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Abstract: Managing information based on hierarchical structures is prevailing, be it by storing documents physically 
in a file structure like MS explorer or virtually in topic trees as in many web applications. The problem is 
that the structure evolves over time, created individually and hence reflecting individual opinions of how 
information objects should be grouped. This leads to time consuming searches and error prone retrieval 
results since relevant documents might be stored elsewhere. Our approach aims at solving the problem by 
replacing or complementing the manually created navigation structures by automatically created ones. We 
consider existing approaches for clustering and labelling and focus on yet unrewarding aspects like having 
information objects in inner nodes (as it is common in folder hierarchies) and cognitively adequate labelling 
for textual and non-textual resources. Evaluation was done by knowledge experts based on a comparison of 
retrieval time for finding given documents in manually and automatic generated information structures and 
showed the advantage of automatically created topic trees. 

1 INTRODUCTION 

Hierarchical structures of information are prevailing 
but inefficient  for locating information if they 
become too large (Bruls et al. 2000). The problem is 
exacerbated if the hierarchical structure emerges 
unsupervised and is created individually reflecting 
personal opinions on how information objects 
should be grouped – not necessarily shared by 
others. This leads to time consuming search and 
error prone retrieval results: one might find the 
document searched for – but how to be sure that a 
later version isn’t stored elsewhere? 

In our work we investigate if the manually 
created hierarchies can be replaced – or 
complemented – by automatically created structures 
in order to reduce time for searching and to increase 
the recall and precision. Our hypothesis is that 
information is found much quicker navigating in an 
automatically created structure since its grouping of 
information is impartial based on automatic 
clustering.  

Our work considers existing approaches for 
clustering and labelling but focusses on yet 
unrewarding aspects like cognitively adequate 
labelling for textual and non-textual resources. The 
research was carried out within the SEEK!sem 

project, funded by the Swiss Confederation 
(Commission for Technology and Innovation CTI. 
Project no 14604.1 PFES-ES). The work 
complements previous work on automatically 
identifying related information objects regardless of 
their format (Lutz et al. 2013). Evaluation was done 
by knowledge experts based on a comparison of 
retrieval time for finding given documents in 
manually and automatic generated information 
structures. 

2 APPLICATION SCENARIO 

The SEEK!sem project is a Swiss national funded 
research project . Business partner in the project  
is a Swiss software vendor who offers a web- 
based information management system called 
SEEK!SDM (http://www.bdh.ch/datamanagement/ 
seeksdm.html). Electronic documents (i.e. text but 
also images) can be uploaded into an Enterprise 
Portal and filed manually into folders. When 
SEEK!SDM is installed the folder structure is 
empty, i.e. consists of a root node only. Building up 
the hierarchical structure as well as defining tags for 
classifying information objects is to be done 
manually. As described by (Thönssen 2013) in 
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general, if any then no more than the upper two to 
three levels of such structures are defined on 
company level, for example organized by products, 
clients or temporal aspects. All deeper structures are 
created individually leading to the well-known 
problems of incomprehensible folder structure and 
hence long search times and the danger of missing of 
relevant information. The SEEK!SDM system 
allows for storing information resources on all 
nodes.  

These resources are folders, called ‘dossiers’ 
containing the actual information objects which 
might be of various formats, e.g. text, image but also 
personal or organisational data. The topics (nodes) 
of the topic tree, the dossiers and the structure of the 
dossiers are created manually guided by personal 
opinions. 

Hence, different versions of the same 
information object but also the very same 
information object might be stored in different 
dossiers (and different nodes) increasing the 
problem of finding all relevant information objects. 

Searching for information is time consuming; 
adding the risk of not finding relevant documents at 
all or finding the relevant but not the latest document 
provides the motivation for coming up with a 
hierarchical structure of information which is (a) 
independent from personal opinions and (b) 
complete with respect to filing related information 
objects (e.g. all versions, all formats of a document) 
in the same node. 

Rather than searching blindly in inexplicable 
hierarchical structures, always uncertain if the right 
information object has been found, search in an 
objectively comprehensible structure may decrease 
retrieval time and the risk of not finding everything. 
With our approach of automatically clustering 
information objects, we provide such an objectively 
comprehensible structure. 

3 RELATED WORK 

3.1 Hierarchical Clustering of 
Documents 

Hierarchical agglomerative clustering (HAC) (Cios 
et al. 1998) is a very well-known and popular 
method for grouping data objects by similarity. HAC 
is initialized by assigning each object to its own 
cluster and then, in each iteration, merging the two 
most similar clusters into a new cluster. This 
procedure results in a so-called dendogram, a binary 
tree of clusters where each branching reflects the 

fact that two child nodes were merged to a parent 
node in a given iteration of the algorithm. 

When the data objects are documents, a 
dendogram can be used as a means of navigation 
within a document collection (see e.g. (Alfred et al. 
2014)).  

Alternative hierarchical clustering methods have 
also been proposed for navigation, e.g. scatter/gather 
(Cutting et al. 1993), where the user can influence 
the clustering through interaction at run-time. 

It has been recognized by many researchers that 
binary trees are not an adequate representation of the 
similarities and latent hierarchical relationships 
between elements and clusters (Blundell et al. 2010). 

Therefore, a number of approaches have been 
proposed that cluster elements into multi-way trees. 
Many of these approaches come from the area of 
probabilistic latent semantic analysis, e.g. based on 
Latent Dirichlet processes (Zavitsanos et al. 2011). 
Other probabilistic approaches are based on greedy 
algorithms, e.g. Bayesian Rose Trees (Blundell et al. 
2010). 

Another approach, similar to ours, uses a 
partitioning of the dendogram resulting from HAC 
to derive a non-binary tree (Chuang & Chien 2004). 
In this approach, for a current (sub-)tree, an optimal 
cut level for the corresponding dendogram is chosen 
in a way that maximizes the coherence and 
minimizes the overlap of the resulting clusters. 
Then, this procedure is applied to the (binary) sub-
trees of the resulting clusters. The approach has been 
shown to be effective, but it has a number of free 
parameters that are hard to understand for end users. 

It is a problem of all these approaches that data 
elements are not allowed to reside within inner 
nodes of the tree – something that users usually 
expect and that will happen when hierarchies are 
created manually. 

3.2 Learning Topic Trees 

Hierarchical structures for organizing document 
collections only become useful when each node in 
such a structure has a meaningful label – only then it 
is possible for users to navigate and locate desired 
content. We call a hierarchical organization of 
documents (a tree) a topic tree if the nodes of the 
tree have labels. 

A number of researchers have explored the 
challenge of labeling clusters in a flat (i.e. non-
hierarchical) clustering of textual documents 
(Popescul & Ungar 2000), (Radev et al. 2004), 
(Muller et al. 1999). These approaches are based on 
term frequency statistics, selecting descriptors that 
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are both representative for a given cluster and 
discriminative w.r.t. the other clusters. 

However, as will be argued below, labeling 
hierarchical clusterings is a task with additional 
challenges, e.g. the desire to avoid redundancies in 
labels between parent and child nodes of the 
hierarchy.  

Learning to organize natural language terms 
hierarchically out of text (often termed taxonomy or 
ontology learning, see e.g. (Caraballo 1999)) is a 
topic that is closely related to labeling topic trees, 
and that has received much research attention. It has 
also been explicitly related to hierarchical document 
structures, see e.g. (Lawrie et al. 2001),(Glover et al. 
2002). 

There is considerably less research on how to 
label hierarchical clusterings. The work in 
(Treeratpituk & Callan 2006), as a notable example 
of such research, focuses on providing cluster labels 
based on term frequency distributions such that 
labels both summarise a cluster and help to 
differentiate it from its parent and sibling nodes.  

4 RESEARCH QUESTIONS AND 
METHODOLOGY 

4.1 Research Questions 

Our contribution is a holistic solution to building a 
topic tree, in which we address the following, yet 
unanswered research questions that arise when 
applying clustering techniques to topic tree 
induction in practice: 
- How can a topic tree be built in such a way 

that it naturally allows data elements to 
reside within inner nodes of the tree? In most 
practical applications of topic trees - consider 
for instance a folder hierarchy in a file system – 
inner nodes can contain data elements. This is 
not possible in any of the above-mentioned 
approaches where data elements can only reside 
in the leaves. 

- How can a hierarchy of clusters be labelled in 
a cognitively adequate way? The labels of the 
topic tree nodes are crucial for orientation of the 
navigating user. Yet, labeling a hierarchical set 
of clusters is fundamentally different from 
labeling a flat clustering. That is because 
redundancy needs to be avoided: a parent 
node’s label should only refer to those 
characteristics that are shared among all of the 
child nodes. And, even more importantly and to 

avoid redundant information while browsing a 
tree from the root towards the leaves, each child 
node should be labeled using only those 
characteristics that discriminate it from the 
others and from its parent.  

- How to enable such labeling not only for 
textual documents, but also other kinds of 
resources (e.g. images or persons)? In real-life 
applications, the elements to be clustered are not 
only text, but can be multimedia elements, 
contacts (i.e. persons) etc. Most existing cluster 
labeling approaches work only for text. What 
adaptations are needed for labeling 
corresponding clusters? 

4.2 Research Methodology 

We will propose a new algorithm for topic tree 
induction that works on textual documents, but also 
other kind of resources and that results in a non-
binary tree with labeled nodes.  

We will explore two labeling methods: one 
results directly from a new concept (“similarity 
explanation”) introduced as part of the new 
clustering algorithm. The other is an adaptation of a 
classical frequency-based cluster description method 
for the case of arbitrary (i.e. possibly non-textual) 
resources and for the purpose of avoiding 
redundancy of cluster descriptions.  

Our evaluation will be based on an experiment 
where test persons have to search for a given file 
within several versions of a topic tree. The time 
needed to locate the file will be used as an indication 
of the cognitive adequacy of the tree representation.  

This is fundamentally different from the 
evaluation methodologies used in previous work, 
most of which used a gold standard topic tree and 
measured the overlap between the automatically 
computed tree with the gold standard. We believe 
that our methodology is more appropriate: it does 
not rule out the possibility that the automatically 
computed tree is cognitively more adequate than the 
manually created gold standard. 

5 A NEW ALGORITHM FOR 
BUILDING TOPIC TREES 

In hierarchical agglomerative clustering (HAC), the 
two closest clusters are merged in each step, 
resulting in a binary tree of clusters, a so-called 
dendogram. 
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Figure 1: Two clusters with resource representations. 

Our approach to learning a multi-branched topic 
tree is based on the insight that HAC merge 
operations happen for a certain reason, namely 
because two clusters share certain characteristics. If 
a dendogram node v is created out of several 
consecutive cluster merges that happened for the 
same (or a very similar) reason we can collapse all 
the involved nodes into their parent node v because 
they all share the same characteristics. 

Hence, we first need to provide a concise 
definition of the “reason” why two clusters are 
merged or, more generally, why they are similar. We 
call this notion similarity explanation. 

5.1 Resource Representation 

We first choose a way of representing resources – 
our aim is to formulate it as generically as possible 
such that it will work for all kinds of resources and 
collections. 

We assume that resources in an information 
system can be described through a set of attributes 

, … , , each of which is defined over a set of 
elements that form the basis of a vector space 

. 
This assumption presumes that all string 

attributes can be broken into sub-structures that will 
form the basis of a vector space – in most cases 
these structures will be words, but for shorter string 
attributes, they could also be characters or character 
n-grams. 

A resource is described by a list of vectors 
, … , , where vector  

describes the resource in terms of attribute  and 
where the jth entry of that vector, denoted , 
expresses the importance of the jth element for that 
resource. In the case of a content attribute, the 

weights  can be computed e.g. as the tf.idf of 
term j. 

As an example, consider the five resource 
representations in the two clusters depicted in Figure 
1: each of them has the two attributes “author” and 
“tags”. The vector space for the author attribute is 
spanned by the elements “Joe” and “Jane”, the 
vector space for the “tags” attribute is spanned by 
“information”, “navigation”, “retrieval” and 
“database”. For better readability, the figure shows 
only the non-zero elements of the vectors  

 and , with the weights 
 and  in brackets behind the 

corresponding element. 

Other attributes are of course thinkable, e.g. title, 
content, creation and/or modification dates or anchor 
texts for hyperlinked collections. 

5.2 A Generic Distance Measure for 
Resources 

The distance measure that we propose is a simple 
linear convex combination of partial distances, one 
for each attribute. More precisely, the distance 
between two resources, described by lists of vectors 
U and V is computed as 

, ,  

Where  are weights to be chosen freely, but 
under the condition that ∑ 1. The partial 
distances  need to be suitable to compare vectors 
for attribute  – e.g. cosine-based distance for 
content. 
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5.3 Similarity Explanations 

As outlined above, we now want to introduce the 
concept of similarity explanation – essentially a 
summary of the characteristics shared by two 
clusters.  

A similarity explanation is similar to a resource 
representation as outlined in section 5.1, i.e. it 
consists of several explanations, one for each 
attribute, and each explanation is a vector over the 
same vector space as defined above – only that now 
the vector weights express to what degree a certain 
element is shared among the two clusters. 

Formally, this can be captured as follows: for 
two clusters, i.e. sets of resources , … ,  
and , … , , the similarity explanation is 
defined as: 

, , , … , ,  
where each , 	denotes the vector of shared 

characteristics for attribute ,	defined over the 
vector space . 

The weights of these vectors are defined by 
looking at all possible pairs that can be formed out 
of the resources in clusters C and D and seeing how 
many of these pairs share the given element (e.g. tag 
or keyword): 

,
| , ∈ x | 0	 	 0 |

| | ∙ | |
 

As an example, consider again the two clusters in 
Figure 1: their similarity explanation is given in 
Figure 2 at the top. For instance, we see that 

, 0.33. This is because there is a 
total of six pairs that can be formed out of the 
resources in C and D (denominator) and 2 of these 
pairs share the author “Joe” (numerator). Thus, we 
can say that if we merged the two clusters, the 
“reason” for this would be mainly that they share the 
keyword “information” and that “Joe” is rather often 
a shared author. 

 

 

Figure 2: Similarity explanation for the two clusters from 
Figure 1 (top) and another similarity explanation (bottom). 

Finally, we need to capture the notion of two 
cluster merges happening for “nearly the same 
reason”, i.e. we need to find a way to test if two 

similarity explanations are very similar. We 
therefore define a measure of similarity between two 
explanations as follows: let ,  and ,  
be two similarity explanations. Then, their similarity 
is defined as a weighted sum of partial similarities 
for the different attributes (using the same weights 

 as in the distance function in section 0): 
, , ,

, , ,  

The partial similarities are defined as follows: 

, , ,  

1 | , , 	 0	
0.01	

 

Here, | , , | captures 
in how far the two explanations differ regarding 
element j. A constant smoothing factor of 0.01 is 
used when that difference becomes maximal. The 
rationale of using a product here is that two 
explanations must show a good overlap in all 
elements in order to be considered as “nearly the 
same reason”. 

Let us consider the two similarity explanations 
given in Figure 2, and focus on the author attribute 
as an example. We get 1
|0.33 0.25| ∙ 1 |0.17 0.75| 0.92 ∙
0.42 0.39. Note that this value is fairly small 
since Jane plays a much higher role in the second 
explanation than in the first – we therefore regard 
the two explanations as only slightly similar, i.e. the 
two merges did not happen for “nearly the same 
reason”. 

5.4 Inferring a Multi-Branch Tree 
from a Binary One 

We are now ready to define our topic tree building 
algorithm. It proceeds as follows: 
- All the resources in the collection are clustered 

with hierarchical agglomerative clustering 
(HAC, (Cios et al. 1998)). The resulting 
dendogram is cut at a certain level (given by a 
user-defined distance threshold) – the resulting 
flat clustering defines the set of dossiers (see 
section 2). After that cut, the upper part of the 
dendogram – with the dossiers as leaf nodes – 
will be further processed. We call this tree . 

- A new tree ′ – the future topic tree – is 
initialized. Its new root node is mapped to the 
root node of  
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- Starting from the root node, a breadth-first 
search (BFS) is performed on . 

- For each inner node  - with children  and 
 and sibling node  – that is processed during 

BFS, the similarity explanations ,  and 
,  are compared (see example in Figure 

3). That is, we check whether clusters 	and  
were merged into  for the same reason as  
and  were merged into . 

- If this is the case, i.e. if 
, , ,  for some 

threshold , then  is mapped to the same node 
as  – we call this node . 

- Otherwise, a new node 	is created in ,  is 
mapped to ′, and is attached as a child to  

- Finally, leaf nodes of  (dossiers) are mapped to 
the same node as their parent. 

After completion of BFS, each node in  is mapped 
to a node in ′ (where many nodes of  can be 
mapped to the same node in ′). Together with this 
mapping, constitutes the new topic tree. Note that, 
with this algorithm, dossiers can be mapped to inner 
nodes (even the root node) of ′. 

 

Figure 3: Example comparison in dendogram search. 

5.5 Cluster Labeling 

To support proper navigation, topic tree nodes need 
meaningful labels. As outlined in section 4, the label 
of a parent node should express what characteristics 
are shared by all its children and the labels of the 
children should express individual characteristics, 
but should not repeat characteristics already used to 
describe the parent (assuming that users navigate a 
tree top-down). 

Our hypothesis is that such labels can be derived 
from our similarity explanations: when a set of 
dendogram nodes is mapped to a topic tree node 

, then this is because these nodes were created 
for the same reason during clustering. This “reason” 
(i.e. similarity explanation) must be different from 
the reasons for which the child nodes of  were 

created in  – otherwise the child nodes would have 
been mapped to ′, too. However, this does not 
mean that the similarity explanation vectors of a 
parent node are orthogonal to those of its children – 
usually, child nodes “inherit” the characteristics of 
the parent node’s similarity explanation, and exhibit 
some additional characteristics that differentiate 
from the parent. 

We hence propose the following labeling 
algorithm: 
- For each node w ϵT , fetch the first node 

	such that  is mapped to .		Let  and  
be the children of  in . 

- Generate a preliminary label for 	that consists 
of all the elements with non-zero weights in 

, .	For instance the label of the node to 
which node w in Figure 3 is mapped, will be 
“Joe, Jane, information, retrieval” 

- Iterate again over all nodes w ϵT 	and remove 
all elements from the label of ′ which are 
already contained in the label of its parent node. 

The last step of this procedure ensures that 
descriptions of child nodes do not repeat 
characteristics already present in their parent nodes. 

In order to evaluate the quality of labels 
generated from similarity explanations (henceforth 
called SE labels), we implemented a second labeling 
method for comparison. That method is a special 
case of the labeling method proposed in 
(Treeratpituk & Callan 2006). There, a so-called 
DScore is assigned to each candidate keyphrase. The 
DScore is a linear combination of 11 factors, 
combined using weights . In our implementation, 
we used 0, except for  and . This means 
that a keyphrase receives a high score if it appears in 
many resources of the cluster to be labeled and if it 
is ranked higher in the top terms of that cluster 
(where top terms are again ranked by number of 
cluster resources containing them) than in the top 
terms of the parent cluster. 

6 EVALUATION 

6.1 Experimental Setup 

For our evaluation, we used a test collection from 
our application scenario, as described in section 2, 
comprising 1474 documents. A manually created 
topic tree exists for this collection and was used in 
the experiment.  

Resources in this collection have the attributes 
title, author, tags and (often) unstructured textual 
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content. Each of these fields can be empty for a 
resource. We prepared the experiment as follows: 
- Each resource in the collection was represented 

using sets of vectors for all attributes, as 
described in section 5.1. For distance 
computations, weights were set to 0.3 (title), 0.2 
(content) and 0.5 (tags) based on preliminary 
experiments. 

- A topic tree was built following the algorithm in 
section 5.4. The parameter  was set to 0.6. 

- The nodes of the resulting tree were labeled, 
firstly with the method based on similarity 
explanations (SE-labels) and, secondly with our 
variant of DScore (DScore-labels), see section 
5.5. For DScore, we set 0.6 and 0.4. 

- All three trees – i.e. the manually created one, 
the one with SE-labels and the one with 
DScore-labels – were transformed into a 
hierarchy of folders on a file system, where the 
inner nodes of the topic tree became folders and 
the label of those nodes became the folder 
names. For each resource a text file was created, 
with the resource title as file name. 

- 10 resources were chosen completely at random 
from the entire collection. Then, 4 of these were 
selected manually, such that a mixture of 
different resource types (with and without 
textual content) was achieved and such that it 
was possible to guess roughly from the title, 
content and tags what the resource was about. 

- For each of the 4 chosen resources (henceforth 
called test cases), a description was generated, 
consisting of the title, author, tags and the most 
important keywords from the content. 

Then, two test persons from our institute – who 
had no knowledge of the resource collection – were 
chosen. This simulates a new employee joining a 
company and starting to get familiar with the 
collection of resources of that company. 

Each test person was given the task to locate the 
four test cases within each of the three topic trees, 
based on the description of each test case. 

Test person 1 started with the automatically 
created trees whereas test person 2 first looked at the 
manually created one. This was done to exclude a 
bias due to test persons learning about test cases 
while searching. 

We then recorded the search process with a 
screen capturing software and measured the time 
needed to locate each test case, as well as the 
number of “backtracks” during search. Afterwards, 
the test persons were asked about their impressions 
of the search process with the different topic trees. 

 
(a) 

 
(b) 

Figure 4: Histogram of (a) branching factor and (b) depth 
of leaf nodes for both trees. 

6.2 Results 

First, we want to characterize the nature of the topic 
trees. Figure 4 (a) shows a histogram of the 
branching factors of all nodes in both trees. We can 
see that most nodes in the automatic tree have 
between 0 and 2 children. Only the root node has 41 
children. Most nodes in the manually created tree are 
leaves (214, not visible due to cut y-axis) and most 
inner nodes have between 1 and 6 children (the root 
node has 5 children). 

Figure 4 (b) shows a histogram of the depths of 
leaf nodes. Here, we can see that 83% of all leaves 
in the automatic tree reside at a depth between 1 
(directly beneath the root) and 3. In the manual tree, 
virtually all leaves reside at a depth of either 3 or 4. 
This means that the manually created tree is also 
quite flat, but much better balanced at all levels. 

Table 1 shows the time that the test persons 
needed to locate each test case in each of the trees. 
Cases where the search was given up are marked 
with asterisks (*). In addition, the table lists the 
number of backtracks (i.e. number of times a dead-
end was reached and upward navigation occurred), 
divided by the length of the search in minutes. 
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The first observation is that in 7 out of 8 test 
instances (4 test cases times two persons), the SE-
labeled tree led to a faster result than the manual 
tree. This is rather strong evidence that – for the 
given search scenario – an automatically constructed 
and properly labeled tree can lead to more efficient 
search and browsing than a manually created tree. 

The comparison between SE-labels and DScore 
is more inconclusive: SE-labels are more efficient in 
only 5 out of 8 cases. 

Table 1: Summary of time needed to locate test cases, and 
number of backtracks per minute. Cases that were given 
up are marked with *. 

Test 
Case 

Tree Testperson 1 Testperson 2 
Time 
(sec.) 

Back-
tracks/ 
min. 

Time 
(sec.) 

Back-
tracks/ 
min. 

 
1 

Manual 595* 2.9 270* 2.7 
SE-labels 202 1.8 173 0.3 
DScore 32 0 58 1.0 

 
2 

Manual 65 0.9 191 3.8 
SE-labels 45 0 20 0 
DScore 191 1.3 38 0 

 
3 

Manual 96 3.8 310* 7.5 
SE-labels 21 0 58 1.0 
DScore 73 0.8 87 0 

 
4 

Manual 329 2.4 131 0.9 
SE-labels 226 1.1 456* 1.4 
DScore 590* 1.5 115 1.0 

The analysis of backtracking frequency clearly 
shows that in the manual tree much time is spent on 
exploring dead ends (backtrack rate being above 
2.4/min. in 6 out of 8 cases), whereas – as expected 
– the automatically created trees require much time 
for looking at the (many) top-level nodes, but have 
much fewer backtracks (well below 2/min. in all 
cases, often even 0). 

We finally summarise the verbal feedback of our 
two test persons: both of them stated that they were 
surprised how well they were able to work with the, 
at first glance, seemingly cryptical automatic tree. 

It also became clear – and was remarked by one 
test person – that our evaluation scenario is only 
valid under the assumption of a new employee 
getting familiar with a topic tree. It was apparent 
that the manually constructed tree required more 
background knowledge about the way of organizing 
things in our example company (including e.g. the 
meaning of abbreviations) – something that an 
experienced employee might exploit for very fast 
navigation in the manual tree. For a more general 
evaluation, it would hence be necessary to elicit real 
information needs and repeat the search experiment 

with these. The inconclusiveness of the comparison 
of the two automatic labeling methods was 
confirmed by the verbal feedback: one test person 
preferred the SE-labels, the other the DScore labels. 

7 CONCLUSIONS AND FUTURE 
WORK 

We could show that replacing or complementing 
manually created navigation structures by 
automatically created ones can significantly fasten 
retrieval and that automatic clustering can help to 
decrease the danger of missing relevant information 
because all versions of the same document are 
clustered into the same nodes.  

Our work is based on existing approaches for 
clustering and labeling but focuses on yet 
unrewarding aspects. Evaluation was done by 
involving test persons and based on a comparison of 
retrieval time for finding given documents in 
manually and automatic generated information 
structures and proved the advantage of automatically 
created topic trees (either with SE-labels or DScore-
labels). 

Further research will detail and refine our 
approach and also investigate alternative methods, 
e.g. divisive instead of agglomerative clustering and 
re-evaluation on a broader scale. 

Starting point for the next evaluation circle will 
then be a real information need, e.g.  a request for 
finding a specific offer triggered by the call of a 
customer. Evaluators will be persons familiar with 
the organizational context of the search.  
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