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Abstract: The paper presents an optimization-based technique that enhances the schedulability of real-time 
transactional multiprocessor systems. The technique addresses two important aspects: task allocation and 
task deadline assignment. In order to satisfy real-time restrictions we combine genetic search and simulation 
to fine tune the system’s configuration. To reduce the solution search space, we propose a hybrid technique 
for finding feasible scheduling solutions. We determine task deadlines through a heuristic and then use the 
optimization-based approach to find a solution for task allocation to processors. We evaluate the 
performance of the proposed techniques by using automatically generated transaction sets. Finally, we 
compare the optimization-based technique with related work and we analyze the results. 

1 INTRODUCTION 

One of the main tasks of a real-time system’s 
designer is to configure the application on a given 
platform and find a proper scheduling strategy so 
that all tasks satisfy their time. In the case of real-
time uniprocessor systems, there are several, widely 
studied optimal algorithms that find a feasible 
schedule for a given setup (Liu and Layland, 1973), 
such as Rate Monotonic (RM) and Earliest Deadline 
First (EDF). 

For real-time multiprocessor systems the search 
space for a feasible scheduling solution is multi-
dimensional. There are far more restrictions and 
therefore finding a feasible solution is much more 
complex (Davis and Burns, 2009). Most 
multiprocessor scheduling algorithms offer real-time 
guarantees only at very low resource utilization rates 
(Bertogna and Baruah, 2011) compared to their 
uniprocessor equivalents, or they are very difficult to 
implement in real-world cases (Baruah, et al, 1996). 
As multicore and distributed systems are becoming 
the typical computing platforms for a wide range of 
real-time applications, recent research efforts are 
mostly directed towards finding pragmatic solutions 
for multiprocessor systems. 

In order to reduce the complexity of the real-
time multiprocessor scheduling problem, one often 
used approach is to divide it into a number of sub-
problems, such as: 

 Allocation of tasks to available execution 
nodes; 

 Setting deadlines for tasks contained in 
distributed transactions; 

 Applying local (uniprocessor) scheduling 
techniques for tasks’ execution. 

In this context, we propose an optimization-
based technique that combines genetic search and 
simulation in order to find feasible solutions for 
scheduling real-time applications on multiprocessor 
systems. The genetic engine looks for a feasible 
task-to-processor allocation and deadline setting that 
meets the given real-time and dependency 
restrictions. The simulator is used to evaluate the 
behaviour and consequently the quality of different 
candidates. Through an iterative process, we obtain a 
feasible scheduling solution by choosing the best 
candidate result.  

Our contribution addresses the adaptation of a 
genetic algorithm to the multiprocessor scheduling 
problem and specifically the definition of a multi-
criteria fitness function that describes the quality of 
a schedule related to the imposed time restrictions. 
Through experiments, we determined the parameters 
of the genetic algorithm (e.g. mutation and crossover 
ratios, selection strategy, population set cardinality, 
etc.) that yield the best performance for the given 
setup. In order to reduce the search space and 
consequently the search time, we propose a heuristic 
for the generation of intermediate deadlines as an 
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alternative for random mutations. We compared the 
pure genetic solution with the combined technique 
(genetic plus heuristic) in terms of success rate, 
solution fitness values and execution speed. 

The rest of the paper is organized as follows. 
Related work is presented in section 2. In section 3, 
we describe the system model. The proposed 
scheduling technique is presented in section 4 and 
the proposed technique for reducing the search space 
in section 5. The experiments are described in detail 
in section 6. Section 7 concludes the paper. 

2 RELATED WORK 

Real-time scheduling on multiprocessor systems 
includes some important sub-problems: the 
allocation of tasks to processors and the assignment 
of task priorities, which consequently establishes the 
order of execution. 

In transactional systems, that consider 
precedence restrictions between tasks, an additional 
problem is to establish priorities not only for the end 
of a transaction but also for the tasks contained in it. 
In systems that use EDF schedulers, the priority is 
given by the task’s deadline. Usually, the 
intermediate task deadlines are not determined by 
the nature of the real-time application, but they may 
have an important impact on the schedulability of 
the system. Intermediate task deadlines are 
necessary to the local scheduling of tasks (on each 
individual processor). An important number of 
research works investigate the two scheduling sub-
problems separately, or as a composite solution. 

Task allocation in distributed real-time systems 
is known to be an NP-complete problem (Lupu, et 
al, 2010), so an algorithm that generates an optimal 
solution in polynomial time does not exist. To 
generate sub-optimal solutions for task allocation in 
polynomial time, one can use heuristics such as First 
Fit, Best Fit, Worst Fit or Next Fit. If the system 
workload is heavy, a feasible solution may not be 
found even if such a solution exists. 

Solutions that address only the tasks’ order of 
execution consider that task allocation to processors 
is already resolved. The most complex issues appear 
in the case of distributed applications, which are 
modeled as transactions or sequences of tasks with 
end-to-end deadlines. In this situation, intermediate 
tasks do not have predefined deadlines, so the only 
imposed restriction is that the last task of the 
sequence finishes its execution before the end-to-end 
deadline. To obtain a schedule, researchers proposed 
different algorithms and heuristics for assigning 

deadlines to intermediate tasks. In (Serreli, Lipari, 
and Bini, 2009) the authors investigate a deadline 
assignment that reduces resource utilization. They 
consider a component-based approach, analyzing 
each transaction individually, and use separate 
windows of execution for the tasks in a transaction. 
In (Di Natale and Stankovic, 1994) and (Kao and 
Garcia-Molina, 1997) the authors propose two 
similar heuristics for intermediate deadline 
assignment, which distribute the end-to-end deadline 
evenly or proportionally between all tasks. In 
(Gutierrez Garcia and Gonzalez Harbour, 1995) the 
authors use an iterative optimization algorithm to 
assign deadlines to the tasks inside a transaction set.  

In the case of composite solutions, which solve 
both task allocation and priority assignment, 
optimization techniques such as simulated annealing 
(Tindell, Burns, and Wellings, 1992) or genetic 
algorithms (Azketa, et al, 2011 (2)), (Yoo and Gen, 
2007) and (Samal, Mall, and Tripathy, 2014) can be 
used.  

It is rather difficult to make a comparison 
between the existing scheduling techniques, as they 
use different system models, schedulability analysis 
methods and different metrics for performance 
evaluation. For example, (Lupu, et al, 2010) evaluate 
task allocation heuristics using a periodic task 
model, with independent tasks, under EDF and 
Fixed Task Priority (FTP) scheduling. In (Hladik, et 
al, 2008) the authors use periodic task models with 
inter-task communication and FTP scheduling, while 
in (Azketa, et al, 2011 (1)) and (Gutierrez Garcia 
and Gonzalez Harbour , 1995) the authors use linear 
transaction models with end-to-end deadlines under 
FTP scheduling. In (Oh and Wu, 2004), and (Yoo 
and Gen, 2007) the authors consider transactions 
described by directed acyclic graphs that contain 
non-preemptive tasks and communication costs, 
under FTP scheduling.  

Compared to (Azketa, et al, 2011 (1)) and 
(Azketa, et al, 2011 (2)), our optimization technique 
uses different methods for solution representation 
and solution evaluation. In our case, the solution is 
given by a processor allocation and a deadline 
assignment setting for each task, which will 
determine a schedule. In (Azketa, et al, 2011 (1)), 
(Azketa, et al, 2011 (2)) and (Yoo and Gen, 2007) 
the authors consider a gene that contains both 
processor assignment and task priority parameters.  

The range for intermediate deadlines is less 
restricted in our approach compared to the range 
used in (Serreli, Lipari, and Bini, 2009), which, in 
our opinion, will increase the chance of finding 
feasible solutions. Because we encode the deadline 
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as a distinct gene, we can explore different deadline 
assignments for a task, for the same processor 
allocation. 

3 SYSTEM MODEL 

Any generic approach of a scheduling problem 
requires a given system model composed of a 
platform, a workload and a scheduling model. 

3.1 Workload Model 

Distributed real-time applications are usually 
modeled as sets of transactions. We represent by 
means of a list the precedence dependency between 
tasks in a transaction. A real-time transaction has the 
following defining elements: 
 Task list (L) – describes the dependencies 

between tasks and determines the execution 
order restrictions; 

 Period (T) – the repetition period of a 
transaction; 

 Deadline (D) – the time limit for a transaction, 
relative to its release time. 

A task has the following parameters: execution 
time (C), deadline (d), CPU affinity. 

Transactions are released periodically in 
accordance with some external or functional 
requirements. A transaction instance contains task 
instances generically called jobs. The execution of a 
transaction starts with the execution of jobs that do 
not have precedence dependencies. A job is 
considered for scheduling only if its dependencies 
are solved (jobs that precede it are executed).  

In case of a real application, only transaction 
deadlines are specified, intermediate task deadlines 
being unknown. However, the scheduling algorithm, 
in our case EDF, requires such deadlines in order to 
establish the execution priorities. One of the main 
goals of our research is to determine these 
intermediate deadlines in a way that all real-time, 
precedence and resource restrictions are satisfied. 

Our workload model may be configured to 
represent independent sets of tasks as well as 
distributed applications, including network 
communication tasks. 

3.2 Platform and Scheduling Models 

The processing resources of a platform are modeled 
as a multiprocessor system P={P1, P2, … , Pm} 
composed of processors and possibly network 
segments. This model can cover a wide range of 

system configurations that span from parallel 
systems to distributed ones. 

We assume that each processing resource has its 
own scheduler. The scheduler chooses the job with 
the highest priority to be executed, at a certain point 
in time, on the processing resource. The priority is 
computed by the scheduling algorithm implemented 
in the scheduler. In our experiments, we used the 
EDF algorithm that assigns priorities to jobs 
according to their deadlines, so the job that has the 
closest deadline will have the highest priority. It is 
known that the EDF algorithm is optimal for single 
processor systems (Liu and Layland, 1973) and it 
can handle task set utilizations of up to 100% in the 
case of independent tasks. 

4 OPTIMIZATION-BASED 
SCHEDULING TECHNIQUE 

Our work addresses two important aspects of 
multiprocessor scheduling: task allocation to 
processors and intermediate task deadline 
assignment. We propose a composite solution to 
these problems by employing an optimization 
method. 

The task allocation and deadline assignment 
problems generate a multidimensional solution 
space, which increases with the number of 
processors and the number of tasks in the system. As 
mentioned in section 2, finding an optimal solution 
is an NP-complete problem. However, sub-optimal 
solutions are acceptable in our case if transactions’ 
end-to-end deadlines are not exceeded, even if some 
intermediate task deadlines are missed. Our 
objective is to find this type of sub-optimal 
scheduling solution. 

We choose a genetic algorithm as search and 
optimization method, because it is well suited for 
problems with a large search space and multiple 
optimization objectives. A genetic algorithm starts 
with an initial set of possible solutions called 
population. At each iteration step, it generates a new 
population by means of natural selection, crossover 
and mutation. Each solution is evaluated with a 
fitness function. The fittest solutions will propagate 
their characteristics to later populations, generating 
improved new solutions. 

We adapted the continuous genetic algorithm to 
our problem domain. Scheduling variables that must 
be optimized are task allocations to processors and 
task deadlines. The parameters that need to be 
minimized are transaction response times, task 
response times and the processor utilization factor. 
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We start from initial solutions obtained by applying 
known heuristics (Lupu, et al, 2010) for both task 
allocation to processors and intermediate task 
deadline assignment. We generate new populations 
mostly through crossover (with tournament 
selection), but also by keeping the best individuals 
from the previous population. After obtaining a new 
population, mutation is applied. The variables of the 
genetic algorithm are population size, crossover 
method and mutation probability. The fitness of a 
solution is evaluated through simulation. The 
simulator receives a workload model obtained from 
the individual representation created in the genetic 
algorithm, and creates the execution schedule using 
the platform and the scheduling predefined models. 
We simulate each configuration setup and we use 
the timing results obtained through simulation for 
computing the fitness function. 

The optimization-based technique comprises 
three steps: the genetic algorithm generates a 
solution population; the solutions are evaluated 
through simulation; based on the evaluation, the 
genetic algorithm generates a new solution 
population, which replaces the previous one. These 
steps are iterated until a feasible solution is reached. 

4.1 Genetic Representation 

Solutions to the processor allocation and deadline 
assignment problems are represented as individuals 
in a population. Each individual (chromosome) is 
composed of a sequence of genes. A gene is an 
integer value that may represent a processor 
identifier on which the task is allocated, or a task 
deadline. Each gene has its own domain of values 
(Δ). For processor allocation, the domain is the 
task’s CPU affinity list: 

 

| ∈  (1) 
 

In the case of task deadlines, the value domain is 
continuous between the execution time of the task 
and the largest possible deadline. 

 

,  (2) 
  

 (3) 
  

, ∈  (4) 
 

A task is not released until all its predecessors 
finished their execution, so the assigned deadlines 
do not determine or enforce the precedence between 
tasks. Even though the transactions have hard

 

Figure 1: Chromosome construction based on the 
transaction model. 

deadlines, the tasks inside transactions have soft 
deadlines. This happens because even if several 
intermediate tasks miss their deadlines, it is still 
possible for the last task to meet its deadline. For 
this reason, we allow a less constrained value 
domain for genes that represent task deadlines. A 
less constrained deadline domain can increase the 
chances of finding a good scheduling solution. 

The chromosome contains two adjacent genes for 
each task in the workload. The first gene 
corresponds to the processor to which the task is 
allocated and the second is the task’s deadline. The 
order of the genes is given by transactions. Figure 1 
gives an example of how the chromosome is 
constructed based on the system model. The 
example is composed of four processors and two 
transactions (with the corresponding tasks). Tasks 
can be allocated to any of the four processors. For 
instance, the first gene shows that task t1 is allocated 
to processor P1 and its intermediate deadline is 10 
time units. The next gene is for task t2 allocated on 
P0 and with deadline of 5 time units. 
 We generated the initial population in two steps. 
First, we created a small number of individuals using 
task allocation heuristics such as First Fit or Round 
Robin. We assigned the deadlines for tasks and 
messages choosing the smallest possible value as 
deadline. In the second step, we applied mutations to 
obtain new individuals. The second step is repeated 
until the specified population’s size is reached (we 
considered a population of 60 individuals). 

4.2 Genetic Operators 

We used two types of genetic operators: crossover 
and mutation. These operators are applied on the 
current population with predefined probability rates, 
to create new generations with better fitness. 

For our scheduling problem, we use a two-point

Processors: P0, P1, P2, P3 

t1 t2 t3 t4 t5 

t6 t7 t8 TR2: T=30, D=30 

TR1: T=60, D=60

t1 t2 t3 t4 t5 t6 t7 t8

P1,10 P0,5 P2,10 P0,10 P3,6 P1,5 P0,1 P3,3 

Chromosome: 1,10,0,5,2,10,0,10,3,6,1,5,0,1,3,3 

Assign (resource, deadline) pair to each task:  
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crossover operator. The parents are selected by 
tournament. From two randomly selected 
individuals, the fittest is chosen to be one of the 
parents. This way we give a chance to individuals 
that do not have the best fitness but may have good 
partial solutions to propagate their genes to later 
generations. The crossover points are selected at 
random. We eliminate cases when the points 
coincide or when they are at the two ends of the 
chromosome. A certain task can inherit the 
allocation gene from a parent and the deadline gene 
from the other parent, so it is not necessary that the 
genes between the crossover points include both 
allocation and deadline genes for a task. 

We applied two different mutation operators. We 
mostly applied the classic mutation operator that 
selects a random gene from the chromosome and 
changes its value, with another random value from 
the gene’s value domain. We also implemented a 
mutation operator, which chooses the new value 
from a sub-interval around the current value of the 
gene. The limited interval is set as a percentage of 
the maximum allowed interval. 

Experimental results improved when the interval 
was limited to 50% of the initial domain and later to 
25%. We applied this type of mutation only on 
populations with good average fitness (when the 
scheduling solution is close to being feasible), 
because we suppose that their genes are close to 
their best values and we do not want to spoil good 
possible solutions through mutations that radically 
change the gene’s value. 

4.3 The Fitness Function 

The fitness function evaluates the quality of a given 
scheduling solution related with some chosen 
optimization objectives. A scheduling solution is 
considered the best if all transactions finish before 
their deadlines, all tasks finish their execution before 
their designated deadlines and if the tasks are 
uniformly allocated to the available processors. But, 
as we mentioned before, we only look for sub-
optimal solutions, in which at least all transactions 
finish before their deadlines. For this purpose, we 
establish three optimization objectives, with 
different weights. 

The most important optimization parameter is 
the transaction’s completion time. A solution is 
considered feasible if the transaction’s completion 
time is less or equal to the transaction’s absolute 
deadline. Another optimization objective is to have a 
rather uniform allocation of tasks over the existing 
resources. This will increase the system’s robustness 

and it can increase the effectiveness of the search. 
The third optimization objective is the task response 
time, which has to be less than the task’s deadline. 
We differentiate between satisfying transactions 
deadlines and intermediate task deadlines in the 
sense that transaction deadlines are much more 
important and task deadlines are artificially 
introduced for the scheduling algorithm. 

In order to express all the above optimization 
goals, we defined a fitness function as a weighted 
combination of three fitness expressions. A smaller 
value means a better solution. 

The first component fTR measures the quality 
related to the transaction’s completion time 
(equation 5). It is computed as a sum of terms, each 
term representing a transaction that does not meet its 
deadline. A term is an exponential function of the 
difference between the maximum response time Ri 
and the deadline Di of a transaction. The goal is to 
have all the differences equal to zero, which means 
that all transactions meet their deadlines. 

 

2  (5) 
 

The second component measures if the 
intermediate tasks meet their deadline (equation 6). 
This component has a smaller weight. 

 

2 	  (6) 
 

The next component measures the degree of 
uniform allocation of tasks on processors (equation 
7). It is the sum of the differences between the actual 
processor’s utilization factor Up and an average 
value. The goal is to obtain an allocation as close as 
possible to the average value (equation 9).  

 

∈
 (7) 

  

∈
 (8) 

  

∑
 (9) 

 

Ck and dk are the execution time and deadline of 
task k. Card(P) is the number of available 
processors.  

Below is the complete expression of the fitness 
function: 

 

∗ ∗ ∗  (10) 
 

Based on experiments, we found that a good 
combination of weights is: w1 = 1000, w2=100 and 
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w3=1. The most important factor should receive the 
largest weight. With this weight configuration, at the 
beginning of the genetic search the first criterion is 
dominant, then in the middle part the second one is 
more active and in the final part the uniform task 
allocation criterion selects the best candidate. 

5 A SEARCH SPACE 
REDUCTION TECHNIQUE 

As the task allocation and deadline assignment 
problems generate very large solution spaces that 
increase with the number of processors and the 
number of tasks, the execution time of the genetic 
algorithm can be very large (e.g. hours). Moreover, 
as the solution space increases, the algorithm’s 
success rate reduces because it doesn’t always 
converge to an acceptable solution in an acceptable 
number of iterations, or it deadlocks (finds a local 
minimum). 

Therefore, we investigated if a smaller search 
space has a good impact on the genetic algorithms 
success rate, its speed and the fitness of the best 
solutions. In this context, we propose a technique 
that composes our optimization-based approach for 
finding a task to processor allocation with a non-
iterative approach for intermediate task deadline 
assignment. 

The four steps for finding a scheduling solution 
are: 

1. Create the chromosomes; 
2. Apply a non-iterative algorithm or heuristic 

to assign deadlines to all tasks; 
3. Compute the fitness; 
4. The genetic algorithm chooses the best 

individuals and applies the genetic operators 
to obtain a new population. 

The second, third and fourth steps are iterated 
until an acceptable solution is found. The genetic 
algorithm will create the chromosomes as described 
in section 4, but the genes that represent task 
deadlines will have constant values (determined in 
the second step) and will not be modified (mutated) 
during genetic iterations. We implemented two 
variants of the proposed technique, by using two 
distinct solutions for task deadline assignment. In 
the first variant, we used the algorithm proposed in 
(Serreli, Lipari, and Bini, 2009), where the authors 
find a deadline allocation by constructing an ordered 
list of tasks. The obtained deadline assignment 
depends on the distribution of computation times 
among the tasks and on task to processor allocation. 

In the second variant, we propose a deadline 
assignment heuristic similar to the ones presented in 
(Kao and Garcia-Molina, 1997) and (Di Natale and 
Stankovic, 1994). We computed the transaction 
laxity time (l) and we divided it proportionally 
between the transaction’s intermediate tasks. The 
deadline is computed as the execution time to which 
is added the portion of the transaction’s laxity time 
(equation 12). 

 

 (11) 

∗
∑

 (12) 
 

This deadline allocation heuristic is influenced 
by the transactions time parameters (deadline and 
execution time) and not by the task to processor 
allocation. 

6 EVALUATION 

For the experimental part, we developed a tool 
composed of a genetic engine linked to a real-time 
systems simulator, RTMultiSim (Hangan and 
Sebestyen, 2012). The genetic engine receives as 
input the application model composed of tasks and 
transactions. The transactions are translated into 
chromosomes. Afterwards, the genetic engine 
generates populations in search for better 
individuals. The simulator executes a given system 
model. During simulation, the maximum response 
times of tasks and transactions are determined. 
Based on these parameters, the simulation tool 
computes the fitness value of the individual, which 
is supplied to the genetic algorithm that continues 
the search with a new generation. 

We evaluate the optimization-based scheduling 
technique in the case of distributed transaction 
scheduling. Experiments allowed us to adjust the 
parameters of the genetic algorithm for a faster 
generation of a good solution. In case of mutation 
probability the best values was 1% for shorter 
chromosomes (20-30 genes) and 0.6% for longer 
chromosomes (more than 100 genes), and 70% for 
the crossover probability. In some cases, a variable 
mutation ratio with a tendency of decreasing the 
probability in every generation had better results. 
The initial population was set to 60 individuals. A 
feasible solution has the fitness less than 1000. We 
generated two types of system models composed of 
6 transactions on 4 processors (case A) and of 10 
transactions on 8 processors (case B). We generated 
transaction sets with average system utilization of 

Multiprocessor�Real-time�Scheduling�Using�an�Optimization-based�Technique

241



 

60% to 99%. We obtained results from 3 sets of 
experiments: with the proposed optimization-based 
technique applied on both task allocation and 
deadline assignment sub-problems (OPT); with the 
optimization-based technique composed with the 
deadline assignment algorithm in (Serreli, Lipari, 
and Bini, 2009) (ORDER-OPT) and with the 
deadline assignment heuristic that divides the laxity 
time (equation 9) between tasks (LAX-OPT).  

For the evaluation, we used the following 
metrics: success rate, average number of iterations, 
average fitness. Figure 2 shows the success rate of 
the three proposed optimization-based approaches as 
a function of system utilization (a description of the 
system load). As reference, we use a heuristic (not 
optimized) EDF scheduler that assigns deadlines 
with equation 9 and then allocates tasks to the first 
available processor (LAX-EDF). All three 
optimization-based algorithms have better success 
rate than LAX-EDF by a maximum of 30%. LAX-
OPT has slightly better results than OPT, while 
ORDER-OPT has the worst performance. Figure 3 
shows the average number of steps executed by the 
genetic algorithm until a feasible solution is found, 
as a function of system utilization (for case B).  

 

 
Figure 2: Case B - The success rates.  

 

Figure 3: Case B - Average number of steps.  

 
Figure 4: Case A - Average fitness. 

OPT and LAX-OPT find feasible solutions in fewer 
steps. In case A, we observed that for 6 transactions 
OPT has the best results, but for utilizations greater 
than 90%, it finds less feasible solutions than LAX-
OPT. Figure 4 shows the average fitness of feasible 
solutions found with our approach, as a function of 
system utilization for case A. 

Table 1: OPT vs GA-Azketa. 

Characteristics OPT GA-Azketa 
Workload Chain 

transactions 
Chain 

transactions 
Platform Identical 

multiprocessor 
Heterogeneous 
multiprocessor  

Scheduler EDF FTP 
Chromosome Genes for 

processor 
allocation and  
task deadline 

Gene for 
processor 
allocation, 

priority given by 
the gene’s 
position. 

Operators Mutation, 
Crossover 

Mutation, 
Crossover, 
Clustering 

Fitness 
function 

Minimize 
transaction 

response time 
and task response 

time;  Uniform 
utilization 

Minimize 
transaction 

response time 
and resource 

utilization 

Fitness 
evaluation 

Simulation Holistic 
schedulability 

analysis 
 

The solutions obtained by OPT have the best 
fitness. The solutions obtained by LAX-OPT have 
the worst fitness between utilizations of 80% and 
97%, but, on the same interval, LAX-OPT has the 
highest success rate. In the case B the results are 
similar. Overall, the best average performance is 
obtained by OPT, but in some cases, LAX-OPT 
finds more (5-10%) feasible solutions than OPT. 

We further evaluate the performance of our 
approach by making a performance comparison with 
related work. In (Azketa, et al, 2011 (1)) and 
(Azketa, et al, 2011 (2)) the authors solve a similar 
problem to ours by using a genetic algorithm. We 
show  the differences between our approach and the 
one presented in (Azketa, et al, 2011 (2)) in Table 1. 
In (Azketa, et al, 2011 (1)) the authors make a 
statistical evaluation of their approach by randomly 
generating 2 types of transaction sets, small (6 
transactions) and large (12 transactions). Their 
algorithm started failing at system loads of around 
70% in the case of small systems. For large systems, 
their algorithm starts failing at loads of around 60%. 

0,00

0,50

1,00

60% 70% 80% 90%

Su
cc
e
ss
 r
at
e

System utilization

OPT

LAX‐OPT

ORDER‐OPT

LAX‐EDF

0,00

500,00

1000,00

60% 70% 80% 90%

N
u
m
b
e
r 
o
f 
st
e
p
s

System utilization

OPT

LAX‐OPT

ORDER‐OPT

0

200

400

600

800

70% 80% 90% 100%

Fi
tn
e
ss

System utilization

OPT

LAX‐OPT

ORDER‐OPT

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

242



 

To make a comparison with our approach, we 
replicated their tests based on the description, as 
they do not provide any data sets. Our approach is 
better in terms of success rate, since it starts failing 
at over 70% systems loads, for large systems. 

7 CONCLUSIONS 

In this paper, we proposed an optimization-based 
technique for scheduling real-time transactions on 
multiprocessor systems. The technique implies the 
use of a genetic search engine and a simulator to 
find feasible solutions for mapping tasks to 
processors and for task deadline assignment. In 
order to reduce the solution search space, we 
combined our optimization-based approach for task 
allocation with non-iterative approaches for deadline 
assignment. We demonstrated through experiments 
that our approach improves non-iterative scheduling 
techniques by an approximate 30%. Compared to 
other similar techniques, our approach is at least 
10% better in terms of scheduling success rate. Due 
to its flexibility, our solution may be used as a 
pragmatic off-line tool for allocating tasks on 
multiprocessor platforms and establishing time 
parameters for tasks in order to assure meeting 
global time restrictions. 
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