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Abstract: The methods proposed in the article come out from a technique called boosting, which is based on the 
principle of combining a large number of so-called weak classifiers into a strong classifier. The article is 
focused on the possibility of increasing the efficiency of the algorithms via their appropriate combination, 
and particularly increasing their reliability and reducing their time exigency. Time exigency does not mean 
time exigency of the algorithm itself, nor its development, but time exigency of applying the algorithm to a 
particular problem domain. Simulations and experiments of the proposed processes were performed in the 
designed and created application environment. Experiments have been conducted over the MNIST database 
of handwritten digits that is commonly used for training and testing in the field of machine learning. Finally, 
a comparative experimental study with other approaches is presented. All achieved results are summarized 
in a conclusion.  

1 BOOSTING REVIEW 

The two most popular methods for creating 
ensembles are boosting (Schapire, 1999) and 
bagging (Breiman, 1996). Boosting is reported to 
give better results than bagging (Quinlan, 1996). 
Both of them modify a set of training examples to 
achieve diversity of weak learners in the ensemble. 
As alternative methods we can mention 
randomization based on a random modification of 
base decision algorithm (Dietterich, 2000) or 
Bayesian model averaging, which can even 
outperform boosting in some cases (Davidson and 
Fan, 2006). Boosting has its roots in a theoretical 
framework for studying machine learning called the 
‘PAC’ learning model, due to Valiant (Valiant, 
1984). Schapire (Schapire, 1990) came up with the 
first provable polynomial-time boosting algorithm in 
1989. A year later, Freund (Freund, 1995) developed 
a much more efficient boosting algorithm which, 
although optimal in a certain sense, nevertheless 
suffered from certain practical drawbacks. The first 
experiments with these early boosting algorithms 
were carried out by (Drucker, Schapire, and Simard, 
1993) on an OCR task. 

Boosting is a general method for improving the 
accuracy of any given learning algorithm. The 
algorithm takes as input the training set 
ሺݔଵ, ,ଵሻݕ … , ሺݔ௠,  ௜ belongs to someݔ ௠ሻ where eachݕ
domain of the space ܺ, and each label ݕ௜ belongs to 

some label set ܻ, where ݕ௜ ∈ ܻ ൌ ሼെ1,൅1ሽ. 
AdaBoost calls a given weak learning algorithm 
repeatedly in a series of rounds ݐ ൌ 1,… , ܶ. One of 
the main ideas of the algorithm is to maintain a 
distribution of weights over the training set. The 
weight of this distribution on ݅-th training example 
on round ݐ is denoted ܦ௧ሺ݅ሻ. Initially, all weights are 
set equally, but on each round, the weights of 
incorrectly classified examples are increased so that 
the weak learner is forced to focus on the hard 
examples in the training set. The weak learner's job 
is to find a weak hypothesis ݄௧: ܺ → ሼെ1,൅1ሽ 
appropriate for the distribution ܦ௧. The goodness of 
a weak hypothesis is measured by its error ߳௧ (1): 

 

߳௧ ൌ ෍ ௧ሺ݅ሻܦ
௜:௛೟ሺ௫೔ሻஷ௬೔

 (1) 
 

Notice that the error ߳௧  is measured with respect 
to the distribution ܦ௧ on which the weak learner was 
trained. In practice, the weak learner may be an 
algorithm that can use the weights ܦ௧ on the training 
examples. Alternatively, when this is not possible, a 
subset of the training examples can be sampled 
according to ܦ௧, and these (unweighted) resampled 
examples can be used to train the weak learner.  
The most basic theoretical property of AdaBoost 
concerns its ability to reduce the training error. Let 
us write the error ߳௧ of ݄௧ as 0.5 െ  ௧. Since aߛ
hypothesis that guesses each instance’s class at 
random has an error rate of 0.5 (on binary 
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problems), ߛ௧ thus measures how much better than 
random are ݄௧’s predictions. Freund and Schapire 
(Freund and Schapire, 1997) proved that the training 
error (the fraction of mistakes on the training set) of 
the final hypothesis ܪ is at most (2): 
 

ෑቂ2ඥ߳௧ሺ1 െ ߳௧ሻቃ
௧

ൌෑට1െ ௧ߛ4
ଶ

௧

൑ exp൭െ2෍ߛ௧
ଶ

௧

൱ 

(2) 

 

Thus, if each weak hypothesis is slightly better 
than random so that ߛ௧ ൒ ߛ for some ߛ ൒ 0, then the 
training error drops exponentially fast. However, 
boosting algorithms required that such a lower 
bound ߛ be known a priori before boosting begins. 
In practice, knowledge of such a bound is very 
difficult to obtain. AdaBoost, on the other hand, is 
adaptive in that it adapts to the error rates of the 
individual weak hypotheses. This is the basis of its 
name ‘Ada’ is short for ‘adaptive’. (Freund and 
Schapire, 1999). 

2 ENSEMBLES OF CLASSIFIERS 

The goal of ensemble learning methods is to 
construct a collection (an ensemble) of individual 
classifiers that are diverse and yet accurate. If it is 
achieved, then highly accurate classification 
decisions can be obtained by voting the decisions of 
the individual classifiers in the ensemble. 

We have proposed the method of learning on the 
basis of the property of neural networks, which have 
been noticed during another work (Kocian and 
Volná, 2012), e.g. a major part of the adaptation is 
performed during the first pass. We used neural 
networks as generators of weak classifiers only, i.e. 
such classifiers which are slightly better than a 
random variable with uniform distribution. For weak 
classifiers, their diversity is more important than 
their accuracy. Therefore, it seemed appropriate to 
use a greedy way in order to propose classifiers. 
This approach uses only the power of the neural 
network adaptation rule in the early stages of its 
work and thus time is not lost due to a full 
adaptation of the classifier.  

2.1 Performance and Diversity 

The most significant experimental part of the article 
focused on dealing with text (machine readable) in 
particular. However, we were not limited to printed 
text. The experiment has been conducted over the 

MNIST database (LeCun et al., 2014). The MNIST 
database is a large database of handwritten digits 
that is commonly used for training and testing in the 
field of machine learning. 

We have proposed several approaches to 
improve performance of boosting (Iwakura et al., 
2010). In our experiment, we try to increase 
diversity of classifiers by the following methods. It 
specifically relates to such innovations concerning 
training sets. 
 Filtering of inputs; 
 Randomly changing the order of the training 

examples; 
 Doubling occurrences of incorrectly classified 

examples in a training set; 
 All these neural networks used the algorithm 

for an elimination of irrelevant inputs as 
proposed in (Kocian et al., 2011). 

2.1.1 Proposed Neural-Networks-based 
Classifiers 

In consequent text, we have used the following 
nomenclature refers to neural networks: 
 ݔ – input value; 
 ݐ – required (expected) output value; 
 ݕ௜௡– input of neuron y; 
 ݕ௢௨௧– output of neuron y; 
 ߙ – learning parameter; 
 ߮ – formula for calculating a neuron output 

value (activation function) yout = φ(yin ); 
 ∆ݓ – formula for calculating a change of a 

weight value. 
 

We have used a total of five types of neural 
networks in the study. We have used codes N1-N4 
for single-layer networks, and N5 for a two-layer 
network. The proposed ensembles of neural-
networks-based classifiers are basically a set of m 
classifiers. All the m classifiers work with the same 
set of n inputs. Each of the m classifiers tries to learn 
to recognize objects of one class in the input patterns 
of size n. Details about the parameters of the 
networks are shown in Table 1. All the neural 
networks used the winner-takes-all strategy for 
output neurons (Y1,.....,Yn) when they worked in the 
active mode. So only one output neuron with the 
highest ݕ௢௨௧ value could be active. The Yi is 
considered the winner if and only if ∀݆: ௝ݕ ൏
௝ݕ௜⋁ሺݕ ൌ ݅⋀௜ݕ ൏ ݆ሻ, i.e. the winner is the neuron 
with the highest output value ݕ௜. In the case that 
more neurons have the same output value, the 
winner is considered the first one in the order. Since 
Adaline did not perform well with the basic learning 
rule ݔߙሺݐ െ  ௜௡ሻ (Fausett, 1994), we assume that theݕ
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cause lays in the relatively big number of patterns 
and inputs and therefore possibly the big value of 
ሺݐ െ  ௜௡ሻ. That is, why we have normalized value ofݕ
ሺݐ െ  .௜௡ሻ by the sigmoid functionݕ

Table 1: Parameters of classifiers. 

Type ߮(x) Δݓ 

N1 ݕݐ݅ݐ݊݁݀ܫ Modified Adaline Rule 

N2 
1

1 ൅ expሺെݔሻ
Delta Rule 

N3 ݕݐ݅ݐ݊݁݀ܫ Hebb Rule 

N4 ݕݐ݅ݐ݊݁݀ܫ Perceptron Rule 

N5 
1

1 ൅ expሺെݔሻ
Back Propagation Rule 

 

The classifier is an alias for an instance of a 
neural network. Each classifier was created 
separately and adapted by only one pass through the 
training set. After that the test set was presented and 
all achieved results were recorded in detail: 
 Lists of correctly and incorrectly classified 

patterns; 
 Time of adaptation. 

 

Ensemble is a set of 100 classifiers, i.e. 100 
instances of neural networks. Each ensemble is 
defined by two parameters in total: 
 The base algorithms, i.e. what types of neural 

networks form the ensemble (Table 1); 
 Configuring of rising the diversity - i.e. what 

methods were used to increase the diversity in 
the process of creation of classifiers for the 
ensemble. We used three methods, Filtering, 
Shuffling and Doubling. 

 

Similarly to the classifier, the ensemble was also 
re-created. All achieved results were recorded in 
detail. Achieved parameters that were recorded for 
ensembles:  
 Patterns that were correctly identified by all 

classifiers; 
 Patterns that were incorrectly recognized by 

all classifier; 
 Maximal, minimal and average error of 

classifiers over the training set; 
 Maximal, minimal and average error of 

classifiers over the test set. 

2.1.2 Diversity Enhancement Configuration 

This section describes the method to increase the

diversity of classifiers that were used in the proposal 
of a specific ensemble. We used 6 bases of 
algorithms in total: N1 represents Adaline, N2 
represents delta rule, N3 represents Hebbian 
network, N4 represents perceptron, N5 represents 
Back Propagation network and the sixth base N1-N5 
represents all ensembles contain 20 specific 
instances of a specific type. In the test, each 
combination of three methods was tested on 50 
ensembles that were composed from classifiers 
formed over a given base of algorithms. Figure 1 
shows briefly the logical structure of the experiment. 

 

Figure 1: Logical structure of the experiment. Each base of 
algorithm has been tested with 12 different diversity 
enhancing configurations. Total of 50 ensembles has been 
created over each base of algorithm and diversity 
enhancing configuration. Each ensemble consisted of 100 
classifiers. 

Classifiers were generated as instances of N1-
N5. The accuracy of each generated classifier was 
verified on both the test and the training set. The 
results achieved by each classifier were stored in a 
database and evaluated at the end of the experiment. 
For purpose of our experiment we have defined an 
ensemble as a group of 100 classifiers generated 
over the same set of algorithms with the same 
configuration of the generator. One set of ensembles 
has been made over all available algorithms. Twelve 
different configurations have been tested within each 
set. Each configuration was tested 50 times in every 
set of ensembles. Therefore there have been created 
and tested 6 ൉ 12 ൉ 50 ൉ 100 ൌ 360000 different 
instances of neural networks.  

Figure 2 represents a creation of one classifier 
instance through a generator. It utilized the available 
library of algorithms, training set and configuration. 
Configuration specifies presentation of  the training  

Base of  
algorithms 1

Base of  
algorithms 6 …

Diversity enhancing
configuration 1 

Diversity enhancing
configuration 12 … 

Ensemble 1 
Base of algorithms 
Enhancing config. 

Ensemble 50 
Base of algorithms 
Enhancing config. 

… 

Classifier 1 
Network type … 

Classifier 100 
Network type 
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Figure 2: Block diagram of classifier generation. Dashed parts apply only to the experiment. In the real system, the 
procedure final product would be the classifier itself. 

set. In the next step (indicated by dashed line) each 
generated classifier was subjected to the test of 
accuracy on both the training and the test set. At the 
end of the whole procedure, we had obtained 
complete information about all correctly and 
incorrectly classified patterns, about base algorithm 
and about the configuration. The experiment was 
conducted over the data from the MNIST database 
(LeCun et al., 2014). The training set contains 60000 
patterns and the test set contains 10000 patterns. 
Patterns are stored in the database as a 28x28 pixel 
images with 256 grayscale. As the examples 
represent digits, it is obvious, that they can be 
divided into 10 classes, therefore all tested neural 
networks had a total of 10 output neurons. The 
highest number of input neurons was	28 ൉ 28 ൌ 784. 

2.2 Methods of Classifiers Diversity 
Enhancing 

We propose the input filters as a method for 
enhancing diversity of classifiers. The main idea of 
input filter is, that classifier ‘sees’ only a part of the 
input. It forces the classifier to focus its attention 
only on certain features (parts of pattern). It should 
increase the diversity of individual classifiers 
generated. Input filter is represented by a bitmap F 
of the same size as the original pattern. The 
classifier ‘sees’ the input pattern ‘through’ matrix F 
while only bits of F, which have value of 1 are 
‘transparent’. The blank filter is represented by a 
matrix whose pixels are all set to value of 1. 
Topology of classifier always reflects the current 
filter in the sense that the number of input neurons is 
equal to the number of bits with value of 1 in the 
bitmap F. It implies that the topology of classifiers, 

when using a non-blank filter, is smaller and less 
demanding in terms of memory space and CPU time. 
Figure 3 shows the example of application of 
different filters to the pattern representing the 
number ‘8’. We have used the following three 
modes of the input filters: 
 Blank; 
 Random (white noise); 
 Random Streak. In this mode, vertical or 

horizontal filter was picked-up with the same 
probability of 0.5. 

 

 

Figure 3: Example of use of different filters on the input 
pattern with the image number ‘8’. In the top row we can 
see four different filter matrices, in the bottom row there 
are the results of the filtration (what the classifier can see). 
Through the blank filter (left) the original shape of the 
pattern is visible. Displayed filters from the left: The blank 
filter, the random filter, the horizontal streak filter, the 
vertical streak filter. 

Shuffling. Training patterns were presented in 
random order. This can force the classifier to go the 
other path during the learning. 
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Doubling. Patterns that were correctly identified 
by all tested classifiers in the ensemble, were 
removed from the training set. Patterns that have not 
been properly learned by any classifier in the 
ensemble, were included twice in the training set. 

We have used the diversity of classifiers in the 
ensembles as the criterion for judging the success of 
algorithms and configurations. Moreover, we have 
focused mainly on performance at the test set of 
patterns. We have expressed the diversity as the 
reciprocal of the count of patterns, which were not 
correctly classified by any of the classifiers in the 
ensemble. The smaller number of unrecognized 
patterns means the more successful ensemble. If the 
diversity on the testing set was remarkably worse 
than the diversity on the training set, we have 
experienced over-fitting. The results of the 
experiments are summarized in Tables 2-4. The 
tables share a common column marking: 
 TAvg – average percentage of unrecognized 

patterns in the training set; 
 GAvg –average percentage of unrecognized 

patterns in the test set 
 GAvg/TAvg error ratio. Generalization 

capabilities. The higher value indicates the 
higher overfitting. So the smaller number 
means the higher quality of the classifier.  

Table 2: Achieved experimental results. 

Type TAvg GAvg GAvg/TAvg 
N1 0.760 1.093 1.438 
N2 0.610 0.943 1.545 
N3 0.900 1.423 1.581 
N4 0.770 1.093 1.419 
N5 0.360 0.510 1.416 

N1-N5 0.430 0.630 1.465 
 

In Table 2 we can see that the average 
performance of the Back Propagation network (N5) 
is the best. It also shares the best GAvg/TAvg value 
with the perceptron (N4). On the other side, the 
Hebb (N3) is the worst, it gives the worst 
performance on both the average error and the 
GAvg/TAvg value. 

Table 3: Comparison of quality of ensembles by doubling 
and shuffling. 

 
Doubling Shuffling 

Yes No Yes No 
TAvg 0.348 0.928 0.540 0.737 
GAvg 0.718 1.180 0.833 1.066 

GAvg/TAvg 2.063 1.271 1.542 1.446 
 
Looking at Table 3, the doubling method affects 

parameters of generated ensembles. The doubling 

enhances diversity, but it also significantly reduces 
the ensemble’s generalization capabilities. It was 
expected as the doubling forces the classifiers to 
focus on the particular portion of the train set. 
Concerning shuffling, it slightly enhances diversity 
and reduces the generalization capabilities. The 
shuffling is weaker than the doubling but we cannot, 
if it is better or worse than the shuffling. 

Table 4: Comparison of quality of ensembles by filters. 

Filter TAvg GAvg GAvg/TAvg 
Streak 0.288 0.378 1.312 

Random 0.570 0.824 1.445 
Blank 1.058 1.644 1.553 
 

In Table 4 we can investigate the influence of 
different filters on the ensembles behaviour. It is 
clear from the values in the table that the filtering is 
the right way to go through. The filtering method put 
the ensemble’s performance forward in both the 
average error and the generalization capabilities. We 
can also see that the streak filter performs 
significantly better than the random one. 

3 BOOSTING OF NEURAL 
NETWORKS 

In the section we have used two different types of 
neural networks. Hebb network and Back 
Propagation network. Details about initial 
configurations of the used networks are shown in 
Table 5. Both neural networks used the winner-
takes-all strategy for output neurons when worked in 
the active mode. Just as in our previous work 
(Kocian and Volná, 2012), we have used a slightly 
modified Hebb rule with identity activation function 
yout = yin. This simple modification allows using the 
winner-takes-all strategy without losing information 
about the input to the neuron. Back Propagation 
network was adapted using the sloppy adaptation as 
we have proposed in (Kocian and Volná, 2012).  

Table 5: Neural networks initial configuration. 

Type ߮(x) Δݓ 
Hebb ݕݐ݅ݐ݊݁݀ܫ ߙ ∙ ݔ ∙ ߙ ;ݐ ൌ 1 

BP 
2

1 ൅ expሺെݔሻ
െ ݐሺݔߙ 1 െ ௢ሻݕ ∙

1
2
ሺ1 ൅ ௢ሻሺ1ݕ െ  ௢ሻݕ

ߙ ൌ 0.04 
 

We worked with the following approaches to 
patterns weights: the lowest weight of a pattern ݀௠௜௡ 
(e.g. weight of the pattern that was recognized by all 
weak classifiers from an ensemble) was recorded in 
each iteration. When designing the training set, there 
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were patterns with a weight value d inserted into the 

training set ቀ
ௗ

ௗ೘೔೙
െ 1ቁ times. It means that patterns 

with the lowest weight value were eliminated from 
the training set, the others were inserted into the 
training set repeatedly by the size of their weight 
values. The order of patterns in the training set was 
chosen randomly. In the process, the training set was 
gradually enlarged. The training set was able to 
reach its size of 10଻, which significantly slowed its 
adaptation. To reduce enormous ‘puffing’ of the 
training set, we tried to substitute multiple insertions 
with dynamic manipulation with a learning rate. In 
this way, the neural networks set specific learning 
rate ߙ௧௜ (3) for each i-th pattern and each t-th 
iteration. 

 

௧௜ߙ ൌ ߙ ൬
݀

݀௠௜௡
െ 1൰ (3) 

 

It turned out that neural networks did not work 
properly with such a modified algorithm. Handling 
the learning rate corresponds to the multiple 
insertion of a pattern in the same place in the 
training set. Neural networks are adapted well if 
patterns are uniformly spread in the training set. 
Therefore, it was necessary to follow multiple 
insertion of patterns so that the training set could 
always mix before its use. Methods of enhanced 
filtering were shown in Figure 4. 

 

 

Figure 4: Filters AREA and SUBCOMBINE. 

The method ‘subareas’ is a generalization of the 
strip filter. Filter AREA was always defined by six 
rectangular ‘holes’ in the mask through which the 
neural network saw input vectors. Size and location 
of rectangles were chosen randomly. 

Procedural filter SUBCOMBINE transforms the 
original pattern S to the working pattern S so that 
from the original pattern randomly selects a few 
square areas of random identical size p x m and all 
of these areas are combined into one pattern. 

The idea of the type of a filter is the fact that some 
parts of selected areas are overlapped.  

We have proposed several approaches to 
improve performance of boosting algorithm 
AdaBoost.M1 based on (Freund and Schapire, 1996) 
that are defined as follows. Given set of ݉ examples 
〈ሺݔଵ, ,ଵሻݕ … , ሺݔ௠, ௜ݕ ௠ሻ〉 with labelsݕ ∈ ܻ ൌ
ሼ1,… , ݇ሽ. The initial distribution is set uniformly 

over ܵ, so ܦଵሺ݅ሻ ൌ
ଵ

௠
 for all ݅. To compute 

distribution ܦ௧ାଵ from ܦ௧, ݄௧ and the last weak 
hypothesis, we multiply the weight of example i by: 
 Some number ߙ ∈ ሾ0,1ሻ if ݄௧ classifies ݔ௜ 

correctly ( example’s weight goes down); 
 ‘1’ otherwise (example’s weight stays 

unchanged). 
 

The weights are then renormalized by dividing 
by the normalization constant ܼ௧. The whole 
boosting algorithm is shown in Figure 5. 
 

 

Figure 5: boosting algorithm AdaBoost.M1. 

Exactly as we have expected, the more classifiers 
was in the ensemble, the more difficult it was to find 
another sufficient classifier which satisfies the 
condition ߳௧ ൏  ௠௔௫. This difficulty tended to grow߃
exponentially fast and together with the growing 
training set it made the adaptation process very slow. 

The experiment results are shown in Table 6, 
where BP8 means Back Propagation network with 8 
hidden neurons and BP50 with 50 hidden neurons. 
  

௧ାଵሺ݅ሻܦ ൌ
௧ሺ݅ሻܦ

ܼ௧
ൈ ൜

,௧ߚ ݄௧ሺݔ௜ሻ ൌ ௜ݕ
1, ݄௧ሺݔ௜ሻ ് ௜ݕ

 

݄௙௜௡ሺݔሻ ൌ max
௬∈௒

෍ log
1
௧௧:௛೟ሺ௫ሻୀ௬ߚ

 

begin 

  Initialize: ܦଵሺ݅ሻ ൌ
ଵ

௠
	for all ݅; 

ݐ   ൌ 1; 
  Repeat 
    Repeat 
      Generate a weak classifier ܥ୲; 
      Learn ܥ୲	with ܦ௧; 
      get its hypothesis ݄௧: ܺ → ܻ; 
      Calculate ߳௧	according to (1); 
    Until ߳௧ ൏  ௠௔௫߃
    Calculate ߚ௧ ൌ ߳௧/ሺ1 െ ߳௧ሻ; 
    Calculate ܼ௧ ൌ ∑ ௧ሺ݅ሻܦ

௠
௜ୀଵ ; 

    Update the weight distribution: 

    Increment ݐ; 
  Until end condition; 
The final hypothesis is:  

End. 
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Table 6: Boosting results. 

Classifier; 
FILTER 

Test 
Err. 

Train 
Err. 

Train 
Size 

Hebb;  
AREA 

10.907 10.860 226444 

Hebb; 
SUBCOMB 

8.190 8.820 316168 

BP8;  
AREA 

6.503 7.010 698539 

BP8; 
SUBCOMB 

6.720 7.400 647553 

BP50;  
AREA 

0.062 2.890 38513603 

BP50; 
SUBCOMB 

0.447 4.090 12543975 

4 RESULTS AND COMPARISON 
WITH OTHER METHODS 

Many methods have been tested with the MNIST 
database of handwritten digits (LeCun et al., 2014). 

While recognising digits is only one of many 
problems involved in designing a practical 
recognition system, it is an excellent benchmark for 
comparing shape recognition methods. Though 
many existing method combine a hand-crafted 
feature extractor and a training classifier, the 
comparable study concentrates on adaptive methods 
that operate directly on size-normalized images.  

A comparison of our approach with other 
methods is shown in Figure 6. The graph represents 
the achieved test of several methods over MNIST 
database. Here, GREEN colour represents our 
results (Table 6), RED colour represents results of 
multilayer neural networks, VIOLET colour 
represents results of busted methods, and BLUE 
colour represents other results. It means the 
following methods: a linear classifier, K-nearest-
neighbors, a quadratic classifier, RBF, SVM, a deep 
convex net, convolutional nets and various 
combinations of these methods. Details about these 
methods are given in (LeCun et al., 1998). 

 

Figure 6: Test error over MNIST database of handwritten digits. Comparison with other methods: GREEN colour 
represents our results, RED colour represents results of multilayer neural networks, VIOLET colour represents results of 
busted methods, and BLUE colour represents other results. 
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5 CONCLUSIONS 

We have tested five types of neural networks and 
three different methods of diversity enhancement. 
We have proposed the one-cycle learning method for 
neural networks, same as the method of diversity 
enhancement which we call input filtering. Based on 
the experimental study results we can formulate the 
following outcomes: 
 Neural networks in general look suitable as 

the base algorithms for classifiers ensembles. 
 The method of one-cycle learning looks 

suitable for ensembles building too. 
 Filtering gave surprisingly good results as the 

method of diversity enhancement. 
 Doubling of patterns gave surprisingly well 

results too. We expected that this method 
would lead to over-fitting, but this assumption 
did not prove correct. 

 We expected more from shuffling of patterns. 
But as the results show, doubling of patterns is 
more permissible. 

 

Boosting results are shown in Table 6 looking at it, 
we can pronounce the following: 
 The best performance (train error 0.062%, test 

error 2.89%) has been reached with the Back 
Propagation network with 50 hidden neurons. 

 The worst performance has been reached with 
the Hebbian network. 

 Green colour represents our results in Figure 
6, which are promising by comparison with 
other approaches. 

 

Adaboost, neural networks and input filters look 
as a very promising combination. Although we have 
used only random filters, the performance of the 
combined classifier was satisfactory. We have 
proved the positive influence of input filters. 
Nevertheless the random method of input filters 
selecting makes the adaptation process very time 
consuming. We have to look for more sophisticated 
methods of detecting problematic areas in the 
patterns. Once such areas are found, we will able to 
design and possibly generalize some method of the 
bespoke input filter construction. 
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