Robot Workspace Monitoring with Redundant Structured Light Cameras
A Preliminary Investigation

Hans Dermot Doran and Simon Marti
Institute of Embedded Systems, Zurich University of Applied Science, Technikumstrasse 9, 8401 Winterthur, Switzerland

Keywords: Robotics, Monitoring, Image Processing, Structured Light Scanning Cameras, 3D Cameras.

Abstract: In this paper we propose the use of a redundant array of structured light scanning cameras to monitor a collaborative robot workspace. We present the model and suggest a minimum number of such cameras required to monitor a particular area. We then propose a concept for segmenting the workspace into different sub volumes to allow for different categories of obstacles. We then propose that a voting scheme will allow us to process multiple camera inputs in real-time in a safe fashion. We perform initial experiments and draw appropriate conclusions before defining further work.

1 INTRODUCTION

Vision-monitoring of robot workplaces has been a research theme for some ten years. The general issue is how to cope with depth information which is why, absent appropriate technology, early research focused on stereo vision and other algorithmic methods. Advances in sensor technology have allowed researchers to investigate applicability of the new generations of Structured Light Scanning (SLSC), 3D (3DC) and Time of Flight (ToF) cameras now available. Most research still appears to focus on the vision processing elements of the detection and monitoring tasks. The cheapness of these cameras makes redundant arrays of such cameras industrially feasible and we propose suitable techniques exploiting such arrays. The advantages that redundant arrays give us are the ability to monitor infinitely large areas, handling image overlap at low computational expense, whilst continuously maintaining line-of-sight, always a challenge in a factory environment.

The paper is structured accordingly – after considering previous work we present the use-case and deliberations on the geometry of the camera system. We then examine the obstacle model and propose a voting scheme to enable safe and real-time processing of redundant camera pictures possible.

We then present some initial practical work and finish off with appropriate conclusions and further work.

1.1 Previous Work

On the factory floor robots are employed under recognised regulatory guidelines. Vasic (Vasic) provides a good introduction to the considerations behind robot-human interaction whilst Gall (Gall) presents the general point of view of safety certification authorities. In essence robot-human interaction is determined, depending on country, by the interrelated ISO10218 (Europe), (ISO 2011) and the ANSI/RIA R15.06-2012 (USA, Japan) (ANSI 1999). Industrial robots are generally confined to cages and the robot comes to a halt once a cage door is opened. This makes sense from a safety point of view but does hinder job turnaround and throughput. Counter-solutions on offer based on monitoring of surrounding areas include ABB and Pilz (ABB, Pilz), the disadvantage with these solutions is that the robot still comes to a halt once the operator is in the robot workspace. The second strategy is to use force-control on the robot to ensure that any damaging effects of collisions are minimised. Such systems have been proposed in research (Infante) and implemented in industrial situations (Schmidhauser). Our work belongs in the category of implementation of safety policies based on some form of intrusion detection. This has long been a subject of interest and currently is being researched in various robot-application domains including artificial intelligence robots, service robotics, automotive and autonomous vehicles as well as...
industrial robotics. Academic work has been done on the strategies in human-industrial robot interaction (Kulić, Najmaei, Lacevic), on object tracking (Elshafie, Lenz 2009), motion planning (Hong, Graf) and interaction (Zanchettin, Heyer). In particular intrusion detection using a camera has provided a fertile field with newer publications (Lenz 2014) using a time-of-flight camera as opposed to the RGB, array of RGB or stereo RGB configurations proposed by the other authors. We see limited treatment of real-time issues in research papers.

2 PRACTICAL CONSIDERATIONS

2.1 Use Case

In this use case we assume the simple case of a rectangular work area with three robots of the 5-15 kg class (lifting weight) arranged in a triangular formation (Figure 1). The reason for this classification is that industrial robots available in this performance class are still of the classically stiff construction meaning that they themselves weigh multiples of this mass and hence are a danger to human operators should a collision occur. We assume that raw material comes in on the right hand side and the robots are used to move material from entry to a machine (M1), for instance a drilling machine. The robot may hold the piece whilst it is being worked or it might lock it into an automated vice. The robot may move the piece after it has been worked to a second machine or the second robot may collect it from the machine (f.i. M1) and move it to the second (f.i. instance M2). This configuration is assumed to be inherently flexible, that is small job lots of size equal or greater to one. The work area is approachable from all sides.

2.2 Monitoring

The useful depth of field of a Kinect, a cheaply available structured light scanning camera (SLS) extends from 0.8-4 meters. If we superimpose the depth of field of the Kinect on the work area of the robot installation we can see that three Kinects are required to cover the work area (without securing the approaches to the work area). The sensors are line of sight and therefore cannot provide complete monitoring in the case of spurious occlusions and occlusions caused by the robots themselves. For a functionally safe system sensor redundancy is required. We show a system with nine Kinects which provides redundancy on all coordinates regardless of the position of the robots. Our approach is to monitor obstacles without reference to history, that is the obstacle map is re-calculated every sampling period and the decision on the future behaviour of the robot is made based on information available in this sampling instance.

Figure 1: Example Use Case of Robot Workspace Monitoring. The black rectangles represent Kinects and the red lines their useful field of vision.

2.3 Safety Policies

When an obstacle is detected the robots have to react in some way. We call this reaction the implementation of a safety policy. We implement the three safety policies as proposed by Casa (Casa). These are Emergency Stop, Slow Down and Re-Route. The process as to which policy should be implemented is dependent on some decision process which shall not be further discussed.

2.4 Obstacle Model

We are aware that the use of the word obstacle in the context of human-robot interaction is misleading in a safety context as it places the activity of the robot above that of a human co-worker. We shall however stick with this convention in this paper. A robot moves in a geometric space defined by the set of possible coordinates denoted by C_free. Should the robot be required not to collide with an obstacle in its path, the set of coordinates occupied by the obstacle must be subtracted from C_free. It is possible, with the correct sensor technology, to measure with some precision the manifold of an obstacle. In a safety environment the numerical precision of an obstacle must be conservative (f.i. computational integer). In terms of optimised robot operation the set of C_free may be (computational) floating point.
Optimised operation means passing workbenches and other machines as fast and as close as possible without actually colliding. We define three types of obstacle. A permanent, a coarse and a fine grained obstacle.

As in general robotics systems our conception requires a calibration phase. This phase calculates the list of C_{free} taking the coordinates of permanent obstacles, such as the machines and the workbenches, out of this set. These obstacles are defined with the numerical granularity of the kinematic model implementation of the robot. This phase is computationally expensive and can take several hours in a Matlab environment.

A coarse-grained obstacle is, for instance, a human that intrudes in the workspace of a robot and must be given a wide berth. We model a coarse-grained obstacle as a cube with dimensions in the order of centimetres. (Figure 2) shows that transposition of an array of coarse-grained obstacles over the workplace of a robot, this transposition is known to the robot as virtual obstacles. By activating a virtual obstacle an entire range of coordinates can be removed from C_{free} thus reducing the number of C_{free} that must be considered for alternative path computation. A safety policy may decide to activate virtual obstacles adjacent to one where an obstacle was actually detected. Therefore a suitable level of obstacle abstraction can be achieved at low computational cost.

What is however problematic in a practical environment is the set of obstacles between an animate coarse-grained obstacle and a permanent obstacle. Consider the case where a human operator is carrying out maintenance on a running system and shifts the raw-material tray or leaves his toolbox on one of the work benches. This obstacle is permanent for a period of time but due to the high (re-) calibration cost it currently considered unfeasible to add such obstacles to the set of permanent obstacles. There is however no reason why the robot arm may not pass this obstacle with the maximum speed of the system at a distance normally associated with permanent obstacles. We therefore, as a first approximation, define a fine-grained obstacle as an integer sub-volume of a coarse-grained obstacle.

This obstacle model is uniquely appropriate to simple multi-sensor fusion. The coordinates of a single point obstacle may be detected by any number or type of sensors and the coarse-grained obstacle within whose boundaries it has been detected “turned off” thus removing that set of robot coordinates from C_{free} in one operation.

The sequence of events is to locate an intrusion in the robots workspace, for which we intend to use the Kinect, remove the set of coordinates bounded by the coarse grained obstacle from C_{free}, decide on the appropriate safety policy and, in cases where re-routing is feasible, find a new path for the robot. Since we are assuming on the theoretical case where an obstacle may appear suddenly in the workspace of a robot, as opposed to the more realistic case of viewing the obstacle as a vector with first and second derivatives, we need to focus on optimising the real-time characteristics of the detection and re-routing algorithm.

2.5 Detection and Re-routing

Mariotti (Mariotti) investigated the real-time characteristics of detection and re-routing using the standard driver and detection software as supplied with the Kinect. With a single Kinect attached to a PC with Intel Core i7-3770 quad core processor and 3.4 GHz clock speed running Ubuntu 12.04 LTS a total Worst Case Execution Time (WCET) of 142 ms was achieved. Whilst this WCET is useful we consider the platform to be too expensive and, if redundant camera arrays are used, either the WCET is extended by the driver and obstacle detection task of each camera or each must be performed in parallel. Neither option is feasible from a cost point of view. The second issue is that the standard Kinect software detects humans and not inanimate objects. In addition a quick experiment revealed that whilst the Kinect software will detect a spanner held in the same plane of a holding hand it won’t detect it properly if the spanner is held perpendicular to the plane of the hand (Figure 3). Therefore new software is needed include the detection of inanimate moving objects. The software written will be described in the next section.
2.6 Voting

In dependable applications, voting is a technique used to determine a value derived from multiple sensors measuring the same raw value and, often, to determine the reliability of the sensors. Common voting configurations are 2-out-of-3 (2oo3) or 2oo2 (f.i. Lyons). Voting is supremely suited to monitoring as, unlike constructing a 3D image from multiple sensors, the decision that a coarse-grained obstacle has been activated is binary and no further signal conditioning is required thus minimising computational expense. The cost of a false positive, that is loss of potential robot productivity, depends solely on the granularity of the coarse grained object. In this paper we propose the use of a 2oo3 voting scheme which is easily extendable to a 3oo5 scheme should further redundancy be necessary.

3 BODY OF WORK

3.1 Software

The necessary computer vision algorithms were implemented in C++ using the widely known OpenCV (OpenCV) open source library. The obstacle detection is done completely on the depth map. Using this approach, traditional vision-processing algorithms can be used and the computational effort can be kept reasonable. In the first step the foreground containing possible obstacles and the static background are separated through an averaging background subtraction algorithm. In this case this rather simple algorithm delivers good results, because the background model doesn't have to be adapted to changes in ambient lighting. The Kinect depth data suffers especially from two kinds of noise. The first kind is noise around the edges of objects caused by scattering of the projected infrared pattern. The second is spot noise caused by reflective surfaces. To get stable edges a morphological filter is applied to the foreground. Next the real obstacles are distinguished from the spot noise by contour finding. Blobs with an area below the threshold are considered noise and are therefore excluded.

To get from the two dimensional depth map to a virtual obstacle representation, the point cloud from the Kinect is masked with the detected obstacles. The resulting point cloud is then down-sampled to virtual obstacles with side lengths configurable between 10 cm and 33 cm. To allow a visual verification of the detected obstacles the whole workspace including the occupied virtual obstacles can be rendered in real time using OpenGL (OpenGL).

The tests show that a person, a robotic arm or big tools like a spirit level are reliably detected. Because of the Kinect's relatively coarse depth resolution the system can't detect stretched out fingers or thin tools. This workspace monitor has a latency of 38.8 ms. This equals to a frame rate of 28.8 fps at a resolution of 640 by 480 pixels. Compared to the previous solution (Mariotti) based on the discontinued OpenNI Framework and NiTE middleware (OpenNI) a speed-up of 40% is achieved.

3.2 Experiments

If a voting scheme is used to fuse the data of redundant cameras monitoring a robot’s workspace then each camera must detect a real obstacle in roughly the same coordinate space i.e. in the same virtual obstacle. Therefore the accuracy of the detection of the SLSCs must be determined. Structured light cameras function by projecting a pattern in the IR spectrum and calculating, from the distortion of the captured image, the depth image. It is therefore possible that if two SLSCs were to illuminate the same object that interference will distort this pattern and thus the depth information. Therefore we need experiments to determine potential interference between two or more cameras. Our experimental setup (Figure 4) consists of two Kinects connected directly to a single PC equipped with an Intel Core i7-3770 quad core processor @ 3.4 GHz running Ubuntu 12.04 LTS. The Kinects were placed at an angle of 90° to each other about 2.5 meters away from the workspace. Four cubes with a side length of 4 cm covered with a chessboard.
pattern, which can easily be detected in the RGB image, were used as calibration points. The RGB and depth image of the Kinect are registered so that the depth of the corresponding pixels can easily be measured. From the coordinates of the four points the transformation matrix for each Kinect can be calculated. Compared to common chessboard based stereo vision registrations algorithms this approach has the advantages that it can be applied to settings where the angle between the cameras is 90° degrees or more and the calibration of each camera is independent from the others. The downsides are that it makes an exact placement of the reference cubes necessary and the usage of only four points leads to a high sensitivity against placement or measurement errors.

Figure 4: Photograph of the Experimental Setup. The robot arm is a Katana and the Kinects are stationed directly in front of the arm (Kinect 1) and to the right (Kinect 0), both out of view. The four calibration markers can clearly be seen. The large cube on the Katana represents an obstacle and is tracked by the workspace monitor software.

To determine the calibration error measurements with static objects at three points in the workspace were made. The measured object is similar to the cubes used for calibration but has a side length of 8 cm. Preliminary tests showed that the depth of smaller objects cannot be reliably measured at the given distance when there is no solid background. In the worst case the mean error of 1960 samples was 5.0 cm with a standard deviation of 4 mm which should roughly resemble the calibration error. The measurements were done with one Kinect at a time so that no interference could occur.

To determine the measurement accuracy on continuously moving objects the cube was mounted on a Katana robotic arm. The Katana was programmed to move between two points on a semi-circle trajectory with one pass of the trajectory lasting 6.6 s. At 30 frames per second about 200 samples are made throughout one pass. The measured trajectory was estimated by a least squares approximation and compared to the ideal robot trajectory (Figure 5).

First the measurements were made with only one Kinect active leading to a worst case mean error of 4.4 cm with a standard deviation of 2.5 cm (Figure 6). In the second run, two Kinects were activated which lead to a worst case mean error of 4.8 cm with a standard deviation of 4.3 cm (Figure 7). The higher deviation is caused by interference between the Kinects. Through the higher computational load the frame rate dropped to 24 fps in the second measurement sequenced.

As a rough indicator of dimensions the main author’s hand measures a spread of 25 cm. The work by Mariotti postulated a coarse-grained obstacle cube of side 33 cm. Marti’s (Marti) work recognises the need for some thresholding when an actual obstacle is located close to the boundary of two coarse-grained obstacles so that both coarse-grained obstacles are activated in this case, or not activated when a certain distance between extremities of obstacle coordinate and coarse-grained obstacle boundary are detected.

The measurement results show that SLSC array as workspace monitor is feasible with the coarse-grained obstacle size of 33 cm and that the principle
of 2003 voting could also be used as each detected coordinate would activate the same coarse grained obstacle. It is however difficult to reliably detect small objects (for instance a finger). Second an accurate and robust calibration method for this class of SLSC or other 3D cameras has to be established. Third research effort should be expended on the theme of a 3D camera who’s activation may be synchronised to some external signal in order that multiple cameras may monitor the same workspace without interfering with each other.

Figure 7: Measured Trajectory Error Distribution wrt. Actual Trajectory when both Kinects are active.

4 CONCLUDING CONSIDERATIONS

4.1 Conclusions

This body of work sought to investigate two aspects in robot workplace monitoring. The first is to determine whether a detection of obstacles using a cheap camera and optimised software is feasible which, given the measured performance increase, we believe is and thus further work in this direction is warranted. We do not underestimate the work required to bring the performance to a particular standard considering the additional computational expense required to subtract the robot arm from the monitored picture nor in additional processing that safety certification may require.

The second aim was to investigate the feasibility of using redundant cheap sensors to monitor an area. We believe whilst the error margins to a coarse grained obstacle are small we believe that the fundamental principle is workable and that further investigation is warranted.

4.2 Future Work

Given our opinion that the basic methodology might have industrial relevance we believe that an estimation of the potential benefit in a manufacturing environment needs to be determined. Given that an emergency stop subtracts from robot productivity (availability) which in a production environment can be estimated, our work potentially contributes to an increase in robot availability and hence productivity. If this increase can be quantified, a clear idea of the use cases which would benefit from the work presented here ought to be gained which in turn should serve to better focus further research.

We are in two minds about the benefits in dynamic path planning in such a use case. We see a clear relationship between the size of the coarse-grained obstacles and the reduction of volume (C_{free}) for a newly planned trajectory to occupy. Given that the current path planning algorithm (Rapidly exploring Random Tree as explained in LaValle) may not converge forcing a robot into an emergency stop resulting in loss of productivity we think that pre-planned alternative trajectories could be integrated into the initial job planning processes and performed if the “main” trajectory is determined to be unsafe. We judge the run-time computational expense of such a strategy to be relatively small therefore increasing the real-time response. Any “available” computing time can then be invested in more sophisticated detection algorithms. The pre-planned trajectory also should increase the chances of a production facility safety certification.

Finally up until now all our considerations have been made on the assumption that an obstacle appears out of nowhere which is not the case in real-life. A real obstacle will be representable as a vector with a trajectory of its own. This allows decisions to be made on the basis of first and second derivatives. If decisions are made on this basis then sensor placement ought to focus towards the approach to the work area rather than the core of the work area were emergency stop as a response to an intrusion is more likely. Further effort is need in this area.

ACKNOWLEDGEMENTS

Thanks are due to the School of Engineering, Zürich University of Applied Science for their funding contributions of the work presented here.

REFERENCES

Robot Workspace Monitoring with Redundant Structured Light Cameras - A Preliminary Investigation

March 2014

