplicity (D’Apuzzo et al., 2012). 
Avoiding sensory feedback decreased cost but 
increased the localization variability in models. 
However, with a low-cost prosthesis implementation 
issues such as position control, simultaneous 
localization models and power management pose 
additional challenges post-design. We have however 
regarded a task-based control model in the context 
of this paper.  
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2 CASE STUDY: LOW-COST 
PROSTHETIC ARM CONTROL 
USING EEG 

In our study, we used a indigenously designed 
robotic ARM (Amrita Robotic Manipulator), a part 
of remotely-triggered experiments available online 
(Vijayan et al., 2013) with 6 DOF as a prototype for 
a prosthetic upper arm. We tested the kinematic 
behavior of the manipulator with DH method and 
algebraic method (AbuQassem, 2010) for forward 
kinematics  and triangulation algorithm (Muller-
Cajar and Mukundan, 2007) for inverse kinematics. 

We used F3 and F4 channels data for extracting 
movement patterns. Signal pre-processing was done 
using band-pass filtering from 6 to 30 Hz to obtain 
Mu and beta rhythms.  

To extract features, we used power spectral 
density and cross-correlation analysis from 
preprocessed signal data (Hosni et al., 2007). 
Movement of the arm to left or right directions were 
categorized as two classes. We used classification 
(Vijayan et al., 2013) for translating imagery to 
robotic articulation (Figure 2). In our study, 
prosthetic arm had a localization variability of ±5 
cm variability. Mapping and localization of end-
effector positions were corrected using error 
minimization algorithms (work in progress). 

Previous studies on pattern classification of 
signals related to motor tasks used to train prosthetic 
devices like wheelchairs have shown a high level of 
accuracy (~80%) (Tanaka et al., 2005).The 
scalability of similar techniques on high-end devices 
like the DLR JUSTIN arm or DARPA ARM may 
need detailed studies and outreach modifications.  
 

 

Figure 2: Accuracy of robotic arm dataset for different 
classification algorithms. 

3 CONCLUSIONS 

The paper aims to highlight the current progress in a 
humanitarian challenge of redesigning a low 
economic cost neuro-prosthetic arm that could be 

controlled using EEG-based signal re-classification. 
Usual techniques include applications of machine 
learning and adaptive feature extraction methods to 
process EEG real-time and using a learned system to 
control the arm using kinematic techniques. Such 
methods have their performance and training issues. 
While data reliability and over-learning can cause 
issues, the device variability requires prediction-
correction or other iterative approaches. The issues 
may be solved using feedback via sensors but that 
would add considerable financial and computational 
overload to the design and implementation. To keep 
the low-cost target, internal representation models 
may be needed to help the prediction-correction 
process. Our case-study using a home developed 
(<$50 ARM) suggests the common issues seen with 
any low-cost project while allowing us to use the 
platform for testing the potential solutions. The 
suggestions are as follows: Firstly, while EEG based 
tests are reliable for some event-related tasks, a 
learned feature extraction approach may help reduce 
the noise in the dataset. Secondly, classification has 
to have simple mechanisms such as testing using 
SVM or ANNs. Thirdly, better approximations are 
to be favored over precision. Iterative processing of 
kinematics movements may substitute the sensory-
motor feedback model. Spiking neural network 
based internal representation models may help 
overcome some of the internal representation issues. 
While traditional approaches have their own 
performance and implementation issues, a novel 
non-traditional approach seems inevitable.   

As a final word, we indicate that control 
mechanisms using BCI may change the design of 
kinematics for robotic articulators. It may, therefore, 
need a dual-styled approach of classification and 
interpretation from EEG to the arm and an internal 
representation model to predict the kinematics of the 
arm based on the feature-triggered categorization of 
movement dynamics.  
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