
Multiprocessor Real-time Scheduling Using an
Optimization-based Technique

Anca Hangan, Gheorghe Sebestyen and Lucia Vacariu
Computer Science Department, Technical University of Cluj Napoca, Cluj Napoca, Romania

Keywords: Real-time Scheduling, Optimization, Genetic Algorithm, Multiprocessor Systems, Real-time Transactions.

Abstract: The paper presents an optimization-based technique that enhances the schedulability of real-time
transactional multiprocessor systems. The technique addresses two important aspects: task allocation and
task deadline assignment. In order to satisfy real-time restrictions we combine genetic search and simulation
to fine tune the system’s configuration. To reduce the solution search space, we propose a hybrid technique
for finding feasible scheduling solutions. We determine task deadlines through a heuristic and then use the
optimization-based approach to find a solution for task allocation to processors. We evaluate the
performance of the proposed techniques by using automatically generated transaction sets. Finally, we
compare the optimization-based technique with related work and we analyze the results.

1 INTRODUCTION

One of the main tasks of a real-time system’s
designer is to configure the application on a given
platform and find a proper scheduling strategy so
that all tasks satisfy their time. In the case of real-
time uniprocessor systems, there are several, widely
studied optimal algorithms that find a feasible
schedule for a given setup (Liu and Layland, 1973),
such as Rate Monotonic (RM) and Earliest Deadline
First (EDF).

For real-time multiprocessor systems the search
space for a feasible scheduling solution is multi-
dimensional. There are far more restrictions and
therefore finding a feasible solution is much more
complex (Davis and Burns, 2009). Most
multiprocessor scheduling algorithms offer real-time
guarantees only at very low resource utilization rates
(Bertogna and Baruah, 2011) compared to their
uniprocessor equivalents, or they are very difficult to
implement in real-world cases (Baruah, et al, 1996).
As multicore and distributed systems are becoming
the typical computing platforms for a wide range of
real-time applications, recent research efforts are
mostly directed towards finding pragmatic solutions
for multiprocessor systems.

In order to reduce the complexity of the real-
time multiprocessor scheduling problem, one often
used approach is to divide it into a number of sub-
problems, such as:

 Allocation of tasks to available execution
nodes;

 Setting deadlines for tasks contained in
distributed transactions;

 Applying local (uniprocessor) scheduling
techniques for tasks’ execution.

In this context, we propose an optimization-
based technique that combines genetic search and
simulation in order to find feasible solutions for
scheduling real-time applications on multiprocessor
systems. The genetic engine looks for a feasible
task-to-processor allocation and deadline setting that
meets the given real-time and dependency
restrictions. The simulator is used to evaluate the
behaviour and consequently the quality of different
candidates. Through an iterative process, we obtain a
feasible scheduling solution by choosing the best
candidate result.

Our contribution addresses the adaptation of a
genetic algorithm to the multiprocessor scheduling
problem and specifically the definition of a multi-
criteria fitness function that describes the quality of
a schedule related to the imposed time restrictions.
Through experiments, we determined the parameters
of the genetic algorithm (e.g. mutation and crossover
ratios, selection strategy, population set cardinality,
etc.) that yield the best performance for the given
setup. In order to reduce the search space and
consequently the search time, we propose a heuristic
for the generation of intermediate deadlines as an

236 Hangan A., Sebestyen G. and Vacariu L..
Multiprocessor Real-time Scheduling Using an Optimization-based Technique.
DOI: 10.5220/0005076202360243
In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (ECTA-2014), pages 236-243
ISBN: 978-989-758-052-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

alternative for random mutations. We compared the
pure genetic solution with the combined technique
(genetic plus heuristic) in terms of success rate,
solution fitness values and execution speed.

The rest of the paper is organized as follows.
Related work is presented in section 2. In section 3,
we describe the system model. The proposed
scheduling technique is presented in section 4 and
the proposed technique for reducing the search space
in section 5. The experiments are described in detail
in section 6. Section 7 concludes the paper.

2 RELATED WORK

Real-time scheduling on multiprocessor systems
includes some important sub-problems: the
allocation of tasks to processors and the assignment
of task priorities, which consequently establishes the
order of execution.

In transactional systems, that consider
precedence restrictions between tasks, an additional
problem is to establish priorities not only for the end
of a transaction but also for the tasks contained in it.
In systems that use EDF schedulers, the priority is
given by the task’s deadline. Usually, the
intermediate task deadlines are not determined by
the nature of the real-time application, but they may
have an important impact on the schedulability of
the system. Intermediate task deadlines are
necessary to the local scheduling of tasks (on each
individual processor). An important number of
research works investigate the two scheduling sub-
problems separately, or as a composite solution.

Task allocation in distributed real-time systems
is known to be an NP-complete problem (Lupu, et
al, 2010), so an algorithm that generates an optimal
solution in polynomial time does not exist. To
generate sub-optimal solutions for task allocation in
polynomial time, one can use heuristics such as First
Fit, Best Fit, Worst Fit or Next Fit. If the system
workload is heavy, a feasible solution may not be
found even if such a solution exists.

Solutions that address only the tasks’ order of
execution consider that task allocation to processors
is already resolved. The most complex issues appear
in the case of distributed applications, which are
modeled as transactions or sequences of tasks with
end-to-end deadlines. In this situation, intermediate
tasks do not have predefined deadlines, so the only
imposed restriction is that the last task of the
sequence finishes its execution before the end-to-end
deadline. To obtain a schedule, researchers proposed
different algorithms and heuristics for assigning

deadlines to intermediate tasks. In (Serreli, Lipari,
and Bini, 2009) the authors investigate a deadline
assignment that reduces resource utilization. They
consider a component-based approach, analyzing
each transaction individually, and use separate
windows of execution for the tasks in a transaction.
In (Di Natale and Stankovic, 1994) and (Kao and
Garcia-Molina, 1997) the authors propose two
similar heuristics for intermediate deadline
assignment, which distribute the end-to-end deadline
evenly or proportionally between all tasks. In
(Gutierrez Garcia and Gonzalez Harbour, 1995) the
authors use an iterative optimization algorithm to
assign deadlines to the tasks inside a transaction set.

In the case of composite solutions, which solve
both task allocation and priority assignment,
optimization techniques such as simulated annealing
(Tindell, Burns, and Wellings, 1992) or genetic
algorithms (Azketa, et al, 2011 (2)), (Yoo and Gen,
2007) and (Samal, Mall, and Tripathy, 2014) can be
used.

It is rather difficult to make a comparison
between the existing scheduling techniques, as they
use different system models, schedulability analysis
methods and different metrics for performance
evaluation. For example, (Lupu, et al, 2010) evaluate
task allocation heuristics using a periodic task
model, with independent tasks, under EDF and
Fixed Task Priority (FTP) scheduling. In (Hladik, et
al, 2008) the authors use periodic task models with
inter-task communication and FTP scheduling, while
in (Azketa, et al, 2011 (1)) and (Gutierrez Garcia
and Gonzalez Harbour , 1995) the authors use linear
transaction models with end-to-end deadlines under
FTP scheduling. In (Oh and Wu, 2004), and (Yoo
and Gen, 2007) the authors consider transactions
described by directed acyclic graphs that contain
non-preemptive tasks and communication costs,
under FTP scheduling.

Compared to (Azketa, et al, 2011 (1)) and
(Azketa, et al, 2011 (2)), our optimization technique
uses different methods for solution representation
and solution evaluation. In our case, the solution is
given by a processor allocation and a deadline
assignment setting for each task, which will
determine a schedule. In (Azketa, et al, 2011 (1)),
(Azketa, et al, 2011 (2)) and (Yoo and Gen, 2007)
the authors consider a gene that contains both
processor assignment and task priority parameters.

The range for intermediate deadlines is less
restricted in our approach compared to the range
used in (Serreli, Lipari, and Bini, 2009), which, in
our opinion, will increase the chance of finding
feasible solutions. Because we encode the deadline

Multiprocessor�Real-time�Scheduling�Using�an�Optimization-based�Technique

237

as a distinct gene, we can explore different deadline
assignments for a task, for the same processor
allocation.

3 SYSTEM MODEL

Any generic approach of a scheduling problem
requires a given system model composed of a
platform, a workload and a scheduling model.

3.1 Workload Model

Distributed real-time applications are usually
modeled as sets of transactions. We represent by
means of a list the precedence dependency between
tasks in a transaction. A real-time transaction has the
following defining elements:
 Task list (L) – describes the dependencies

between tasks and determines the execution
order restrictions;

 Period (T) – the repetition period of a
transaction;

 Deadline (D) – the time limit for a transaction,
relative to its release time.

A task has the following parameters: execution
time (C), deadline (d), CPU affinity.

Transactions are released periodically in
accordance with some external or functional
requirements. A transaction instance contains task
instances generically called jobs. The execution of a
transaction starts with the execution of jobs that do
not have precedence dependencies. A job is
considered for scheduling only if its dependencies
are solved (jobs that precede it are executed).

In case of a real application, only transaction
deadlines are specified, intermediate task deadlines
being unknown. However, the scheduling algorithm,
in our case EDF, requires such deadlines in order to
establish the execution priorities. One of the main
goals of our research is to determine these
intermediate deadlines in a way that all real-time,
precedence and resource restrictions are satisfied.

Our workload model may be configured to
represent independent sets of tasks as well as
distributed applications, including network
communication tasks.

3.2 Platform and Scheduling Models

The processing resources of a platform are modeled
as a multiprocessor system P={P1, P2, … , Pm}
composed of processors and possibly network
segments. This model can cover a wide range of

system configurations that span from parallel
systems to distributed ones.

We assume that each processing resource has its
own scheduler. The scheduler chooses the job with
the highest priority to be executed, at a certain point
in time, on the processing resource. The priority is
computed by the scheduling algorithm implemented
in the scheduler. In our experiments, we used the
EDF algorithm that assigns priorities to jobs
according to their deadlines, so the job that has the
closest deadline will have the highest priority. It is
known that the EDF algorithm is optimal for single
processor systems (Liu and Layland, 1973) and it
can handle task set utilizations of up to 100% in the
case of independent tasks.

4 OPTIMIZATION-BASED
SCHEDULING TECHNIQUE

Our work addresses two important aspects of
multiprocessor scheduling: task allocation to
processors and intermediate task deadline
assignment. We propose a composite solution to
these problems by employing an optimization
method.

The task allocation and deadline assignment
problems generate a multidimensional solution
space, which increases with the number of
processors and the number of tasks in the system. As
mentioned in section 2, finding an optimal solution
is an NP-complete problem. However, sub-optimal
solutions are acceptable in our case if transactions’
end-to-end deadlines are not exceeded, even if some
intermediate task deadlines are missed. Our
objective is to find this type of sub-optimal
scheduling solution.

We choose a genetic algorithm as search and
optimization method, because it is well suited for
problems with a large search space and multiple
optimization objectives. A genetic algorithm starts
with an initial set of possible solutions called
population. At each iteration step, it generates a new
population by means of natural selection, crossover
and mutation. Each solution is evaluated with a
fitness function. The fittest solutions will propagate
their characteristics to later populations, generating
improved new solutions.

We adapted the continuous genetic algorithm to
our problem domain. Scheduling variables that must
be optimized are task allocations to processors and
task deadlines. The parameters that need to be
minimized are transaction response times, task
response times and the processor utilization factor.

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

238

We start from initial solutions obtained by applying
known heuristics (Lupu, et al, 2010) for both task
allocation to processors and intermediate task
deadline assignment. We generate new populations
mostly through crossover (with tournament
selection), but also by keeping the best individuals
from the previous population. After obtaining a new
population, mutation is applied. The variables of the
genetic algorithm are population size, crossover
method and mutation probability. The fitness of a
solution is evaluated through simulation. The
simulator receives a workload model obtained from
the individual representation created in the genetic
algorithm, and creates the execution schedule using
the platform and the scheduling predefined models.
We simulate each configuration setup and we use
the timing results obtained through simulation for
computing the fitness function.

The optimization-based technique comprises
three steps: the genetic algorithm generates a
solution population; the solutions are evaluated
through simulation; based on the evaluation, the
genetic algorithm generates a new solution
population, which replaces the previous one. These
steps are iterated until a feasible solution is reached.

4.1 Genetic Representation

Solutions to the processor allocation and deadline
assignment problems are represented as individuals
in a population. Each individual (chromosome) is
composed of a sequence of genes. A gene is an
integer value that may represent a processor
identifier on which the task is allocated, or a task
deadline. Each gene has its own domain of values
(Δ). For processor allocation, the domain is the
task’s CPU affinity list:

| ∈ (1)

In the case of task deadlines, the value domain is
continuous between the execution time of the task
and the largest possible deadline.

, (2)

 (3)

, ∈ (4)

A task is not released until all its predecessors
finished their execution, so the assigned deadlines
do not determine or enforce the precedence between
tasks. Even though the transactions have hard

Figure 1: Chromosome construction based on the
transaction model.

deadlines, the tasks inside transactions have soft
deadlines. This happens because even if several
intermediate tasks miss their deadlines, it is still
possible for the last task to meet its deadline. For
this reason, we allow a less constrained value
domain for genes that represent task deadlines. A
less constrained deadline domain can increase the
chances of finding a good scheduling solution.

The chromosome contains two adjacent genes for
each task in the workload. The first gene
corresponds to the processor to which the task is
allocated and the second is the task’s deadline. The
order of the genes is given by transactions. Figure 1
gives an example of how the chromosome is
constructed based on the system model. The
example is composed of four processors and two
transactions (with the corresponding tasks). Tasks
can be allocated to any of the four processors. For
instance, the first gene shows that task t1 is allocated
to processor P1 and its intermediate deadline is 10
time units. The next gene is for task t2 allocated on
P0 and with deadline of 5 time units.
 We generated the initial population in two steps.
First, we created a small number of individuals using
task allocation heuristics such as First Fit or Round
Robin. We assigned the deadlines for tasks and
messages choosing the smallest possible value as
deadline. In the second step, we applied mutations to
obtain new individuals. The second step is repeated
until the specified population’s size is reached (we
considered a population of 60 individuals).

4.2 Genetic Operators

We used two types of genetic operators: crossover
and mutation. These operators are applied on the
current population with predefined probability rates,
to create new generations with better fitness.

For our scheduling problem, we use a two-point

Processors: P0, P1, P2, P3

t1 t2 t3 t4 t5

t6 t7 t8 TR2: T=30, D=30

TR1: T=60, D=60

t1 t2 t3 t4 t5 t6 t7 t8

P1,10 P0,5 P2,10 P0,10 P3,6 P1,5 P0,1 P3,3

Chromosome: 1,10,0,5,2,10,0,10,3,6,1,5,0,1,3,3

Assign (resource, deadline) pair to each task:

Multiprocessor�Real-time�Scheduling�Using�an�Optimization-based�Technique

239

crossover operator. The parents are selected by
tournament. From two randomly selected
individuals, the fittest is chosen to be one of the
parents. This way we give a chance to individuals
that do not have the best fitness but may have good
partial solutions to propagate their genes to later
generations. The crossover points are selected at
random. We eliminate cases when the points
coincide or when they are at the two ends of the
chromosome. A certain task can inherit the
allocation gene from a parent and the deadline gene
from the other parent, so it is not necessary that the
genes between the crossover points include both
allocation and deadline genes for a task.

We applied two different mutation operators. We
mostly applied the classic mutation operator that
selects a random gene from the chromosome and
changes its value, with another random value from
the gene’s value domain. We also implemented a
mutation operator, which chooses the new value
from a sub-interval around the current value of the
gene. The limited interval is set as a percentage of
the maximum allowed interval.

Experimental results improved when the interval
was limited to 50% of the initial domain and later to
25%. We applied this type of mutation only on
populations with good average fitness (when the
scheduling solution is close to being feasible),
because we suppose that their genes are close to
their best values and we do not want to spoil good
possible solutions through mutations that radically
change the gene’s value.

4.3 The Fitness Function

The fitness function evaluates the quality of a given
scheduling solution related with some chosen
optimization objectives. A scheduling solution is
considered the best if all transactions finish before
their deadlines, all tasks finish their execution before
their designated deadlines and if the tasks are
uniformly allocated to the available processors. But,
as we mentioned before, we only look for sub-
optimal solutions, in which at least all transactions
finish before their deadlines. For this purpose, we
establish three optimization objectives, with
different weights.

The most important optimization parameter is
the transaction’s completion time. A solution is
considered feasible if the transaction’s completion
time is less or equal to the transaction’s absolute
deadline. Another optimization objective is to have a
rather uniform allocation of tasks over the existing
resources. This will increase the system’s robustness

and it can increase the effectiveness of the search.
The third optimization objective is the task response
time, which has to be less than the task’s deadline.
We differentiate between satisfying transactions
deadlines and intermediate task deadlines in the
sense that transaction deadlines are much more
important and task deadlines are artificially
introduced for the scheduling algorithm.

In order to express all the above optimization
goals, we defined a fitness function as a weighted
combination of three fitness expressions. A smaller
value means a better solution.

The first component fTR measures the quality
related to the transaction’s completion time
(equation 5). It is computed as a sum of terms, each
term representing a transaction that does not meet its
deadline. A term is an exponential function of the
difference between the maximum response time Ri
and the deadline Di of a transaction. The goal is to
have all the differences equal to zero, which means
that all transactions meet their deadlines.

2 (5)

The second component measures if the
intermediate tasks meet their deadline (equation 6).
This component has a smaller weight.

2 	 (6)

The next component measures the degree of
uniform allocation of tasks on processors (equation
7). It is the sum of the differences between the actual
processor’s utilization factor Up and an average
value. The goal is to obtain an allocation as close as
possible to the average value (equation 9).

∈
 (7)

∈
 (8)

∑
 (9)

Ck and dk are the execution time and deadline of
task k. Card(P) is the number of available
processors.

Below is the complete expression of the fitness
function:

∗ ∗ ∗ (10)

Based on experiments, we found that a good
combination of weights is: w1 = 1000, w2=100 and

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

240

w3=1. The most important factor should receive the
largest weight. With this weight configuration, at the
beginning of the genetic search the first criterion is
dominant, then in the middle part the second one is
more active and in the final part the uniform task
allocation criterion selects the best candidate.

5 A SEARCH SPACE
REDUCTION TECHNIQUE

As the task allocation and deadline assignment
problems generate very large solution spaces that
increase with the number of processors and the
number of tasks, the execution time of the genetic
algorithm can be very large (e.g. hours). Moreover,
as the solution space increases, the algorithm’s
success rate reduces because it doesn’t always
converge to an acceptable solution in an acceptable
number of iterations, or it deadlocks (finds a local
minimum).

Therefore, we investigated if a smaller search
space has a good impact on the genetic algorithms
success rate, its speed and the fitness of the best
solutions. In this context, we propose a technique
that composes our optimization-based approach for
finding a task to processor allocation with a non-
iterative approach for intermediate task deadline
assignment.

The four steps for finding a scheduling solution
are:

1. Create the chromosomes;
2. Apply a non-iterative algorithm or heuristic

to assign deadlines to all tasks;
3. Compute the fitness;
4. The genetic algorithm chooses the best

individuals and applies the genetic operators
to obtain a new population.

The second, third and fourth steps are iterated
until an acceptable solution is found. The genetic
algorithm will create the chromosomes as described
in section 4, but the genes that represent task
deadlines will have constant values (determined in
the second step) and will not be modified (mutated)
during genetic iterations. We implemented two
variants of the proposed technique, by using two
distinct solutions for task deadline assignment. In
the first variant, we used the algorithm proposed in
(Serreli, Lipari, and Bini, 2009), where the authors
find a deadline allocation by constructing an ordered
list of tasks. The obtained deadline assignment
depends on the distribution of computation times
among the tasks and on task to processor allocation.

In the second variant, we propose a deadline
assignment heuristic similar to the ones presented in
(Kao and Garcia-Molina, 1997) and (Di Natale and
Stankovic, 1994). We computed the transaction
laxity time (l) and we divided it proportionally
between the transaction’s intermediate tasks. The
deadline is computed as the execution time to which
is added the portion of the transaction’s laxity time
(equation 12).

 (11)

∗
∑

 (12)

This deadline allocation heuristic is influenced
by the transactions time parameters (deadline and
execution time) and not by the task to processor
allocation.

6 EVALUATION

For the experimental part, we developed a tool
composed of a genetic engine linked to a real-time
systems simulator, RTMultiSim (Hangan and
Sebestyen, 2012). The genetic engine receives as
input the application model composed of tasks and
transactions. The transactions are translated into
chromosomes. Afterwards, the genetic engine
generates populations in search for better
individuals. The simulator executes a given system
model. During simulation, the maximum response
times of tasks and transactions are determined.
Based on these parameters, the simulation tool
computes the fitness value of the individual, which
is supplied to the genetic algorithm that continues
the search with a new generation.

We evaluate the optimization-based scheduling
technique in the case of distributed transaction
scheduling. Experiments allowed us to adjust the
parameters of the genetic algorithm for a faster
generation of a good solution. In case of mutation
probability the best values was 1% for shorter
chromosomes (20-30 genes) and 0.6% for longer
chromosomes (more than 100 genes), and 70% for
the crossover probability. In some cases, a variable
mutation ratio with a tendency of decreasing the
probability in every generation had better results.
The initial population was set to 60 individuals. A
feasible solution has the fitness less than 1000. We
generated two types of system models composed of
6 transactions on 4 processors (case A) and of 10
transactions on 8 processors (case B). We generated
transaction sets with average system utilization of

Multiprocessor�Real-time�Scheduling�Using�an�Optimization-based�Technique

241

60% to 99%. We obtained results from 3 sets of
experiments: with the proposed optimization-based
technique applied on both task allocation and
deadline assignment sub-problems (OPT); with the
optimization-based technique composed with the
deadline assignment algorithm in (Serreli, Lipari,
and Bini, 2009) (ORDER-OPT) and with the
deadline assignment heuristic that divides the laxity
time (equation 9) between tasks (LAX-OPT).

For the evaluation, we used the following
metrics: success rate, average number of iterations,
average fitness. Figure 2 shows the success rate of
the three proposed optimization-based approaches as
a function of system utilization (a description of the
system load). As reference, we use a heuristic (not
optimized) EDF scheduler that assigns deadlines
with equation 9 and then allocates tasks to the first
available processor (LAX-EDF). All three
optimization-based algorithms have better success
rate than LAX-EDF by a maximum of 30%. LAX-
OPT has slightly better results than OPT, while
ORDER-OPT has the worst performance. Figure 3
shows the average number of steps executed by the
genetic algorithm until a feasible solution is found,
as a function of system utilization (for case B).

Figure 2: Case B - The success rates.

Figure 3: Case B - Average number of steps.

Figure 4: Case A - Average fitness.

OPT and LAX-OPT find feasible solutions in fewer
steps. In case A, we observed that for 6 transactions
OPT has the best results, but for utilizations greater
than 90%, it finds less feasible solutions than LAX-
OPT. Figure 4 shows the average fitness of feasible
solutions found with our approach, as a function of
system utilization for case A.

Table 1: OPT vs GA-Azketa.

Characteristics OPT GA-Azketa
Workload Chain

transactions
Chain

transactions
Platform Identical

multiprocessor
Heterogeneous
multiprocessor

Scheduler EDF FTP
Chromosome Genes for

processor
allocation and
task deadline

Gene for
processor
allocation,

priority given by
the gene’s
position.

Operators Mutation,
Crossover

Mutation,
Crossover,
Clustering

Fitness
function

Minimize
transaction

response time
and task response

time; Uniform
utilization

Minimize
transaction

response time
and resource

utilization

Fitness
evaluation

Simulation Holistic
schedulability

analysis

The solutions obtained by OPT have the best
fitness. The solutions obtained by LAX-OPT have
the worst fitness between utilizations of 80% and
97%, but, on the same interval, LAX-OPT has the
highest success rate. In the case B the results are
similar. Overall, the best average performance is
obtained by OPT, but in some cases, LAX-OPT
finds more (5-10%) feasible solutions than OPT.

We further evaluate the performance of our
approach by making a performance comparison with
related work. In (Azketa, et al, 2011 (1)) and
(Azketa, et al, 2011 (2)) the authors solve a similar
problem to ours by using a genetic algorithm. We
show the differences between our approach and the
one presented in (Azketa, et al, 2011 (2)) in Table 1.
In (Azketa, et al, 2011 (1)) the authors make a
statistical evaluation of their approach by randomly
generating 2 types of transaction sets, small (6
transactions) and large (12 transactions). Their
algorithm started failing at system loads of around
70% in the case of small systems. For large systems,
their algorithm starts failing at loads of around 60%.

0,00

0,50

1,00

60% 70% 80% 90%

Su
cc
e
ss
 r
at
e

System utilization

OPT

LAX‐OPT

ORDER‐OPT

LAX‐EDF

0,00

500,00

1000,00

60% 70% 80% 90%

N
u
m
b
e
r
o
f
st
e
p
s

System utilization

OPT

LAX‐OPT

ORDER‐OPT

0

200

400

600

800

70% 80% 90% 100%

Fi
tn
e
ss

System utilization

OPT

LAX‐OPT

ORDER‐OPT

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

242

To make a comparison with our approach, we
replicated their tests based on the description, as
they do not provide any data sets. Our approach is
better in terms of success rate, since it starts failing
at over 70% systems loads, for large systems.

7 CONCLUSIONS

In this paper, we proposed an optimization-based
technique for scheduling real-time transactions on
multiprocessor systems. The technique implies the
use of a genetic search engine and a simulator to
find feasible solutions for mapping tasks to
processors and for task deadline assignment. In
order to reduce the solution search space, we
combined our optimization-based approach for task
allocation with non-iterative approaches for deadline
assignment. We demonstrated through experiments
that our approach improves non-iterative scheduling
techniques by an approximate 30%. Compared to
other similar techniques, our approach is at least
10% better in terms of scheduling success rate. Due
to its flexibility, our solution may be used as a
pragmatic off-line tool for allocating tasks on
multiprocessor platforms and establishing time
parameters for tasks in order to assure meeting
global time restrictions.

ACKNOWLEDGEMENTS

This work was supported by a grant of the Romanian
National Authority for Scientific Research, CNDI-
UEFISCDI, project number 47/2012.

REFERENCES

Azketa, E., Uribe, J., Marcos, M., Almeida, L., Javier
Gutierrez, J., 2011 (1). Permutational genetic
algorithm for fixed priority scheduling of distributed
real-time systems aided by network segmentation
Proceedings of the 1st Workshop on Synthesis and
Optimization Methods for Real-time Embedded
Systems (SOMRES).

Azketa, E., Javier Gutierrez, J., Marcos, M., Almeida, L.,
2011 (2). Permutational genetic algorithm for the
optimized mapping and scheduling of tasks and
messages in distributed real-time systems.
Proceedings of the 2011 IEEE 10th International
Conference on Trust, Security and Privacy in
Computing and Communications, TRUSTCOM .

Baruah, S., Cohen, N., Plaxton, G., Varvel, D., 1996.
Proportionate progress: A notion of fairness in

resource allocation. Algorithmica, vol. 15, no. 6, pp.
600–625.

Bertogna, M., Baruah, S., 2011. Tests for global EDF
schedulability analysis. In Journal of Systems
Architecture, no. 57, pp. 487–497.

Davis, R.I., Burns, A., 2009. A survey of hard real-time
scheduling algorithms and schedulability analysis
techniques for multiprocessor systems. In Techreport
YCS-2009-443, University of York, Department of
Computer Science.

Di Natale, M., Stankovic, J.A., 1994. Dynamic end-to-end
guarantees in distributed real-time systems.
Proceeding of the 15th IEEE Real-Time Systems
Symposium, pp. 215-227.

Gutierrez Garcia, J.J., Gonzalez Harbour, M., 1995.
Optimized Priority Assignment for Tasks and
Messages in Distributed Hard Real-Time Systems.
Proceedings of the 3rd Workshop on Parallel and
Distributed Real-Time Systems. IEEE Computer
Society, pp. 124.

Hangan A., Sebestyen Gh., 2012, RTMultiSim: A versatile
simulator for multiprocessor real-time systems,
Proceedings of The 3rd International Workshop on
Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), pp. 15

Kao, B., Garcia-Molina, H., 1997. Deadline assignment in
a soft real-time system, IEEE Transactions on Parallel
and Distributed Systems, vol. 8, no.12, pp. 1268-1274.

Liu, C.L., Layland, J.W., 1973. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment.
In Journal of the ACM, vol. 20, no. 1, pp. 46-61.

Lupu, I., Courbin, P., George, L., Goossens, J., 2010.
Multi-Criteria Evaluation of Partitioning Schemes for
Real-Time Systems. 15th International conference on
Emerging Technologies and Factory Automation,
ETFA’2010, Bilbao, Spain.

Oh, J., Wu, C., 2004. Genetic-algorithm-based real-time
task scheduling with multiple goals. In Journal of
Systems and Software, Vol. 71, Issue 3, pp.245-258.

Samal, A.K., Mall R., Tripathy C., 2014, Fault tolerant
scheduling of hard real-time tasks on multiprocessor
system using a hybrid genetic algorithm, Swarm and
Evolutionary Computation vol.14, pp.92–105

Serreli, N., Lipari, G., Bini, E., 2009. Deadline assignment
for component-based analysis of real-time
transactions. 2nd Workshop on Compositional Real-
Time Systems, Washington, DC, USA.

Tindell, K., Burns, A., Wellings, A., 1992. Allocating
Hard Real-TimeTasks: An NP-Hard Problem Made
Easy. In Real-Time Systems, vol.4, no. 2, pp. 145-165.

Yoo, M., Gen, M., 2007. Scheduling algorithm for real-
time tasks using multiobjective hybrid genetic
algorithm in heterogeneous multiprocessors system. In
Computers & Operations Research, vol. 34, no. 10, pp.
3084-3098.

Multiprocessor�Real-time�Scheduling�Using�an�Optimization-based�Technique

243

