
An Order Hyperresolution Calculus for G ödel Logic with Truth
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Abstract: In (Guller, 2012), we have generalised the well-known hyperresolution principle to the first-order Gödel logic
for the general case. This paper is a continuation of our work. We propose a modification of the hyperreso-
lution calculus suitable for automated deduction with explicit partial truth. We expand the first-order Gödel
logic by a countable set of intermediate truth constants ¯c, c∈ (0,1). Our approach is based on translation of a
formula to an equivalent satisfiable finite order clausal theory, consisting of order clauses. An order clause is a
finite set of order literals of the formε1⋄ε2 where⋄ is a connective either≖ or≺. ≖ and≺ are interpreted by
the equality and standard strict linear order on[0,1], respectively. We shall investigate the so-called canonical
standard completeness, where the semantics of the first-order Gödel logic is given by the standardG-algebra
and truth constants are interpreted by themselves. The modified hyperresolution calculus is refutation sound
and complete for a countable order clausal theory under a certain condition for suprema and infima of sets of
the truth constants occurring in the theory.

1 INTRODUCTION

Current research in many-valued logics is mainly con-
cerned with left-continuoust-norm based logics in-
cluding the three fundamental fuzzy logics: Gödel,
Łukasiewicz, and Product ones. From a syntactical
point of view, classical many-valued deduction cal-
culi are widely studied, especially Hilbert-style ones.
In addition, a perspective from automated deduction
has received attractivity during the last two decades.
A considerable effort has been made in development
of SATsolvers for the problem of Boolean satisfia-
bility. SATsolvers may exploit either complete so-
lution methods (called complete or systematicSAT
solvers) or incomplete or hybrid ones. Complete
SATsolvers are mostly based on the Davis-Putnam-
Logemann-Loveland procedure (DPLL) (Davis and
Putnam, 1960; Davis et al., 1962) or resolution proof
methods (Robinson, 1965b; Robinson, 1965a; Gal-
lier, 1985), improved by various features, (Biere et al.,
2009). t-norm based logics are logics of compara-
tive truth: the residuum of at-norm satisfies, for all
x,y∈ [0,1], x→ y= 1 if and only if x≤ y. Since im-
plication is interpreted by a residuum, in the proposi-
tional case, a formula of the formφ → ψ is a conse-
quence of a theory if‖φ‖A ≤‖ψ‖A for every modelA
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of the theory. Most explorations oft-norm based log-
ics are focused on tautologies and deduction calculi
with the only distinguished truth degree 1, (Hájek,
2001). However, in many real-world applications, one
may be interested in representation and inference with
explicit partial truth; besides the truth constants0, 1,
intermediate truth constants are involved in. In the lit-
erature, two main approaches to expansions with truth
constants, are described. Historically, first one has
been introduced in (Pavelka, 1979), where the propo-
sitional Łukasiewicz logic is augmented by truth con-
stants ¯r, r ∈ [0,1], Pavelka’s logic (PL). A formula of
the form ¯r → φ evaluated to 1 expresses that the truth
value of φ is greater than or equal tor. In (Novák
et al., 1999), further development of evaluated for-
mulae, and in (Hájek, 2001), Rational Pavelka’s logic
(RPL) - a simplification ofPL, are described. An-
other approach relies on traditional algebraic seman-
tics. Various completeness results for expansions of
t-norm based logics with countably many truth con-
stants are investigated, among others, in (Esteva et al.,
2001; Savický et al., 2006; Esteva et al., 2007b; Es-
teva et al., 2007a; Esteva et al., 2009; Esteva et al.,
2010a; Esteva et al., 2010b).

Concerning the three fundamental first-order
fuzzy logics, the set of logically valid formulae isΠ2-
complete for Łukasiewicz logic,Π2-hard for Product

37Guller D..
An Order Hyperresolution Calculus for Gödel Logic with Truth Constants.
DOI: 10.5220/0005073700370052
In Proceedings of the International Conference on Fuzzy Computation Theory and Applications (FCTA-2014), pages 37-52
ISBN: 978-989-758-053-6
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



logic, andΣ1-complete for Gödel logic, as with classi-
cal first-order logic. Among these fuzzy logics, only
Gödel logic is recursively axiomatisable. Hence, it
was necessary to provide a proof method suitable for
automated deduction, as one has done for classical
logic. In contrast to classical logic, we cannot make
shifts of quantifiers arbitrarily and translate a formula
to an equivalent (satisfiable) prenex form. In (Guller,
2012), we have generalised the well-known hyperres-
olution principle to the first-order Gödel logic for the
general case. Our approach is based on translation of
a formula of Gödel logic to an equivalent satisfiable fi-
nite order clausal theory, consisting of order clauses.
We have introduced a notion of quantified atom: a
formulaa is a quantified atom ifa = Qx p(t0, . . . , tτ)
whereQ is a quantifier (∀, ∃); p(t0, . . . , tτ) is an atom;
x is a variable occurring inp(t0, . . . , tτ); for all i ≤ τ,
eitherti = x or x does not occur inti . An order clause
is a finite set of order literals of the formε1⋄ε2 where
εi is either an atom or a quantified atom; and⋄ is a
connective either≖ or≺. ≖ and≺ are interpreted by
the equality and standard strict linear order on[0,1],
respectively. For an input theory of Gödel logic, the
proposed translation produces a so-called admissible
order clausal theory. On the basis of the hyperres-
olution principle, a calculus operating over admissi-
ble order clausal theories, has been devised. The cal-
culus is proved to be refutation sound and complete
for the countable case with respect to the standard
G-algebraG = ([0,1],≤,∨∨∨,∧∧∧,⇒⇒⇒, ,≖≖≖,≺≺≺,0,1) aug-
mented by binary operators≖≖≖ and≺≺≺ for ≖ and≺,
respectively, cf. Section 2. As another step, one may
incorporate a countable set of intermediate truth con-
stants ¯c, c ∈ (0,1), to get a modification of our hy-
perresolution calculus suitable for automated deduc-
tion with explicit partial truth. We shall investigate
the so-called canonical standard completeness, where
the semantics of the first-order Gödel logic is given
by the standardG-algebraG and truth constants are
interpreted by themselves. Note that the Hilbert-style
calculus for the first-order Gödel logic introduced in
(Hájek, 2001) is not suitable for expansion with truth
constants. We haveφ ⊢ ψ if and only if φ |= ψ (wrt.
G). However, that cannot be preserved after adding
truth constants. Letc ∈ (0,1) anda be an atom dif-
ferent from a constant. Then ¯c |= a (c̄ is unsatisfi-
able) but6|= c̄ → a, 6⊢ c̄ → a, c̄ 6⊢ a (from the sound-
ness and the deduction-detachment theorem for this
calculus). So, we cannot achieve a strict canonical
standard completeness after expansion with truth con-
stants. On the other side, such a completeness can be
feasible for our hyperresolution calculus under certain
condition. We say that a setX of truth constants is ad-
missible with respect to suprema and infima if, for all

Y1,Y2 ⊆ X∪{0,1} and
∨∨∨

Y1 =
∧∧∧

Y2, either
∨∨∨

Y1 ∈Y1,∧∧∧
Y2 ∈Y2, or

∨∨∨
Y1 6∈Y1,

∧∧∧
Y2 6∈Y2 (constants are inter-

preted by themselves). Then the hyperresolution cal-
culus is refutation sound and complete for a countable
order clausal theory if the set of all truth constants
occurring in the theory is admissible with respect to
suprema and infima. This condition obviously covers
the case of finite order clausal theories.

The paper is organised as follows. Section 2 gives
the basic notions and notation concerning the first-
order Gödel logic. Section 3 deals with clause form
translation. In Section 4, we propose a hyperresolu-
tion calculus with truth constants and prove its refu-
tational soundness, completeness. Section 5 brings
conclusions.

2 FIRST-ORDER GÖDEL LOGIC

By L we denote a first-order language.VarL | FuncL |
PredL | TermL | GTermL | AtomL | GAtomL denotes
the set of all variables| function symbols| predicate
symbols | terms | ground terms| atoms | ground
atoms ofL. arL : FuncL ∪ PredL −→ N denotes
the mapping assigning an arity to every function and
predicate symbol ofL. We assume nullary predicate
symbols 0,1 ∈ PredL , arL (0) = arL(1) = 0; 0
denotes the false and1 the true inL. In addition, we
assume a countable set of nullary predicate symbols
CL = {c̄| c̄∈ PredL ,arL(c̄) = 0,c∈ (0,1)} ⊆ PredL .
0, 1, c̄ ∈ CL are called truth constants. We denote
TconsL = {0,1} ∪CL ⊆ PredL . Let X ⊆ TconsL .
We denoteX = {0|0 ∈ X} ∪ {1|1 ∈ X} ∪ {c| c̄ ∈
CL} ⊆ [0,1]. By FormL we designate the set of
all formulae of L built up from AtomL and VarL
using the connectives:¬, negation,∧, conjunction,
∨, disjunction, →, implication, and the quanti-
fiers: ∀, the universal quantifier,∃, the existential
one. In addition, we introduce new binary connec-
tives ≖, equality, and≺, strict order. We denote
Con= {¬,∧,∨,→,≖,≺}. By OrdFormL we des-
ignate the set of all so-called order formulae ofL

built up from AtomL and VarL using the connec-
tives in Con and the quantifiers:∀, ∃.1 Note that
OrdFormL ⊇ FormL . In the paper, we shall assume
that L is a countable first-order language; hence, all
the above mentioned sets of symbols and expressions
are countable. Letε | εi , 1≤ i ≤ m | υi , 1≤ i ≤ n,
be either an expression or a set of expressions or
a set of sets of expressions ofL, in general. By
vars(ε1, . . . ,εm) ⊆ VarL | freevars(ε1, . . . ,εm) ⊆
VarL | boundvars(ε1, . . . ,εm) ⊆ VarL |

1We assume a decreasing connective and quantifier
precedence:∀, ∃, ¬, ∧, →, ≖, ≺, ∨.
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preds(ε1, . . . ,εm) ⊆ PredL | atoms(ε1, . . . ,εm) ⊆
AtomL we denote the set of all variables| free
variables | bound variables| predicate symbols|
atoms of L occurring in ε1, . . . ,εm. ε is closed
iff freevars(ε) = /0. By ℓ we denote the empty
sequence. By|ε1, . . . ,εm| = m we denote the length
of a sequenceε1, . . . ,εm. We define the concate-
nation of sequencesε1, . . . ,εm and υ1, . . . ,υn as
(ε1, . . . ,εm),(υ1, . . . ,υn) = ε1, . . . ,εm,υ1, . . . ,υn.
Note that concatenation of sequences is associative.

Let X, Y, Z be sets,Z ⊆ X; f : X −→Y be a map-
ping. By ‖X‖ we denote the set-theoretic cardinal-
ity of X. X being a finite subset ofY is denoted as
X ⊆F Y. We designateP (X) = {x|x ⊆ X}; P (X) is
the power set ofX; PF (X) = {x|x⊆F X}; PF (X) is
the set of all finite subsets ofX; f [Z] = { f (z) |z∈ Z};
f [Z] is the image ofZ under f ; f |Z = {(z, f (z)) |z∈
Z}; f |Z is the restriction off ontoZ. Let γ ≤ ω. A
sequenceδ of X is a bijectionδ : γ −→ X. X is count-
able if and only if there exists a sequence ofX. Let I
be a set andSi 6= /0, i ∈ I , be sets. A selectorS over
{Si | i ∈ I} is a mappingS : I −→

⋃
{Si | i ∈ I} such that

for all i ∈ I , S(i) ∈ Si . We denoteSel({Si | i ∈ I}) =
{S |S is a selector over{Si | i ∈ I}}. Letc∈R+. logc
denotes the binary logarithm ofc. Let f ,g :N−→R+

0 .
f is of the order ofg, in symbolsf ∈ O(g), iff there
exist n0 ∈ N and c∗ ∈ R+

0 such that for alln ≥ n0,
f (n)≤ c∗ ·g(n).

Let t ∈ TermL , φ ∈ OrdFormL , T ⊆F OrdFormL .
The size oft | φ, in symbols|t| | |φ|, is defined as
the number of nodes of its standard tree representa-
tion. We define the size ofT as |T| = ∑φ∈T |φ|. By
varseq(φ), vars(varseq(φ))⊆VarL , we denote the se-
quence of all variables ofL occurring inφ which is
built up via the left-right preorder traversal ofφ. For
example, varseq(∃w(∀x p(x,x,z) ∨ ∃yq(x,y,z))) =
w,x,x,x,z,y,x,y,z and |w,x,x,x,z,y,x,y,z| = 9. Let
Q ∈ {∀,∃} and x̄ = x1, . . . ,xn be a sequence of vari-
ables ofL. By Qx̄φ we denoteQx1 . . .Qxn φ.

Gödel logic is interpreted by the standardG-
algebra augmented by binary operators≖≖≖ and≺≺≺ for
≖ and≺, respectively.

G= ([0,1],≤,∨∨∨,∧∧∧,⇒⇒⇒, ,≖≖≖,≺≺≺,0,1)

where∨∨∨ |∧∧∧ denotes the supremum| infimum operator
on [0,1];

a⇒⇒⇒b=

{
1 if a ≤ b,

b else;
a=

{
1 if a = 0,

0 else;

a≖≖≖b=

{
1 if a = b,

0 else;
a≺≺≺b=

{
1 if a < b,

0 else.

We recall thatG is a complete linearly ordered lat-
tice algebra;∨∨∨ | ∧∧∧ is commutative, associative, idem-
potent, monotone; 0| 1 is its neutral element; the

residuum operator⇒⇒⇒ of ∧∧∧ satisfies the condition of
residuation:

for all a,b,c∈ G,a∧∧∧b≤ c⇐⇒ a≤ b⇒⇒⇒c; (1)

Gödel negation satisfies the condition:

for all a∈ G,a= a⇒⇒⇒0; (2)

the following properties, which will be exploited later,
hold:2

for all a,b,c∈ G,

a∨∨∨b∧∧∧c= (a∨∨∨b)∧∧∧(a∨∨∨c),
(distributivity of∨∨∨ over∧∧∧) (3)

a∧∧∧(b∨∨∨c) = a∧∧∧b∨∨∨a∧∧∧c,
(distributivity of∧∧∧ over∨∨∨) (4)

a⇒⇒⇒(b∨∨∨c) = a⇒⇒⇒b∨∨∨a⇒⇒⇒c, (5)

a⇒⇒⇒b∧∧∧c= (a⇒⇒⇒b)∧∧∧(a⇒⇒⇒c), (6)

(a∨∨∨b)⇒⇒⇒c= (a⇒⇒⇒c)∧∧∧(b⇒⇒⇒c), (7)

a∧∧∧b⇒⇒⇒c= a⇒⇒⇒c∨∨∨b⇒⇒⇒c, (8)

a⇒⇒⇒(b⇒⇒⇒c) = a∧∧∧b⇒⇒⇒c, (9)

((a⇒⇒⇒b)⇒⇒⇒b)⇒⇒⇒b= a⇒⇒⇒b, (10)

(a⇒⇒⇒b)⇒⇒⇒c= ((a⇒⇒⇒b)⇒⇒⇒b)∧∧∧(b⇒⇒⇒c)∨∨∨c, (11)

(a⇒⇒⇒b)⇒⇒⇒0= ((a⇒⇒⇒0)⇒⇒⇒0)∧∧∧(b⇒⇒⇒0). (12)

An interpretationI for L is a triple
(
UI ,{ f I | f ∈

FuncL},{pI | p∈ PredL}
)

defined as follows:UI 6=
/0 is the universum ofI ; every f ∈ FuncL is inter-

preted as a functionf I : U
ar( f )
I −→ UI ; every p ∈

PredL is interpreted as a[0,1]-relationpI : U
ar(p)
I −→

[0,1]; particularly, 0I = 0, 1I = 1, for all c̄ ∈ CL ,
c̄I = c. A variable assignment inI is a mapping
VarL −→ UI . We denote the set of all variable as-
signments inI asSI . Let e∈ SI andu∈ UI . A vari-
ante[x/u] ∈ SI of e with respect tox andu is defined
as

e[x/u](z) =

{
u if z= x,

e(z) else.

Let t ∈ TermL , x̄ be a sequence of variables ofL, φ ∈
OrdFormL . In I with respect toe, we define the value
‖t‖I

e ∈ UI of t by recursion on the structure oft, the

value‖x̄‖I
e ∈ U

|x̄|
I of x̄, the truth value‖φ‖I

e ∈ [0,1] of
φ by recursion on the structure ofφ, as usual. Letφ
be closed. Then, for alle,e′ ∈ SI , ‖φ‖I

e = ‖φ‖I
e′ . Let

e∈ SI 6= /0. We denote‖φ‖I = ‖φ‖I
e.

Let L | L ′ be a first-order language andI | I ′ be
an interpretation forL | L ′. L ′ is an expansion ofL

2We assume a decreasing operator precedence:, ∧∧∧,
⇒⇒⇒,≖≖≖,≺≺≺,∨∨∨.
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iff FuncL ′ ⊇ FuncL andPredL ′ ⊇ PredL ; on the other
side, we sayL is a reduct ofL ′. I ′ is an expansion
of I to L ′ iff L ′ is an expansion ofL, UI ′ = UI , for
all f ∈ FuncL , f I ′

= f I , for all p∈ PredL , pI ′
= pI ;

on the other side, we sayI is a reduct ofI ′ to L, in
symbolsI = I ′|L .

A theory of L is a set of formulae ofL. An or-
der theory ofL is a set of order formulae ofL. Let
φ,φ′ ∈ OrdFormL , T ⊆ OrdFormL , e∈ SI . φ is true in
I with respect toe, written asI |=e φ, iff ‖φ‖I

e = 1. I

is a model ofφ, in symbolsI |= φ, iff, for all e∈ SI ,
I |=e φ. I is a model ofT, in symbolsI |= T, iff, for
all φ ∈ T, I |= φ. φ is a logically valid formula iff,
for every interpretationI for L, I |= φ. φ is equiva-
lent to φ′, in symbolsφ ≡ φ′, iff, for every interpre-
tation I for L and e ∈ SI , ‖φ‖I

e = ‖φ′‖I
e. We de-

note tcons(φ) = {0,1} ∪ (preds(φ) ∩CL ) ⊆ TconsL
andtcons(T) = {0,1}∪ (preds(T)∩CL )⊆ TconsL .

3 TRANSLATION TO CLAUSAL
FORM

In the propositional case (Guller, 2010), we have pro-
posed some translation of a formula to an equivalent
CNF containing literals of the form eithera or a→ b
or (a→ b) → b wherea is a propositional atom and
b is either a propositional atom or the propositional
constant0. An output equivalentCNF may be of ex-
ponential size with respect to the input formula; we
had laid no restrictions on use of the distributivity
law (3) during translation to conjunctive normal form.
To avoid this disadvantage, we have devised transla-
tion toCNFvia interpolation using new atoms, which
produces an outputCNF of linear size at the cost of
being only equisatisfiable to the input formula. A
similar approach exploiting the renaming subformu-
lae technique can be found in (Plaisted and Green-
baum, 1986; de la Tour, 1992; Hähnle, 1994; Non-
nengart et al., 1998). ACNF is further translated to a
finite set of order clauses. An order clause is a finite
set of order literals of the formε1 ⋄ ε2 whereεi is ei-
ther a propositional atom or a propositional constant,
0, 1, and⋄ ∈ {≖,≺}.

We have described some generalisation of the
mentioned translation to the first-order case in
(Guller, 2012). At first, we recall the notion of quan-
tified atom. Leta∈ FormL . a is a quantified atom of
L iff a= Qx p(t0, . . . , tτ) wherep(t0, . . . , tτ) ∈ AtomL ,
x ∈ vars(p(t0, . . . , tτ)), either ti = x or x 6∈ vars(ti).
QAtomL ⊆ FormL denotes the set of all quantified
atoms ofL. QAtomQ

L ⊆ QAtomL , Q ∈ {∀,∃}, de-
notes the set of all quantified atoms ofL of the

form Qxa. Let ε | εi , 1 ≤ i ≤ m | υi , 1 ≤ i ≤ n,
be either an expression or a set of expressions or
a set of sets of expressions ofL, in general. By
qatoms(ε1, . . . ,εm) ⊆ QAtomL we denote the set of
all quantified atoms ofL occurring inε1, . . . ,εm. We
denote qatomsQ(ε1, . . . ,εm) = qatoms(ε1, . . . ,εm) ∩

QAtomQ
L , Q ∈ {∀,∃}. Let Qx p(t0, . . . , tτ) ∈ QAtomL

and p(t ′0, . . . , t
′
τ) ∈ AtomL . Let I = {i | i ≤ τ,x 6∈

vars(ti)} andr1, . . . , rk, r i ≤ τ, k ≤ τ, for all 1≤ i <
i′ ≤ k, r i < r i′ , be a sequence such that{r i |1 ≤ i ≤
k}= I . We denote

freetermseq(Qx p(t0, . . . , tτ)) = tr1, . . . , trk,

freetermseq(p(t ′0, . . . , t
′
τ)) = t ′0, . . . , t

′
τ.

We further introduce conjunctive normal form
(CNF) in Gödel logic. In contrast to two-valued logic,
we have to consider an augmented set of literals ap-
pearing inCNF formulae. Letl ,φ ∈ FormL . l is a lit-
eral ofL iff either l = a or l = b→ c or l =(a→ d)→
d or l = a → e or l = e→ a, a ∈ AtomL −TconsL ,
b∈ AtomL −{0,1}, c∈ AtomL −{1}, d ∈ (AtomL −
TconsL )∪ {0}, e∈ QAtomL , {b,c} 6⊆ TconsL . The
set of all literals ofL is designated asLitL ⊆ FormL .
φ is a conjunctive| disjunctive normal form ofL,
in symbolsCNF | DNF, iff either φ ∈ TconsL or
φ =

∧
i≤n

∨
j≤mi

l ij | φ =
∨

i≤n
∧

j≤mi
l ij , l ij ∈ LitL . Let

D = l1 ∨ ·· · ∨ ln ∈ FormL , l i ∈ LitL . We denote
lits(D) = {l1, . . . , ln} ⊆ LitL . D is a factor iff, for all
1≤ i < i′ ≤ n, l i 6= l i′ .

We finally introduce order clauses in Gödel logic.
Let l ∈ OrdFormL . l is an order literal ofL iff
l = ε1 ⋄ ε2, εi ∈ AtomL ∪QAtomL , ⋄ ∈ {≖,≺}. The
set of all order literals ofL is designated asOrdLitL ⊆
OrdFormL . An order clause ofL is a finite set of or-
der literals ofL; since= is commutative, we iden-
tify, for all ε1 ≖ ε2 ∈ OrdLitL , ε1 ≖ ε2 and ε2 ≖

ε1 ∈ OrdLitL with respect to order clauses. An order
clause{l1, . . . , ln} is written in the forml1 ∨ ·· · ∨ ln.
The order clause/0 is called the empty order clause
and denoted as�. An order clause{l} is called a unit
order clause and denoted asl ; if it does not cause the
ambiguity with the denotation of the single order lit-
eral l in given context. We designate the set of all or-
der clauses ofL asOrdClL . Let l , l0, . . . , ln ∈ OrdLitL
and C,C′ ∈ OrdClL . We define the size ofC as
|C| = ∑l∈C |l |. By l ∨C we denote{l} ∪C where
l 6∈ C. Analogously, byl0 ∨ ·· · ∨ ln ∨C we denote
{l0}∪· · ·∪{ln}∪C where, for alli, i′ ≤ n, i 6= i′, l i 6∈C
and l i 6= l i′ . By C∨C′ we denoteC∪C′. C is a sub-
clause ofC′, in symbolsC⊑C′, iff C⊆C′. An order
clausal theory ofL is a set of order clauses ofL. A
unit order clausal theory is a set of unit order clauses.

Let φ,φ′ ∈ OrdFormL , T,T ′ ⊆ OrdFormL , S,S′ ⊆
OrdClL , I be an interpretation forL, e∈ SI . Note that
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I |=e l if and only if eitherl = ε1 ≖ ε2, ‖ε1 ≖ ε2‖
I
e =

1, ‖ε1‖
I
e = ‖ε2‖

I
e; or l = ε1 ≺ ε2, ‖ε1 ≺ ε2‖

I
e = 1,

‖ε1‖
I
e < ‖ε2‖

I
e. C is true in I with respect toe,

written asI |=e C, iff there existsl∗ ∈ C such that
I |=e l∗. I is a model ofC, in symbolsI |= C, iff,
for all e∈ SI , I |=e C. I is a model ofS, in sym-
bolsI |= S, iff, for all C ∈ S, I |= C. φ′ | T ′ | C′ | S′

is a logical consequence ofφ | T | C | S, in symbols
φ |T |C|S|= φ′ |T ′ |C′ |S′, iff, for every modelI of φ |
T | C | S for L, I |= φ′ |T ′ |C′ |S′. φ | T | C | S is
satisfiable iff there exists a model ofφ | T | C | S for
L. Note that both� and� ∈ Sare unsatisfiable.φ |
T | C | S is equisatisfiable toφ′ | T ′ | C′ | S′ iff φ | T |
C | S is satisfiable if and only ifφ′ | T ′ | C′ | S′ is sat-
isfiable. We denotetcons(S) = {0,1}∪ (preds(S)∩
CL ) ⊆ TconsL . Let S⊆F OrdClL . We define the
size ofSas|S|= ∑C∈S|C|. l is a simplified order lit-
eral ofL iff l = ε1⋄ ε2, {ε1,ε2} 6⊆ TconsL , {ε1,ε2} 6⊆
QAtomL . The set of all simplified order literals ofL

is designated asSimOrdLitL ⊆ OrdLitL . We denote
SimOrdClL = {C|C ∈ OrdClL ,C ⊆ SimOrdLitL} ⊆
OrdClL . Let f̃0 6∈ FuncL ; f̃0 is a new function sym-
bol. Let I = N×N; I is an infinite countable set of
indices. LetP̃= {p̃i |i ∈ I} such that̃P∩PredL = /0;
P̃ is an infinite countable set of new predicate sym-
bols.

From a computational point of view, the worst
case time and space complexity will be estimated us-
ing the logarithmic cost measurement. LetA be an
algorithm. #OA(In)≥ 1 denotes the number of all el-
ementary operations executed byA on an inputIn.

3.1 Substitutions

We assume the reader to be familiar with the standard
notions and notation of substitutions. We introduce
a few definitions and denotations; some of them are
slightly different from the standard ones, but found to
be more convenient. LetX = {xi |1≤ i ≤ n} ⊆ VarL .
A substitutionϑ of L is a mappingϑ : X −→ TermL .
ϑ may be written in the formx1/ϑ(x1), . . . ,xn/ϑ(xn).
We denotedom(ϑ) = X ⊆F VarL and range(ϑ) =⋃

x∈X vars(ϑ(x))⊆F VarL . The set of all substitutions
of L is designated asSubstL . Let ϑ,ϑ′ ∈ SubstL . ϑ is
a variable renaming ofL iff ϑ : dom(ϑ)−→VarL , and
for all x,x′ ∈ dom(ϑ), x 6= x′, ϑ(x) 6= ϑ(x′). We define
idL : VarL −→ VarL , idL (x) = x. Let t ∈ TermL . ϑ
is applicable tot iff dom(ϑ) ⊇ vars(t). Let ϑ be ap-
plicable tot. We define the applicationtϑ ∈ TermL of
ϑ to t by recursion on the structure oft in the stan-
dard manner. Letrange(ϑ) ⊆ dom(ϑ′). We define
the composition ofϑ andϑ′ asϑ ◦ϑ′ : dom(ϑ) −→
TermL , ϑ◦ϑ′(x) = ϑ(x)ϑ′, ϑ◦ϑ′ ∈ SubstL , dom(ϑ◦
ϑ′) = dom(ϑ), range(ϑ ◦ ϑ′) = range(ϑ′|range(ϑ)).

Note that composition of substitutions is associa-
tive. ϑ′ is a regular extension ofϑ iff dom(ϑ′) ⊇
dom(ϑ), ϑ′|dom(ϑ) = ϑ, ϑ′|dom(ϑ′)−dom(ϑ) is a vari-
able renaming such thatrange(ϑ′|dom(ϑ′)−dom(ϑ)) ∩
range(ϑ) = /0. Let a ∈ AtomL . ϑ is applicable toa
iff dom(ϑ) ⊇ vars(a). Let ϑ be applicable toa and
a= p(t1, . . . , tτ). We define the application ofϑ to a as
aϑ = p(t1ϑ, . . . , tτϑ) ∈ AtomL . Let Qxa∈ QAtomL .
ϑ is applicable toQxa iff dom(ϑ) ⊇ freevars(Qxa)
and x 6∈ range(ϑ|freevars(Qxa)). Let ϑ be applicable
to Qxa. We define the application ofϑ to Qxa as
(Qxa)ϑ = Qxa(ϑ|freevars(Qxa) ∪ x/x) ∈ QAtomL . Let
ε1⋄ε2 ∈OrdLitL . ϑ is applicable toε1⋄ε2 iff, for both
i, ϑ is applicable toεi . Let ϑ be applicable toε1 ⋄ ε2.
Then, for bothi, ϑ is applicable toεi , dom(ϑ) ⊇
freevars(εi), dom(ϑ) ⊇ freevars(ε1)∪ freevars(ε2) =
freevars(ε1 ⋄ ε2). We define the application ofϑ to
ε1 ⋄ ε2 as (ε1 ⋄ ε2)ϑ = ε1ϑ ⋄ ε2ϑ ∈ OrdLitL . Let
E ⊆ A, A = TermL | A = AtomL | A = QAtomL |
A= OrdLitL . ϑ is applicable toE iff, for all ε ∈ E, ϑ
is applicable toε. Let ϑ be applicable toE. Then, for
all ε ∈ E, ϑ is applicable toε, dom(ϑ) ⊇ freevars(ε),
dom(ϑ)⊇

⋃
ε∈E freevars(ε) = freevars(E). We define

the application ofϑ to E asEϑ = {εϑ |ε ∈ E} ⊆ A.
Let ε,ε′ ∈ A | ε,ε′ ∈ OrdClL . ε′ is an instance of
ε of L iff there existsϑ∗ ∈ SubstL such thatε′ =
εϑ∗. ε′ is a variant ofε of L iff there exists a vari-
able renamingρ∗ ∈ SubstL such thatε′ = ερ∗. Let
C ∈ OrdClL and S⊆ OrdClL . C is an instance| a
variant of S of L iff there existsC∗ ∈ S such that
C is an instance| a variant ofC∗ of L. We denote
InstL(S) = {C|C is an instance of S ofL} ⊆ OrdClL
and VrntL (S) = {C|C is a variant of S ofL} ⊆
OrdClL .

ϑ is a unifier of L for E iff Eϑ is a singleton
set. Note that there does not exist a unifier for/0.
Let θ ∈ SubstL . θ is a most general unifier ofL for
E iff θ is a unifier ofL for E, and for every uni-
fier ϑ of L for E, there existsγ∗ ∈ SubstL such that
ϑ|freevars(E) = θ|freevars(E) ◦ γ∗. By mguL (E)⊆ SubstL
we denote the set of all most general unifiers ofL for
E. Let E = E0, . . . ,En, Ei ⊆ Ai , eitherAi = TermL

or Ai = AtomL or Ai = QAtomL or Ai = OrdLitL .
ϑ is applicable toE iff, for all i ≤ n, ϑ is applica-
ble to Ei . Let ϑ be applicable toE. Then, for all
i ≤ n, ϑ is applicable toEi , dom(ϑ) ⊇ freevars(Ei),
dom(ϑ) ⊇

⋃
i≤n freevars(Ei) = freevars(E). We de-

fine the application ofϑ to E asEϑ = E0ϑ, . . . ,Enϑ,
Eiϑ ⊆ Ai . ϑ is a unifier ofL for E iff, for all i ≤ n, ϑ
is a unifier ofL for Ei. Note that if there existsi∗ ≤ n
andEi∗ = /0, then there does not exist a unifier forE. θ
is a most general unifier ofL for E iff θ is a unifier of
L for E, and for every unifierϑ of L for E, there exists
γ∗ ∈ SubstL such thatϑ|freevars(E) = θ|freevars(E) ◦ γ∗.
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By mguL(E) ⊆ SubstL we denote the set of all most
general unifiers ofL for E.

Theorem 3.1 (Unification Theorem). Let E =
E0, . . . ,En, either Ei ⊆F TermL or Ei ⊆F AtomL . If
there exists a unifier ofL for E, then there exists
θ∗ ∈ mguL (E) such that range(θ∗|vars(E))⊆ vars(E).

Proof. By induction on‖vars(E)‖.

Theorem 3.2 (Extended Unification Theorem). Let
E = E0, . . . ,En, either Ei ⊆F TermL or Ei ⊆F

AtomL or Ei ⊆F QAtomL or Ei ⊆F OrdLitL , and
boundvars(E) ⊆ V ⊆F VarL . If there exists a unifier
of L for E, then there existsθ∗ ∈ mguL (E) such that
range(θ∗|freevars(E))∩V = /0.

Proof. A straightforward consequence of Theo-
rem 3.1.

3.2 A Formal Treatment

Translation of a formula or a theory toCNF and
clausal form, is based on the following lemma:

Lemma 3.3. Let nφ,n0 ∈N, φ ∈ FormL , T ⊆ FormL .

(I) There exist either Jφ = /0 or Jφ = {(nφ, j) | j ≤
nJφ}, Jφ ⊆ {(nφ, j) | j ∈ N}; a CNF ψ ∈
FormL∪{ p̃j |j∈Jφ}, Sφ ⊆F SimOrdClL∪{ p̃j |j∈Jφ}

such that
(a) ‖Jφ‖ ≤ 2 · |φ|;
(b) there exists an interpretationA for L and

A |= φ if and only if there exists an interpre-
tation A′ for L ∪ {p̃j |j ∈ Jφ} andA′ |= ψ,
satisfyingA= A

′|L ;
(c) there exists an interpretationA for L and

A |= φ if and only if there exists an interpre-
tation A′ for L ∪{p̃j |j ∈ Jφ} andA′ |= Sφ,
satisfyingA= A′|L ;

(d) |ψ| ∈ O(|φ|2); the number of all elementary
operations of the translation ofφ to ψ, is in
O(|φ|2); the time and space complexity of the
translation ofφ to ψ, is in O(|φ|2 · (log(1+
nφ)+ log|φ|));

(e) |Sφ| ∈ O(|φ|2); the number of all elementary
operations of the translation ofφ to Sφ, is in
O(|φ|2); the time and space complexity of the
translation ofφ to Sφ, is in O(|φ|2 · (log(1+
nφ)+ log|φ|));

(f) for all a ∈ qatoms(ψ), there existsj∗ ∈ Jφ
and preds(a) = {p̃j∗};

(g) for all j∈ Jφ, there exist a sequencēx of vari-
ables ofL and p̃j(x̄) ∈ atoms(ψ) satisfying,
for all a ∈ atoms(ψ) and preds(a) = {p̃j},
a = p̃j(x̄); if there exists a∗ ∈ qatoms(ψ)

and preds(a∗) = {p̃j}, then there exists
Qxp̃j(x̄) ∈ qatoms(ψ) satisfying, for all
a ∈ qatoms(ψ) and preds(a) = {p̃j}, a =
Qxp̃j(x̄);

(h) for all a ∈ qatoms(Sφ), there existsj∗ ∈ Jφ
and preds(a) = {p̃j∗};

(i) for all j∈ Jφ, there exist a sequencēx of vari-
ables ofL and p̃j(x̄) ∈ atoms(Sφ) satisfying,
for all a ∈ atoms(Sφ) and preds(a) = {p̃j},
a = p̃j(x̄); if there exists a∗ ∈ qatoms(Sφ)
and preds(a∗) = {p̃j}, then there exists
Qxp̃j(x̄) ∈ qatoms(Sφ) satisfying, for all
a ∈ qatoms(Sφ) and preds(a) = {p̃j}, a =
Qxp̃j(x̄);

(j) tcons(Sφ)⊆ tcons(φ).
(II) There exist JT ⊆ {(i, j) | i ≥ n0} and ST ⊆

SimOrdClL∪{ p̃j |j∈JT} such that

(a) there exists an interpretationA for L and
A |= T if and only if there exists an interpre-
tationA′ for L ∪{p̃j |j ∈ JT} andA′ |= ST ,
satisfyingA= A′|L ;

(b) if T ⊆F FormL , then JT ⊆F {(i, j) | i ≥ n0},
‖JT‖ ≤ 2· |T|; ST ⊆F SimOrdClL∪{ p̃j |j∈JT},

|ST | ∈ O(|T|2); the number of all elemen-
tary operations of the translation of T to
ST , is in O(|T|2); the time and space com-
plexity of the translation of T to ST , is in
O(|T|2 · log(1+n0+ |T|));

(c) for all a ∈ qatoms(ST), there existsj∗ ∈ JT
and preds(a) = {p̃j∗};

(d) for all j∈ JT , there exist a sequencēx of vari-
ables ofL and p̃j(x̄) ∈ atoms(ST) satisfying,
for all a ∈ atoms(ST) and preds(a) = {p̃j},
a = p̃j(x̄); if there exists a∗ ∈ qatoms(ST)
and preds(a∗) = {p̃j}, then there exists
Qxp̃j(x̄) ∈ qatoms(ST) satisfying, for all
a ∈ qatoms(ST) and preds(a) = {p̃j}, a =
Qxp̃j(x̄);

(e) tcons(ST)⊆ tcons(T).
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Proof. Technical using interpolation.

Let nθ ∈ N andθ ∈ FormL . There existsθ′ ∈
FormL such that

(a) θ′ ≡ θ;
(b) |θ′| ≤ 2 · |θ|; θ′ can be built up via a pos-

torder traversal ofθ with #O(θ) ∈ O(|θ|)
and the time, space complexity inO(|θ| ·
(log(1+nθ)+ log|θ|));

(c) θ′ does not contain¬;
(d) θ′ ∈ TconsL ; or 1 is not a subformula of

θ′; for every subformula ofθ′ of the form
ε1 ⋄ ε2, ⋄ ∈ {∧,∨}, εi 6= 0,1, {ε1,ε2} 6⊆
TconsL ; for every subformula ofθ′ of the
form ε1 → ε2, ε1 6= 0,1, ε2 6= 1, {ε1,ε2} 6⊆
TconsL ;

(e) tcons(θ′)⊆ tcons(θ).

(13)

The proof is by induction on the structure ofθ.

Let l ∈ LitL . There existsC∈SimOrdClL such
that

(a) for every interpretationA for L, for all e∈
SA, A |=e l if and only if A |=e C;

(b) |C| ≤ 3 · |l |, C can be built up froml with
#O(l) ∈ O(|l |).

(14)

In Table 1, for every form ofl , C is assigned so that
for every interpretationA for L, for all e∈ SA,A |=e l
if and only ifA |=e C.

Let nθ ∈ N, θ ∈ FormL − TconsL , (13c–e)
hold for θ; x̄ be a sequence of variables,
vars(θ) ⊆ vars(x̄) ⊆ VarL ; i = (nθ, ji) ∈
{(nθ, j) | j ∈ N}, p̃i ∈ P̃, ar(p̃i) = |x̄|.
There exist J = {(nθ, j) | ji + 1 ≤ j ≤
nJ} ⊆ {(nθ, j) | j ∈ N}, ji ≤ nJ, i 6∈ J;
a CNF ψs ∈ FormL∪{ p̃i}∪{ p̃j |j∈J}, Ss ⊆F

SimOrdClL∪{ p̃i}∪{ p̃j |j∈J}, s= +,−, such that
for boths,

(15)

Table 1: Translation ofl to C, a,b∈ AtomL −TconsL , c̄∈
CL , d ∈ QAtomL .

Case l C |l | |C|

1 a a≖ 1 |a| |a|+2≤ 3 · |l |

2 a→ 0 a≖ 0 |a|+2 |a|+2≤ 3 · |l |

3 c̄→ b c̄≺ b∨ c̄≖ b |b|+2 2· |b|+4≤ 3 · |l |

4 a→ c̄ a≺ c̄∨a≖ c̄ |a|+2 2· |a|+4≤ 3 · |l |

5 a→ b a≺ b∨a≖ b |a|+ |b|+1 2· |a|+2 · |b|+2≤ 3 · |l |

6 (a→ 0)→ 0 0≺ a |a|+4 |a|+2≤ 3 · |l |

7 (a→ b)→ b b≺ a∨b≖ 1 |a|+2 · |b|+2 |a|+2 · |b|+3≤ 3 · |l |

8 a→ d a≺ d∨a≖ d |a|+ |d|+1 2· |a|+2 · |d|+2≤ 3 · |l |

9 d → a d≺ a∨d ≖ a |a|+ |d|+1 2· |a|+2 · |d|+2≤ 3 · |l |

(a) ‖J‖ ≤ |θ|−1;
(b) there exists an interpretationA for L ∪

{p̃i} andA |= p̃i(x̄)→ θ ∈ FormL∪{ p̃i} if
and only if there exists an interpretationA′

for L ∪ {p̃i}∪ {p̃j |j ∈ J} andA′ |= ψ+,
satisfyingA= A

′|L∪{ p̃i};
(c) there exists an interpretationA for L ∪

{p̃i} andA |= θ → p̃i(x̄) ∈ FormL∪{ p̃i} if
and only if there exists an interpretationA′

for L ∪ {p̃i}∪ {p̃j |j ∈ J} andA′ |= ψ−,
satisfyingA= A

′|L∪{ p̃i};
(d) there exists an interpretationA for L ∪

{p̃i} andA |= p̃i(x̄)→ θ ∈ FormL∪{ p̃i} if
and only if there exists an interpretationA′

for L ∪ {p̃i}∪ {p̃j |j ∈ J} andA′ |= S+,
satisfyingA= A′|L∪{ p̃i};

(e) there exists an interpretationA for L ∪
{p̃i} andA |= θ → p̃i(x̄) ∈ FormL∪{ p̃i} if
and only if there exists an interpretationA′

for L ∪ {p̃i}∪ {p̃j |j ∈ J} andA′ |= S−,
satisfyingA= A′|L∪{ p̃i};

(f) |ψs| ≤ 15· |θ| · (1+ |x̄|), ψs can be built up
from θ and f̃0(x̄) via a preorder traversal
of θ with #O(θ, f̃0(x̄)) ∈ O(|θ| · (1+ |x̄|));

(g) |Ss| ≤ 15· |θ| · (1+ |x̄|), Ss can be built up
from θ and f̃0(x̄) via a preorder traversal
of θ with #O(θ, f̃0(x̄)) ∈ O(|θ| · (1+ |x̄|));

(h) for all a∈ qatoms(ψs), there existsj∗ ∈ J
andpreds(a) = {p̃j∗};

(i) for all j ∈ {i} ∪ J, p̃j(x̄) ∈ atoms(ψs)
satisfying, for all a ∈ atoms(ψs)
and preds(a) = {p̃j}, a = p̃j(x̄);
p̃i 6∈ preds(qatoms(ψs)), for all j ∈ J,
if there exists a∗ ∈ qatoms(ψs) and
preds(a∗) = {p̃j}, then there exists
Qxp̃j(x̄) ∈ qatoms(ψs) satisfying, for all
a ∈ qatoms(ψs) and preds(a) = {p̃j},
a= Qxp̃j(x̄);

(j) for all a∈ qatoms(Ss), there existsj∗ ∈ J
andpreds(a) = {p̃j∗};

(k) for all j ∈ {i} ∪ J, p̃j(x̄) ∈ atoms(Ss)
satisfying, for all a ∈ atoms(Ss)
and preds(a) = {p̃j}, a = p̃j(x̄);
p̃i 6∈ preds(qatoms(Ss)), for all j ∈ J,
if there exists a∗ ∈ qatoms(Ss) and
preds(a∗) = {p̃j}, then there exists
Qxp̃j(x̄) ∈ qatoms(Ss) satisfying, for all
a ∈ qatoms(Ss) and preds(a) = {p̃j},
a= Qxp̃j(x̄);

(l) tcons(θ) = tcons(ψs) = tcons(Ss).

The proof is by induction on the structure ofθ using
the interpolation rules in Tables 2–5.

(I) By (13) for nφ, φ, there existsφ′ ∈ FormL

An�Order�Hyperresolution�Calculus�for�Gödel�Logic�with�Truth�Constants

43



Table 2: Binary interpolation rules for∧ and∨.

Case Laws

θ = θ1∧θ2

Positive interpolation
p̃i(x̄)→ θ1∧θ2

(p̃i(x̄)→ p̃i1
(x̄))∧ (p̃i(x̄)→ p̃i2

(x̄))∧ (p̃i1
(x̄)→ θ1)∧ (p̃i2

(x̄)→ θ2)
(6) (16)

|Consequent|= 9+4 · |x̄|+ | p̃i1
(x̄)→ θ1|+ | p̃i2

(x̄)→ θ2| ≤ 13· (1+ |x̄|)+ | p̃i1
(x̄)→ θ1|+ | p̃i2

(x̄)→ θ2|

Positive interpolation
p̃i(x̄)→ θ1∧θ2

{p̃i(x̄)≺ p̃i1
(x̄)∨ p̃i(x̄)≖ p̃i1

(x̄), p̃i(x̄) ≺ p̃i2
(x̄)∨ p̃i(x̄)≖ p̃i2

(x̄), p̃i1
(x̄)→ θ1, p̃i2

(x̄)→ θ2}
(17)

|Consequent|= 12+8 · |x̄|+ | p̃i1
(x̄)→ θ1|+ | p̃i2

(x̄)→ θ2| ≤ 15· (1+ |x̄|)+ | p̃i1
(x̄)→ θ1|+ | p̃i2

(x̄)→ θ2|

Negative interpolation
θ1∧θ2 → p̃i(x̄)

(p̃i1
(x̄)→ p̃i(x̄)∨ p̃i2

(x̄)→ p̃i(x̄))∧ (θ1 → p̃i1
(x̄))∧ (θ2 → p̃i2

(x̄))
(8) (18)

|Consequent|= 9+4 · |x̄|+ |θ1 → p̃i1
(x̄)|+ |θ2 → p̃i2

(x̄)| ≤ 13· (1+ |x̄|)+ |θ1 → p̃i1
(x̄)|+ |θ2 → p̃i2

(x̄)|

Negative interpolation
θ1∧θ2 → p̃i(x̄)

{p̃i1
(x̄)≺ p̃i(x̄)∨ p̃i1

(x̄)≖ p̃i(x̄), p̃i2
(x̄)≺ p̃i(x̄)∨ p̃i2

(x̄)≖ p̃i(x̄),θ1 → p̃i1
(x̄),θ2 → p̃i2

(x̄)}
(19)

|Consequent|= 12+8 · |x̄|+ |θ1 → p̃i1
(x̄)|+ |θ2 → p̃i2

(x̄)| ≤ 15· (1+ |x̄|)+ |θ1 → p̃i1
(x̄)|+ |θ2 → p̃i2

(x̄)|

θ = θ1∨θ2

Positive interpolation
p̃i(x̄)→ (θ1∨θ2)

(p̃i(x̄)→ p̃i1
(x̄)∨ p̃i(x̄)→ p̃i2

(x̄))∧ (p̃i1
(x̄)→ θ1)∧ (p̃i2

(x̄)→ θ2)
(5) (20)

|Consequent|= 9+4 · |x̄|+ | p̃i1
(x̄)→ θ1|+ | p̃i2

(x̄)→ θ2| ≤ 13· (1+ |x̄|)+ | p̃i1
(x̄)→ θ1|+ | p̃i2

(x̄)→ θ2|

Positive interpolation
p̃i(x̄)→ (θ1∨θ2)

{p̃i(x̄)≺ p̃i1
(x̄)∨ p̃i(x̄)≖ p̃i1

(x̄)∨ p̃i(x̄)≺ p̃i2
(x̄)∨ p̃i(x̄)≖ p̃i2

(x̄), p̃i1
(x̄)→ θ1, p̃i2

(x̄)→ θ2}
(21)

|Consequent|= 12+8 · |x̄|+ | p̃i1
(x̄)→ θ1|+ | p̃i2

(x̄)→ θ2| ≤ 15· (1+ |x̄|)+ | p̃i1
(x̄)→ θ1|+ | p̃i2

(x̄)→ θ2|

Negative interpolation
(θ1∨θ2)→ p̃i(x̄)

(p̃i1
(x̄)→ p̃i(x̄))∧ (p̃i2

(x̄)→ p̃i(x̄))∧ (θ1 → p̃i1
(x̄))∧ (θ2 → p̃i2

(x̄))
(7) (22)

|Consequent|= 9+4 · |x̄|+ |θ1 → p̃i1
(x̄)|+ |θ2 → p̃i2

(x̄)| ≤ 13· (1+ |x̄|)+ |θ1 → p̃i1
(x̄)|+ |θ2 → p̃i2

(x̄)|

Negative interpolation
(θ1∨θ2)→ p̃i(x̄)

{p̃i1
(x̄)≺ p̃i(x̄)∨ p̃i1

(x̄)≖ p̃i(x̄), p̃i2
(x̄)≺ p̃i(x̄)∨ p̃i2

(x̄)≖ p̃i(x̄),θ1 → p̃i1
(x̄),θ2 → p̃i2

(x̄)}
(23)

|Consequent|= 12+8 · |x̄|+ |θ1 → p̃i1
(x̄)|+ |θ2 → p̃i2

(x̄)| ≤ 15· (1+ |x̄|)+ |θ1 → p̃i1
(x̄)|+ |θ2 → p̃i2

(x̄)|

such that (13a–e) hold fornφ, φ, φ′. We distin-
guish three cases forφ′. Case 1: φ′ ∈ TconsL −
{1}. We put Jφ = /0 ⊆ {(nφ, j) | j ∈ N}, ψ = φ′ ∈
FormL , Sφ = {�} ⊆F SimOrdClL . Case 2:φ′ = 1.
We put Jφ = /0 ⊆ {(nφ, j) | j ∈ N}, ψ = 1 ∈ FormL ,
Sφ = /0 ⊆F SimOrdClL . Case 3:φ′ 6∈ TconsL . We
put x̄ = varseq(φ′), ji = 0, i = (nφ, ji), ar(p̃i) =
|x̄|. We get by (15) fornφ, φ′, x̄, i, p̃i that there
exist J = {(nφ, j) |1 ≤ j ≤ nJ} ⊆ {(nφ, j) | j ∈ N},
ji ≤ nJ, i 6∈ J, a CNF ψ+ ∈ FormL∪{ p̃i}∪{ p̃j |j∈J},
S+ ⊆F SimOrdClL∪{ p̃i}∪{ p̃j |j∈J}, and (15a,b,d,f–l)
hold for φ′, x̄, p̃i, J, ψ+, S+. We put nJφ = nJ,

Jφ = {(nφ, j) | j ≤nJφ}⊆{(nφ, j) | j ∈N}, ψ= p̃i(x̄)∧
ψ+ ∈ FormL∪{ p̃j |j∈Jφ}, Sφ = {p̃i(x̄) ≖ 1} ∪ S+ ⊆F

SimOrdClL∪{ p̃j |j∈Jφ}. (II) straightforwardly follows
from (I).

The described translation produces order clausal
theories in some restrictive form, which will be
utilised in inference using our order hyperresolution
calculus to get shorter deductions in average case. Let
P⊆ P̃ andS⊆ OrdClL∪P. S is admissible iff

(a) for alla∈ qatoms(S), preds(a)⊆ P;

(b) for all p̃ ∈ P, there exist a sequence ¯x of vari-
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Table 3: Binary interpolation rules for→.

Case Laws

θ = θ1 → θ2,θ2 6= 0

Positive interpolation
p̃i(x̄)→ (θ1 → θ2)

(p̃i(x̄)→ p̃i2
(x̄)∨ p̃i1

(x̄)→ p̃i2
(x̄))∧ (θ1 → p̃i1

(x̄))∧ (p̃i2
(x̄)→ θ2)

(9), (8) (24)

|Consequent|= 9+4 · |x̄|+ |θ1 → p̃i1
(x̄)|+ | p̃i2

(x̄)→ θ2| ≤ 13· (1+ |x̄|)+ |θ1 → p̃i1
(x̄)|+ | p̃i2

(x̄)→ θ2|

Positive interpolation
p̃i(x̄)→ (θ1 → θ2)

{p̃i(x̄) ≺ p̃i2
(x̄)∨ p̃i(x̄)≖ p̃i2

(x̄)∨ p̃i1
(x̄)≺ p̃i2

(x̄)∨ p̃i1
(x̄)≖ p̃i2

(x̄),θ1 → p̃i1
(x̄), p̃i2

(x̄)→ θ2}
(25)

|Consequent|= 12+8 · |x̄|+ |θ1 → p̃i1
(x̄)|+ | p̃i2

(x̄)→ θ2| ≤ 15· (1+ |x̄|)+ |θ1 → p̃i1
(x̄)|+ | p̃i2

(x̄)→ θ2|

Negative interpolation
(θ1 → θ2)→ p̃i(x̄)

((p̃i1
(x̄)→ p̃i2

(x̄))→ p̃i2
(x̄)∨ p̃i(x̄))∧ (p̃i2

(x̄)→ p̃i(x̄))∧ (p̃i1
(x̄)→ θ1)∧ (θ2 → p̃i2

(x̄))
(11), (3), (1) (26)

|Consequent|= 13+6 · |x̄|+ | p̃i1
(x̄)→ θ1|+ |θ2 → p̃i2

(x̄)| ≤ 13· (1+ |x̄|)+ | p̃i1
(x̄)→ θ1|+ |θ2 → p̃i2

(x̄)|

Negative interpolation
(θ1 → θ2)→ p̃i(x̄)

{p̃i2
(x̄) ≺ p̃i1

(x̄)∨ p̃i2
(x̄)≖ 1∨ p̃i(x̄)≖ 1, p̃i2

(x̄)≺ p̃i(x̄)∨ p̃i2
(x̄)≖ p̃i(x̄), p̃i1

(x̄)→ θ1,θ2 → p̃i2
(x̄)}

(27)

|Consequent|= 15+8 · |x̄|+ | p̃i1
(x̄)→ θ1|+ |θ2 → p̃i2

(x̄)| ≤ 15· (1+ |x̄|)+ | p̃i1
(x̄)→ θ1|+ |θ2 → p̃i2

(x̄)|

Table 4: Unary interpolation rules for→.

Case Laws

θ = θ1 → 0

Positive interpolation
p̃i(x̄)→ (θ1 → 0)

(p̃i(x̄)→ 0∨ p̃i1
(x̄)→ 0)∧ (θ1 → p̃i1

(x̄))
(9), (8) (28)

|Consequent|= 8+2 · |x̄|+ |θ1 → p̃i1
(x̄)| ≤ 13· (1+ |x̄|)+ |θ1 → p̃i1

(x̄)|

Positive interpolation
p̃i(x̄)→ (θ1 → 0)

{p̃i(x̄)≖ 0∨ p̃i1
(x̄)≖ 0,θ1 → p̃i1

(x̄)}
(29)

|Consequent|= 6+2 · |x̄|+ |θ1 → p̃i1
(x̄)| ≤ 15· (1+ |x̄|)+ |θ1 → p̃i1

(x̄)|

Negative interpolation
(θ1 → 0)→ p̃i(x̄)

((p̃i1
(x̄)→ 0)→ 0∨ p̃i(x̄))∧ (p̃i1

(x̄)→ θ1)
(11) (30)

|Consequent|= 8+2 · |x̄|+ | p̃i1
(x̄)→ θ1| ≤ 13· (1+ |x̄|)+ | p̃i1

(x̄)→ θ1|

Negative interpolation
(θ1 → 0)→ p̃i(x̄)

{0≺ p̃i1
(x̄)∨ p̃i(x̄)≖ 1, p̃i1

(x̄)→ θ1}
(31)

|Consequent|= 6+2 · |x̄|+ | p̃i1
(x̄)→ θ1| ≤ 15· (1+ |x̄|)+ | p̃i1

(x̄)→ θ1|

ables ofL andp̃(x̄) ∈ atoms(S) satisfying, for all
a∈ atoms(S) andpreds(a) = {p̃}, a is an instance
of p̃(x̄) of L ∪P; if there existsa∗ ∈ qatoms(S)
andpreds(a∗) = {p̃}, then there existsQxp̃(x̄) ∈
qatoms(S) satisfying, for alla ∈ qatoms(S) and
preds(a) = {p̃}, a is an instance ofQxp̃(x̄) of
L ∪P.

(a) and (b) imply that for allQxa,Q′x′a′ ∈ qatoms(S),
if preds(a) = preds(a′), then Q = Q′, x = x′,
boundindset(Qxa) = boundindset(Q′x′a′).

Theorem 3.4. Let n0 ∈ N, φ ∈ FormL , T ⊆

FormL . There exist JφT ⊆ {(i, j) | i ≥ n0} and Sφ
T ⊆

SimOrdCl
L∪{ p̃j |j∈Jφ

T}
such that

(i) there exists an interpretationA for L andA |=
T, A 6|= φ if and only if there exists an interpre-
tationA′ for L ∪{p̃j |j ∈ Jφ

T} andA′ |= Sφ
T , sat-

isfyingA= A′|L ;

(ii) if T ⊆F FormL , then JφT ⊆F {(i, j) | i ≥

n0}, ‖Jφ
T‖ ∈ O(|T| + |φ|); Sφ

T ⊆F

SimOrdCl
L∪{ p̃j |j∈Jφ

T}
, |Sφ

T | ∈ O(|T|2 + |φ|2);
the number of all elementary operations of the
translation of T andφ to Sφ

T , is in O(|T|2+ |φ|2);
the time and space complexity of the translation
of T andφ to Sφ

T , is in O(|T|2 · log(1+ n0 +
|T|)+ |φ|2 · (log(1+n0)+ log|φ|));

(iii) Sφ
T is admissible;

(iv) tcons(Sφ
T)⊆ tcons(φ)∪ tcons(T).

Proof. We get by Lemma 3.3(II) forn0 + 1, T
that there existJT ⊆ {(i, j) | i ≥ n0 + 1}, ST ⊆
SimOrdClL∪{ p̃j |j∈JT}, and 3.3(II a–e) hold forn0+1,
T, JT , ST . By (13) for n0, φ, there existsφ′ ∈ FormL

such that (13a–e) hold forn0, φ, φ′. We distinguish
three cases forφ′. Case 1:φ′ ∈ TconsL −{1}. We
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Table 5: Unary interpolation rules for∀ and∃.

Case

∀xθ1

Positive interpolation
p̃i(x̄)→∀xθ1

(p̃i(x̄)→∀x p̃i1
(x̄))∧ (p̃i1

(x̄)→ θ1)
(32)

|Consequent|= 6+2 · |x̄|+ | p̃i1
(x̄)→ θ1| ≤ 13· (1+ |x̄|)+ | p̃i1

(x̄)→ θ1|

Positive interpolation
p̃i(x̄)→∀xθ1

{p̃i(x̄) ≺ ∀x p̃i1
(x̄)∨ p̃i(x̄)≖ ∀x p̃i1

(x̄), p̃i1
(x̄)→ θ1}

(33)

|Consequent|= 10+4 · |x̄|+ | p̃i1
(x̄)→ θ1| ≤ 15· (1+ |x̄|)+ | p̃i1

(x̄)→ θ1|

Negative interpolation
∀xθ1 → p̃i(x̄)

(∀x p̃i1
(x̄)→ p̃i(x̄))∧ (θ1 → p̃i1

(x̄))
(34)

|Consequent|= 6+2 · |x̄|+ |θ1 → p̃i1
(x̄)| ≤ 13· (1+ |x̄|)+ |θ1 → p̃i1

(x̄)|

Negative interpolation
∀xθ1 → p̃i(x̄)

{∀x p̃i1
(x̄)≺ p̃i(x̄)∨∀x p̃i1

(x̄)≖ p̃i(x̄),θ1 → p̃i1
(x̄)}

(35)

|Consequent|= 10+4 · |x̄|+ |θ1 → p̃i1
(x̄)| ≤ 15· (1+ |x̄|)+ |θ1 → p̃i1

(x̄)|

∃xθ1

Positive interpolation
p̃i(x̄)→∃xθ1

(p̃i(x̄)→∃x p̃i1
(x̄))∧ (p̃i1

(x̄)→ θ1)
(36)

|Consequent|= 6+2 · |x̄|+ | p̃i1
(x̄)→ θ1| ≤ 13· (1+ |x̄|)+ | p̃i1

(x̄)→ θ1|

Positive interpolation
p̃i(x̄)→∃xθ1

{p̃i(x̄) ≺ ∃x p̃i1
(x̄)∨ p̃i(x̄)≖ ∃x p̃i1

(x̄), p̃i1
(x̄)→ θ1}

(37)

|Consequent|= 10+4 · |x̄|+ | p̃i1
(x̄)→ θ1| ≤ 15· (1+ |x̄|)+ | p̃i1

(x̄)→ θ1|

Negative interpolation
∃xθ1 → p̃i(x̄)

(∃x p̃i1
(x̄)→ p̃i(x̄))∧ (θ1 → p̃i1

(x̄))
(38)

|Consequent|= 6+2 · |x̄|+ |θ1 → p̃i1
(x̄)| ≤ 13· (1+ |x̄|)+ |θ1 → p̃i1

(x̄)|

Negative interpolation
∃xθ1 → p̃i(x̄)

{∃x p̃i1
(x̄)≺ p̃i(x̄)∨∃x p̃i1

(x̄)≖ p̃i(x̄),θ1 → p̃i1
(x̄)}

(39)

|Consequent|= 10+4 · |x̄|+ |θ1 → p̃i1
(x̄)| ≤ 15· (1+ |x̄|)+ |θ1 → p̃i1

(x̄)|

put Jφ
T = JT ⊆ {(i, j) | i ≥ n0 + 1} ⊆ {(i, j) | i ≥ n0}

andSφ
T = ST ⊆ SimOrdCl

L∪{ p̃j |j∈Jφ
T}

. Case 2:φ′ = 1.

We put Jφ
T = /0 ⊆ {(i, j) | i ≥ n0} and Sφ

T = {�} ⊆
SimOrdClL . Case 3: φ′ 6∈ TconsL . We put x̄ =
varseq(φ′), ji = 0, i = (n0, ji), ar(p̃i) = |x̄|. We
get by (15) forn0, ∀x̄φ′, x̄, i, p̃i that there existJ =
{(n0, j) |1≤ j ≤ nJ}⊆{(n0, j) | j ∈N}, ji ≤nJ, i 6∈ J,
S−⊆F SimOrdClL∪{ p̃i}∪{ p̃j |j∈J}, and (15e,g,j–l) hold

for ∀x̄φ′, x̄, p̃i, J, S−. We putJφ
T = JT ∪ {i}∪ J ⊆

{(i, j) | i ≥ n0} and Sφ
T = ST ∪ {p̃i(x̄) ≺ 1} ∪ S− ⊆

SimOrdCl
L∪{ p̃j |j∈Jφ

T}
.

Corollary 3.5. Let n0 ∈ N, φ ∈ FormL , T ⊆

FormL . There exist JφT ⊆ {(i, j) | i ≥ n0} and Sφ
T ⊆

SimOrdCl
L∪{ p̃j |j∈Jφ

T}
such that

(i) T |= φ if and only if Sφ
T is unsatisfiable;

(ii) if T ⊆F FormL , then JφT ⊆F {(i, j) | i ≥

n0}, ‖Jφ
T‖ ∈ O(|T| + |φ|); Sφ

T ⊆F

SimOrdCl
L∪{ p̃j |j∈Jφ

T}
, |Sφ

T | ∈ O(|T|2 + |φ|2);
the number of all elementary operations of the
translation of T andφ to Sφ

T , is in O(|T|2+ |φ|2);
the time and space complexity of the translation
of T andφ to Sφ

T , is in O(|T|2 · log(1+ n0 +
|T|)+ |φ|2 · (log(1+n0)+ log|φ|));

(iii) Sφ
T is admissible;

(iv) tcons(Sφ
T)⊆ tcons(φ)∪ tcons(T).

Proof. A straightforward consequence of Theo-
rem 3.4.

4 ORDER HYPERRESOLUTION
RULES

At first, we introduce some basic notions and notation
concerning chains of order literals. A chainΞ of L is a
sequenceΞ = ε0⋄0 υ0, . . . ,εn⋄n υn, εi ⋄i υi ∈ OrdLitL ,
such that for alli < n, υi = εi+1. ε0 is the beginning
element ofΞ andυn the ending element ofΞ. ε0 Ξυn
denotesΞ together with its respective beginning and
ending element. LetΞ = ε0 ⋄0 υ0, . . . ,εn ⋄n υn be a
chain of L. Ξ is an equality chain ofL iff, for all
i ≤ n, ⋄i =≖. Ξ is an increasing chain ofL iff there
existsi∗ ≤ n such that⋄i∗ =≺. Ξ is a contradiction
of L iff Ξ is an increasing chain ofL of the form
ε0 Ξ0 or 1Ξυn or ε0 Ξε0. Let S⊆ OrdClL be unit
andΞ = ε0 ⋄0 υ0, . . . ,εn ⋄n υn be a chain| an equality
chain| an increasing chain| a contradiction ofL. Ξ
is a chain| an equality chain| an increasing chain| a
contradiction ofS iff, for all i ≤ n, εi ⋄i υi ∈ S.

Let W̃ = {w̃i |i ∈ I} such thatW̃ ∩ (FuncL ∪
{ f̃0}) = /0; W̃ is an infinite countable set of
new function symbols. LetL contain a con-
stant (nullary function) symbol. LetP ⊆ P̃ and
S ⊆ OrdClL∪P. We denoteGOrdClL = {C|C ∈
OrdClL is closed} ⊆ OrdClL , GInstL (S) = {C|C ∈
GOrdClL is an instance of S ofL} ⊆ GOrdClL ,
ordtcons(S) = {c̄1 ≺ c̄2 | c̄1, c̄2 ∈ tcons(S),c1 < c2} ⊆
GOrdClL . A basic order hyperresolution calculus is
defined in Table 6. The basic order hyperresolution
calculus can be generalised to an order hyperresolu-
tion one in Table 7. LetL0 = L ∪ P, a reduct of
L ∪ W̃∪P, andS0 = /0 ⊆ GOrdClL0 | OrdClL0. Let
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Table 6: Basic order hyperresolution rules.

(Basic order hyperresolution rule) (40)

l0∨C0, . . ., ln∨Cn ∈ Sκ−1
n∨

i=0

Ci ∈ Sκ

;

l0, . . ., ln is a contradiction ofLκ−1.

∨n
i=0Ci is a basic order hyperresolvent ofl0∨C0, . . ., ln∨Cn.

(Basic order trichotomy rule) (41)

a,b∈ atoms(Sκ−1),{a,b} 6⊆ TconsL ,qatoms(S) 6= /0
a≺ b∨a≖ b∨b≺ a∈ Sκ

.

a≺ b∨a≖ b∨b≺ a is a basic order trichotomy resolvent ofa andb. (Basic order∀-quantification rule) (42)

∀xa∈ qatoms∀(Sκ−1)

∀xa≺ aγ∨∀xa≖ aγ ∈ Sκ
;

t ∈ GTermLκ−1
, γ = x/t ∈ SubstLκ−1

,dom(γ) = {x}= vars(a).

∀xa≺ aγ∨∀xa≖ aγ is a basic order∀-quantification resolvent of∀xa. (Basic order∃-quantification rule) (43)

∃xa∈ qatoms∃(Sκ−1)

aγ ≺ ∃xa∨aγ ≖ ∃xa∈ Sκ
;

t ∈ GTermLκ−1
, γ = x/t ∈ SubstLκ−1

,dom(γ) = {x}= vars(a).

aγ ≺ ∃xa∨aγ ≖ ∃xa is a basic order∃-quantification resolvent of∃xa. (Basic order∀-witnessing rule) (44)

∀xa∈ qatoms∀(Sκ−1),b∈ atoms(Sκ−1)∪qatoms(Sκ−1)

aγ ≺ b∨b≖ ∀xa∨b≺ ∀xa∈ Sκ
;

w̃∈ W̃−FuncLκ−1
,ar(w̃) = |freetermseq(∀xa), freetermseq(b)|, γ = x/w̃(freetermseq(∀xa), freetermseq(b)) ∈ SubstLκ ,dom(γ) = {x} = vars(a).

aγ ≺ b∨b≖ ∀xa∨b≺ ∀xa is a basic order∀-witnessing resolvent of∀xaandb. (Basic order∃-witnessing rule) (45)

∃xa∈ qatoms∃(Sκ−1),b∈ atoms(Sκ−1)∪qatoms(Sκ−1)

b≺ aγ∨∃xa≖ b∨∃xa≺ b∈ Sκ
;

w̃∈ W̃−FuncLκ−1
,ar(w̃) = |freetermseq(∃xa), freetermseq(b)|, γ = x/w̃(freetermseq(∃xa), freetermseq(b)) ∈ SubstLκ ,dom(γ) = {x} = vars(a).

b≺ aγ∨∃xa≖ b∨∃xa≺ b is a basic order∃-witnessing resolvent of∃xaandb.

D = C1, . . . ,Cn, Cκ ∈ GOrdClL∪W̃∪P | OrdClL∪W̃∪P,
n ≥ 1. D is a deduction ofCn from S by basic
order hyperresolution iff, for all 1≤ κ ≤ n, Cκ ∈
ordtcons(S)∪GInstLκ−1(S), or there exist 1≤ j∗k ≤
κ−1, k = 1, . . . ,m, such thatCκ is a basic order re-
solvent ofCj∗1

, . . . ,Cj∗m ∈ Sκ−1 using Rule (40)–(45)
with respect toLκ−1 andSκ−1; D is a deduction ofCn
from Sby order hyperresolution iff, for all 1≤ κ ≤ n,
Cκ ∈ ordtcons(S)∪S, or there exist 1≤ j∗k ≤ κ− 1,
k = 1, . . . ,m, such thatCκ is an order resolvent of
C′

j∗1
, . . . ,C′

j∗m
∈ SVr

κ−1 using Rule (46)–(51) with respect

to Lκ−1 andSκ−1 whereC′
j∗k

is a variant ofCj∗k
∈ Sκ−1

of Lκ−1; Lκ andSκ are defined by recursion on 1≤
κ ≤ n as follows:

Lκ =







Lκ−1∪{w̃} in case of Rule(44), (45) |
(50), (51),

Lκ−1 else;

Sκ = Sκ−1∪{Cκ} ⊆ GOrdClLκ | OrdClLκ ,

SVr
κ = VrntLκ(Sκ)⊆ OrdClLκ .

D is a refutation ofS iff Cn =�. We denote

cloBH (S) = {C| there exists a deduction of C from S

by basic order hyperresolution}

⊆ GOrdClL∪W̃∪P,

cloH (S) = {C| there exists a deduction of C from S

by order hyperresolution}

⊆ OrdClL∪W̃∪P.

Lemma 4.1 (Lifting Lemma). Let L contain a con-
stant symbol. Let P⊆ P̃ and S⊆ OrdClL∪P. Let
C ∈ cloBH (S). There exists C∗ ∈ cloH (S) such that
C is an instance of C∗ of L ∪W̃∪P.

Proof. Straightforward.

Lemma 4.2 (Reduction Lemma). Let L contain a
constant symbol. Let P⊆ P̃ and S⊆ OrdClL∪P.
Let {

∨ki
j=0 εi

j ⋄
i
j υi

j ∨Ci | i ≤ n} ⊆ cloBH (S) such that
for all S ∈ Sel({{ j | j ≤ ki}i | i ≤ n}), there ex-
ists a contradiction of{εi

S (i) ⋄
i
S (i) υi

S (i) | i ≤ n} ⊆
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Table 7: Order hyperresolution rules.

(Order hyperresolution rule) (46)

k0∨

j=0

ε0
j ⋄

0
j υ0

j ∨

m0∨

j=1

l0j , . . .,
kn∨

j=0

εn
j ⋄

n
j υn

j ∨
mn∨

j=1

lnj ∈ SVr
κ−1

( n∨

i=0

mi∨

j=1

l ij

)

θ ∈ Sκ

;

for all i < i′ ≤ n, freevars(
∨ki

j=0 εi
j ⋄

i
j υi

j ∨
∨mi

j=1 l ij )∩ freevars(
∨ki′

j=0 εi′
j ⋄

i′
j υi′

j ∨
∨mi′

j=1 l i
′
j ) = /0,

θ ∈ mguLκ−1

(∨k0
j=0 ε0

j ⋄
0
j υ0

j , l
0
1, . . ., l

0
m0

, . . . ,
∨kn

j=0 εn
j ⋄

n
j υn

j , l
n
1, . . ., l

n
mn ,{υ0

0,ε
1
0}, . . .,{υn−1

0 ,εn
0},{a,b}

)

,

dom(θ) = freevars
(
{εi

j ⋄
i
j υi

j | j ≤ ki , i ≤ n},{l ij |1≤ j ≤ mi , i ≤ n}
)
,a= ε0

0,b= 1 or a= υn
0,b= 0 or a= ε0

0,b= υn
0, there exists i∗ ≤ n such that⋄i∗

0 =≺ .

(∨n
i=0

∨mi
j=1 l ij

)
θ is an order hyperresolvent of

∨k0
j=0 ε0

j ⋄
0
j υ0

j ∨
∨m0

j=1 l0j , . . . ,
∨kn

j=0 εn
j ⋄

n
j υn

j ∨
∨mn

j=1 lnj .

(Order trichotomy rule) (47)

a,b∈ atoms(SVr
κ−1),{a,b} 6⊆ TconsL ,qatoms(S) 6= /0

a≺ b∨a≖ b∨b≺ a∈ Sκ
;

vars(a)∩vars(b) = /0.

a≺ b∨a≖ b∨b≺ a is an order trichotomy resolvent ofa andb.

(Order∀-quantification rule) (48)

∀xa∈ qatoms∀(Sκ−1)

∀xa≺ a∨∀xa≖ a∈ Sκ
.

∀xa≺ a∨∀xa≖ a is an order∀-quantification resolvent of∀xa.

(Order∃-quantification rule) (49)

∃xa∈ qatoms∃(Sκ−1)

a≺ ∃xa∨a≖ ∃xa∈ Sκ
.

a≺ ∃xa∨a≖ ∃xa is an order∃-quantification resolvent of∃xa.

(Order∀-witnessing rule) (50)

∀xa∈ qatoms∀(SVr
κ−1),b∈ atoms(SVr

κ−1)∪qatoms(SVr
κ−1)

aγ ≺ b∨b≖ ∀xa∨b≺ ∀xa∈ Sκ
;

freevars(∀xa)∩ freevars(b) = /0, w̃∈ W̃−FuncLκ−1
,ar(w̃) = |freetermseq(∀xa), freetermseq(b)|,

γ = x/w̃(freetermseq(∀xa), freetermseq(b))∪ id|vars(a)−{x} ∈ SubstLκ ,dom(γ) = {x}∪ (vars(a)−{x}) = vars(a).

aγ ≺ b∨b≖ ∀xa∨b≺ ∀xa is an order∀-witnessing resolvent of∀xaandb.

(Order∃-witnessing rule) (51)

∃xa∈ qatoms∃(SVr
κ−1),b∈ atoms(SVr

κ−1)∪qatoms(SVr
κ−1)

b≺ aγ∨∃xa≖ b∨∃xa≺ b∈ Sκ
;

freevars(∃xa)∩ freevars(b) = /0, w̃∈ W̃−FuncLκ−1
,ar(w̃) = |freetermseq(∃xa), freetermseq(b)|,

γ = x/w̃(freetermseq(∃xa), freetermseq(b))∪ id|vars(a)−{x} ∈ SubstLκ ,dom(γ) = {x}∪ (vars(a)−{x}) = vars(a).

b≺ aγ∨∃xa≖ b∨∃xa≺ b is an order∃-witnessing resolvent of∃xaandb.

GOrdClL∪W̃∪P. There exists/0 6= I∗ ⊆ {i | i ≤ n} such

that
∨

i∈I∗ Ci ∈ cloBH (S).

Proof. Straightforward.

Lemma 4.3(Unit Lemma). LetL contain a constant
symbol. Let P⊆ P̃ and S⊆ OrdClL∪P. Let � 6∈

cloBH (S)= {
∨kι

j=0ει
j ⋄

ι
j υι

j | ι< γ}, γ≤ω. There exists
S∗ ∈ Sel({{ j | j ≤ kι}ι | ι < γ}) such that there does
not exist a contradiction of{ει

S∗(ι) ⋄
ι
S∗(ι) υι

S∗(ι) | ι <
γ} ⊆ GOrdClL∪W̃∪P.

Proof. An immediate consequence of König’s
Lemma and Lemma 4.2.

We are in position to prove the refutational sound-
ness and completeness of the order hyperresolution
calculus. Let{0,1} ⊆ X ⊆ TconsL . X is admissi-
ble with respect to suprema and infima iff, for all
Y1,Y2 ⊆X and

∨∨∨
Y1 =

∧∧∧
Y2, either

∨∨∨
Y1 ∈Y1,

∧∧∧
Y2 ∈Y2,

or
∨∨∨

Y1 6∈Y1,
∧∧∧

Y2 6∈Y2.

Theorem 4.4(Refutational Soundness and Complete-
ness). Let L contain a constant symbol. Let P⊆ P̃,
S⊆ OrdClL∪P, tcons(S) be admissible with respect to

FCTA�2014�-�International�Conference�on�Fuzzy�Computation�Theory�and�Applications

48



suprema and infima.� ∈ cloH (S) if and only if S is
unsatisfiable.

Proof. (=⇒) Let A be a model ofS for L ∪P and
C ∈ cloH (S) ⊆ OrdClL∪W̃∪P. Then there exists an
expansionA′ of A to L ∪ W̃∪P such thatA′ |= C.
The proof is by complete induction on the length of a
deduction ofC from S by order hyperresolution. Let
�∈ cloH (S) andA be a model ofSfor L ∪P. Hence,
there exists an expansionA′ of A to L ∪ W̃∪P such
thatA′ |= �, which is a contradiction;S is unsatisfi-
able.

(⇐=) Let � 6∈ cloH (S). Then, by Lemma 4.1 for
S, �, � 6∈ cloBH (S); we haveL, P̃, W̃ are countable,
P ⊆ P̃, S⊆ OrdClL∪P, cloBH (S) ⊆ GOrdClL∪W̃∪P;
P, L ∪P, OrdClL∪P, S, L ∪ W̃∪P, GOrdClL∪W̃∪P,

cloBH (S) are countable; there existsγ1 ≤ ω and� 6∈

cloBH (S)= {
∨kι

j=0ει
j ⋄

ι
j υι

j | ι< γ1}; by Lemma 4.3 for
S, there existsS∗ ∈ Sel({{ j | j ≤ kι}ι | ι < γ1}) and
there does not exist a contradiction of{ει

S∗(ι) ⋄
ι
S∗(ι)

υι
S∗(ι) | ι < γ1} ⊆ GOrdClL∪W̃∪P. We put S =

{ει
S∗(ι) ⋄

ι
S∗(ι) υι

S∗(ι) | ι < γ1} ⊆ GOrdClL∪W̃∪P. Then

S ⊇ ordtcons(S) is countable, unit,(q)atoms(S) ⊆
(q)atoms(cloBH (S)). We put

UA =

{
GTermL∪P if qatoms(S) = /0,
GTermL∪W̃∪P else,

UA 6= /0,

and B = atoms(S) ∪ qatoms(S) ⊆ GAtomL∪W̃∪P ∪
QAtomL∪W̃∪P. We haveS is countable. Then
tcons(S) ⊆ atoms(ordtcons(S)) ⊆ atoms(S) ⊆ B ,
B = tcons(S) ∪ (B − tcons(S)), tcons(S) ∩ (B −
tcons(S)) = /0, atoms(S), qatoms(S), B , tcons(S),
B − tcons(S) are countable; there existγ2 ≤ ω and
a sequenceδ2 : γ2 −→ B − tcons(S) of B − tcons(S).
Let ε1,ε2 ∈B . ε1,ε2 iff there exists an equality chain
ε1 Ξε2 of S. Note that, is a binary symmetric transi-
tive relation onB . ε1⊳ε2 iff there exists an increasing
chainε1 Ξε2 of S. Note that⊳ is a binary transitive
relation onB .

0 6,1,1 6,0,0⊳1,1⋪0, (52)

for all ε ∈ B ,ε⋪0,1⋪ε,ε⋪ε.

The proof is straightforward; we have that there does
not exist a contradiction ofS. Note that⊳ is also
irreflexive and a partial strict order onB .

Let tcons(S)⊆ X ⊆ B . A partial valuationV is a
mappingV : X −→ [0,1] such thatV (0) = 0,V (1) =
1, for all c̄ ∈ tcons(S)∩CL , V (c̄) = c. We denote
dom(V ) = X, tcons(S)⊆ dom(V ) ⊆ B . We define a
partial valuationVα by recursion onα≤ γ2 in Table 8.

Table 8:Vα.

V0 = {(0,0),(1,1)}∪

{(c̄,c) | c̄∈ tcons(S)∩CL};

Vα = Vα−1∪{(δ2(α−1),λα−1)}

(1≤ α ≤ γ2 is a successor ordinal),

Eα−1 = {Vα−1(a) |a,δ2(α−1),a∈ dom(Vα−1)},

Dα−1 = {Vα−1(a) |a⊳δ2(α−1),a∈ dom(Vα−1)},

Uα−1 = {Vα−1(a) |δ2(α−1)⊳a,a∈ dom(Vα−1)},

λα−1 =

{∨∨∨
Dα−1+

∧∧∧
Uα−1

2
if Eα−1 = /0,

∨∨∨
Eα−1 else;

Vγ2 =
⋃

α<γ2

Vα (γ2 is a limit ordinal)

For all α ≤ α′ ≤ γ2, Vα is a partial valuation,
dom(Vα) = tcons(S)∪δ2[α], Vα ⊆ Vα′ .

(53)

The proof is by induction onα ≤ γ2.

For all α ≤ γ2, for all a,b∈ dom(Vα),

if a,b, thenVα(a) = Vα(b);
if a⊳b, thenVα(a)< Vα(b).

(54)

The proof is by induction onα ≤ γ2 using the as-
sumption thattcons(S) is admissible with respect to
suprema and infima.

We putV = Vγ2, dom(V )
(53)
== tcons(S)∪δ2[γ2] =

B .

For all a,b∈ B = dom(V ),

if a,b, thenV (a) = V (b);
if a⊳b, thenV (a)< V (b);
if a= ∀xc, thenV (a) =

∧∧∧
u∈UA

V (c(x/u));
if a= ∃xc, thenV (a) =

∨∨∨
u∈UA

V (c(x/u)).

(55)

The proof. A straightforward consequence of (54).
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We put

if qatoms(S) = /0,

fA(u1, . . . ,uτ) = f (u1, . . . ,uτ),

f ∈ FuncL∪P,ui ∈ UA;

pA(u1, . . . ,uτ) =
{

V (p(u1, . . . ,uτ)) if p(u1, . . . ,uτ) ∈ B ,

0 else,

p∈ PredL∪P,ui ∈ UA;

A=
(
UA,{ fA | f ∈ FuncL∪P},

{pA | p∈ PredL∪P}
)
,

an interpretation forL ∪P;

if qatoms(S) 6= /0,

fA(u1, . . . ,uτ) = f (u1, . . . ,uτ),

f ∈ FuncL∪W̃∪P,ui ∈ UA;

pA(u1, . . . ,uτ) =
{

V (p(u1, . . . ,uτ)) if p(u1, . . . ,uτ) ∈ B ,

0 else,

p∈ PredL∪W̃∪P,ui ∈ UA;

A=
(
UA,{ fA | f ∈ FuncL∪W̃∪P},

{pA | p∈ PredL∪W̃∪P}
)
,

an interpretation forL ∪W̃∪P.

Hence, it is straightforward to prove that for all
a ∈ B and e ∈ SA, ‖a‖Ae = V (a); for all l ∈ S

and e ∈ SA, ‖l‖Ae = 1; for all C ∈ S and e ∈
SA, e|freevars(C) ∈ SubstL∪W̃∪P, dom(e|freevars(C)) =
freevars(C), range(e|freevars(C)) = /0, C(e|freevars(C)) ∈

cloBH (S), there exists l∗ ∈ C(e|freevars(C)) and
l∗ ∈ S, ‖l∗‖Ae = 1; there exists l∗∗ ∈ C and
l∗ = l∗∗(e|freevars(C)), ‖l∗∗‖Ae = ‖l∗∗(e|freevars(C))‖

A
e =

‖l∗‖Ae = 1; A |=e C; A |= S, A|L∪P |= S; S is satisfi-
able.

ConsiderS= {0≺ a}∪{a≺ 1
n |n∈N}⊆OrdClL ,

a∈ PredL −TconsL , arL (a) = 0. tcons(S) is not ad-
missible with respect to suprema and infima; for{0}

and{ 1
n |n∈ N},

∨∨∨
{0} =

∧∧∧
{ 1

n |n∈ N} = 0, 0∈ {0},
0 6∈ { 1

n |n ∈ N}. S is unsatisfiable; both the cases
‖a‖A = 0 and‖a‖A > 0 lead toA 6|= S for every in-
terpretationA for L. However,� 6∈ cloH (S) = S. So,
the condition ontcons(S) being admissible with re-
spect to suprema and infima, is necessary.

Corollary 4.5. Let L contain a constant symbol. Let
n0 ∈ N, φ ∈ FormL , T ⊆ FormL , tcons(T) be admis-
sible with respect to suprema and infima. There exist
Jφ

T ⊆ {(i, j) | i ≥ n0} and Sφ
T ⊆ SimOrdCl

L∪{ p̃j |j∈Jφ
T}

such that tcons(Sφ
T) is admissible with respect to

suprema and infima; T|= φ if and only if � ∈

cloH (Sφ
T).

Proof. A straightforward consequence of Corol-
lary 3.5 and Theorem 4.4.

In Table 9, we show thatφ = ∀x(q1(x)→ 0.3)→
(∃xq1(x)→ 0.5) ∈ FormL is logically valid using the
proposed translation to order clausal form and the or-
der hyperresolution calculus.

5 CONCLUSIONS

In the paper, we have proposed a modification of the
hyperresolution calculus from (Guller, 2012) which
is suitable for automated deduction with explicit par-
tial truth. The first-order Gödel logic is expanded
by a countable set of intermediate truth constants ¯c,
c∈ (0,1). We have modified translation of a formula
to an equivalent satisfiable finite order clausal theory,
consisting of order clauses. An order clause is a fi-
nite set of order literals of the formε1 ⋄ ε2 where⋄
is a connective either≖ or ≺. ≖ and≺ are inter-
preted by the equality and standard strict linear or-
der on[0,1], respectively. We have investigated the
so-called canonical standard completeness, where the
semantics of the first-order Gödel logic is given by the
standardG-algebra and truth constants are interpreted
by themselves. The modified hyperresolution calcu-
lus is refutation sound and complete for a countable
order clausal theory if the set of all truth constants
occurring in the theory is admissible with respect to
suprema and infima. This condition covers the case
of finite order clausal theories.

Let φ ∈ FormL ; φ contains a finite number of truth
constants. Then the problem thatφ is unsatisfiable
can be reduced to the deduction problemφ |= 0 (after
a constant number of steps). As an immediate conse-
quence of Corollary 3.5 and Theorem 4.4, ifφ |= 0,
then we can decide it after a finite number of steps.
This straightforwardly implies that the set of unsatis-
fiable formulae ofL (in the general first-order Gödel
logic with intermediate truth constants) is recursively
enumerable.
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Table 9: An example:φ = ∀x(q1(x)→ 0.3)→ (∃xq1(x)→ 0.5).

φ = ∀x(q1(x)→ 0.3)→ (∃xq1(x)→ 0.5)

{p̃0(x)≺ 1,
(
∀x(q1(x)→ 0.3)
︸ ︷︷ ︸

p̃1(x)

→ (∃xq1(x)→ 0.5
︸ ︷︷ ︸

p̃2(x)

)
)
→ p̃0(x)} (27)

{p̃0(x)≺ 1, p̃2(x)≺ p̃1(x)∨ p̃2(x)≖ 1∨ p̃0(x)≖ 1, p̃2(x)≺ p̃0(x)∨ p̃2(x)≖ p̃0(x), p̃1(x)→∀x(q1(x)→ 0.3
︸ ︷︷ ︸

p̃3(x)

),(∃xq1(x)
︸ ︷︷ ︸

p̃4(x)

→ 0.5
︸︷︷︸

p̃5(x)

)→ p̃2(x)} (33),(27)

{p̃0(x)≺ 1, p̃2(x)≺ p̃1(x)∨ p̃2(x)≖ 1∨ p̃0(x)≖ 1, p̃2(x)≺ p̃0(x)∨ p̃2(x)≖ p̃0(x), p̃1(x)≺ ∀x p̃3(x)∨ p̃1(x)≖ ∀x p̃3(x), p̃3(x)→ (q1(x)
︸ ︷︷ ︸

p̃6(x)

→ 0.3
︸︷︷︸

p̃7(x)

),

p̃5(x)≺ p̃4(x)∨ p̃5(x)≖ 1∨ p̃2(x)≖ 1, p̃5(x)≺ p̃2(x)∨ p̃5(x)≖ p̃2(x), p̃4(x)→∃x q1(x)
︸ ︷︷ ︸

p̃8(x)

,0.5≺ p̃5(x)∨0.5≖ p̃5(x)} (25),(37)

Sφ =

{

p̃0(x)≺ 1 [1]

p̃2(x)≺ p̃1(x)∨ p̃2(x)≖ 1∨ p̃0(x)≖ 1 [2]

p̃2(x)≺ p̃0(x) ∨ p̃2(x)≖ p̃0(x) [3]

p̃1(x)≺ ∀x p̃3(x)∨ p̃1(x)≖ ∀x p̃3(x) [4]

p̃3(x)≺ p̃7(x)∨ p̃3(x)≖ p̃7(x) ∨ p̃6(x)≺ p̃7(x)∨

p̃6(x)≖ p̃7(x) [5]

q1(x)≺ p̃6(x)∨q1(x)≖ p̃6(x) [6]

p̃7(x)≺ 0.3∨ p̃7(x)≖ 0.3 [7]

p̃5(x)≺ p̃4(x)∨ p̃5(x)≖ 1∨ p̃2(x)≖ 1 [8]

p̃5(x)≺ p̃2(x) ∨ p̃5(x)≖ p̃2(x) [9]

p̃4(x)≺ ∃x p̃8(x)∨ p̃4(x)≖ ∃x p̃8(x) [10]

p̃8(x)≺ q1(x)∨ p̃8(x)≖ q1(x) [11]

0.5≺ p̃5(x)∨0.5≖ p̃5(x)

}

[12]

Rule (46): [1][2] :

p̃2(x)≺ p̃1(x)∨ p̃2(x)≖ 1 [13]

Rule (46): [3][13] :

p̃2(x)≖ p̃0(x) ∨ p̃2(x)≺ p̃1(x) [14]

Rule (46): [1][13][14] :

p̃2(x)≺ p̃1(x) [15]

Rule (46): [8][15] :

p̃5(x)≺ p̃4(x)∨ p̃5(x)≖ 1 [16]

Rule (46): [9][16] :

p̃5(x)≖ p̃2(x) ∨ p̃5(x)≺ p̃4(x) [17]

Rule (46): [15][16][17] :

p̃5(x)≺ p̃4(x) [18]

Rule (48): ∀x p̃3(x) :

∀x p̃3(x)≺ p̃3(x)∨∀x p̃3(x)≖ p̃3(x) [19]

repeatedlyRule (46): [4][5][7][9][12][15][19] :

p̃6(x)≺ p̃7(x)∨ p̃6(x)≖ p̃7(x) [20]

Rule (51): ∃x p̃8(x),0.5 :

0.5≺ p̃8(w̃(0,0))∨ ∃x p̃8(x)≺ 0.5∨∃x p̃8(x)≖ 0.5 [21]

repeatedlyRule (46): [10][12][18][21] :

0.5≺ p̃8(w̃(0,0)) [22]

repeatedlyRule (46): [6][7][11][20];w̃(0,0) : [22] :

� [23]
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Gödel logic - General first-order case. In Rosa, A. C.,
Correia, A. D., Madani, K., Filipe, J., and Kacprzyk,
J., editors,IJCCI 2012 - Proceedings of the 4th In-
ternational Joint Conference on Computational Intel-
ligence, Barcelona, Spain, 5 - 7 October, 2012, pages
329–342. SciTePress.
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