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Abstract: Modelling biological systems is difficult due to insufficient knowledge about the internal components and 
organisation, and the complexity of the interactions within the system. At cellular level existing 
computational models of visual neurons can be derived by quantitatively fitting particular sets of 
physiological data using an input-output analysis where a known input is given to the system and its output 
is recorded. These models need to capture the full spatio-temporal description of neuron behaviour under 
natural viewing conditions. At a computational level we aspire to take advantage of state-of-the-art 
techniques to accurately model non-standard types of retinal ganglion cells. Using system identification 
techniques to express the biological input-output coupling mathematically, and computational modelling 
techniques to model highly complex neuronal structures, we will "identify" ganglion cell behaviour with 
visual scenes, and represent the mapping between perception and response automatically. 

1 INTRODUCTION 

Modelling biological systems is difficult due to 
insufficient knowledge about the internal 
components and organisation, and the complexity of 
the interactions within the system. System 
identification has emerged as a viable alternative to 
classical hypothesis testing for the understanding of 
biological systems and was first used to understand 
the responses of auditory neurons (De Boer, 1968). 
Using white noise stimuli as input, the output 
responses were recorded and inferences made on 
mapping the stimulus to the response. White noise 
stimulation is often selected to model biological 
vision systems (Sakai, 1988, Chichilnisky, 2001) as 
it is mathematically simple to analyse. However, it is 
unlikely that white noise stimuli would test the full 
function of a neuron’s behaviour (Talebi, 2012). 
Thus, any model developed with this stimulus could 
only be considered a subset of the biological model 
under certain conditions.  

 
In the work by Marmarelis (Marmarelis, 1972), the 
Wiener theory of nonlinear system identification 
was applied to study the underlying operation of the 
three stage neuronal structures in the catfish retina. 

Following from this work, the Volterra-Wiener 
method has been used extensively to model 
nonlinear biological systems (Victor, 1977, 1979, 
Marmarelis, 2004, Korenberg, 1996). However, 
computational effort increases geometrically with 
the kernel order and in interpretation of higher order 
kernels (Herikstad, 2011). Marmarelis and Zhao 
(Marmarelis, 1997) presented a way of overcoming 
these limitations by developing a perceptron type 
network with polynomial activation functions.  

Block-structured (Giri, 2010) or modular models 
in the form of cascaded or parallel configurations 
have been used to overcome the limitations of 
Volterra-Wiener models. Cascade models may take 
various forms such as linear-nonlinear (Ostojic, 
2011), nonlinear-linear, linear-nonlinear-linear, etc. 
In particular, linear-nonlinear models have been 
used to describe the processing in the retina (Pillow, 
2005).  

The generalised modular model proposed by 
Korenberg (Korenberg, 1991) employed parallel 
linear-nonlinear cascades generating spike outputs 
with a threshold-trigger function. To model specific 
neuron responses such as burstiness, refractoriness 
and gain control, Pillow (Pillow, 2008) amended the 
linear-nonlinear models with feedback terms. 
Correlated neuron activity was modelled through the 
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use of coupling filters (Pillow, 2008) to couple 
multiple linear-nonlinear models of individual cells.  

Parametric system identification modelling 
techniques also exist. The NARMAX (nonlinear 
auto-regressive moving average with exogenous 
inputs) model (Billings, 1984) has been used to 
model the nonlinear behaviour observed in the fly 
photoreceptors (Friederich, 2009, Song, 2009). The 
NARMAX modelling technique is suitable for 
application in a number of areas and has also been 
used to model robot behaviour (Kerr, 2010), iceberg 
calving and detecting and tracking time-varying 
causality for EEG data (Billings, 2013). Neural 
network approaches have also been used to model 
biological aspects of the vision system. For example 
Lau (Lau, 2002) used a two layer neural network 
with the backpropagation training algorithm to 
model the nonlinear responses of neurons in the 
visual cortex to visual stimuli. Similarly, Prenger 
(Prenger, 2004) used a multilayer feed-forward 
neural network to model the nonlinear stimulus-
response relationship in the primary visual cortex 
using natural images. 

In this paper we formalise and standardise the 
model development process by using system 
identification techniques (NARMAX modelling) to 
express the biological input-output coupling 
mathematically. We have used a NARMAX 
approach to obtain the models we need because: 
 

 The NARMAX model itself provides the 
executable code straight away, 

 The model is analysable, and gives us valuable 
information regarding 
 How the model achieves the task, 
 Whether the model is stable or not, 
 How the model will behave under certain 

operating conditions, and 
 How sensitive the model is to certain inputs, 

i.e. how “important” certain input are. 

In Section 2 we present the visual stimuli used in the 
neuronal recordings to obtain the physiological data 
and in Section 3 we present an overview of the 
NARMAX modelling approach. Experiments and 
results are presented in Section 4 with discussion in 
Section 5. 

2 NEURONAL DATA  

Recordings were obtained from isolated mice retinas 
under full field stimulation using a Gaussian white 
noise sequence as illustrated in Figure 1.  

 

Figure 1: Full-field Gaussian white noise sequence. 

The isolated retina was placed on a multi-electrode 
array, which recorded spike trains from many 
ganglion cells simultaneously. Stimuli were 
projected onto the isolated retina via a miniature 
cathode ray tube monitor. Spikes were sorted off-
line by a cluster analysis of their shapes, and spike 
times were measured relative to the beginning of 
stimulus presentation. In the experiments presented 
in this paper we analyse the response from an ON 
retinal ganglion cell (RGC). 

3 NARMAX MODELLING  

The NARMAX model is a difference equation that 
expresses the present value of the output as a 
nonlinear combination of previous values of the 
output, previous and/or present values of the input, 
and previous and/or present values of the noise 
signal. NARMAX is a parameter estimation 
methodology for identifying both the important 
model terms and the parameters of an unknown non-
linear dynamic system, such as a sensory neuron. 
For single-input single-output systems this model 
takes the form: 
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where )(ky , )(ku , )(ke  are the sampled output, 

input and unobservable noise sequences 
respectively, nenuny ,,  are the regression orders of 

)(ky , )(ku , )(ke  and d is a time delay. []F  is a 

nonlinear function and is typically taken to be a 
polynomial expansion of the arguments. Usually 
only the input and output measurements are 
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available and the investigator must process these 
signals to estimate a model of the system. 

The NARMAX methodology divides this 
problem into the following steps: 

 

 Structure detection; 
 Parameter estimation; 
 Model validation; 
 Prediction; 
 Analysis. 

 

These steps form an estimation toolkit that allows 
the user to build a concise mathematical description 
of the system (Billings and Chen, 1998). The 
procedure begins by determining the structure or the 
important model terms using a special orthogonal 
least squares procedure. This algorithm determines 
which dynamic and nonlinear terms should be in the 
model by computing the contribution that each 
potential model term makes to the system output. 
This allows the model to be built up term by term in 
a manner that exposes the significance of each new 
term that is added.  

Structure detection is a fundamental part of 
the NARMAX procedure because searching for the 
structure ensures that the model is as simple as 
possible and a model with good generalisation 
properties is obtained. This approach mimics 
analytical modelling methods where the important 
model terms are introduced first. Subsequently the 
model is refined by adding in less significant effects. 
The only difference is that in the NARMAX method 
the model terms can be identified from the data set. 

These procedures are now well established 
and have been used in many modelling domains. 
Once the structure of the model has been determined 
the unknown parameters in the model can be 
estimated. If correct parameter estimates are to be 
obtained the noise sequence, e(k) which is almost 
always unobservable, must be estimated and 
accommodated within the model. Model validation 
methods are then applied to determine if the model 
is adequate.  

Once the model has been determined to be 
adequate it can be used to predict the system output 
for different inputs. The model may also be used to 
study the characteristics of the system under 
investigation (Nehmzow, 2006). It is this latter 
aspect that is of particular interest in the work 
presented here. In this paper we have examined the 
suitability of NARMAX modelling to express the 
biological stimulus-response coupling 
mathematically and to validate the resulting 
stimulus-response couplings.  

4 MODEL IDENTIFICATION 
PROCEDURE AND ANALYSIS  

The proposed approach represents a decisive 
departure from current methods of generating retina 
models. We propose to "identify" (in the sense of 
system identification) the neuron’s behaviour with 
natural visual scenes, and to represent the mapping 
between perception and response automatically, 
using the NARMAX system identification 
technique. We will illustrate how the various neural 
networks within the layered retina structure can be 
modelled using efficient polynomials that 
incorporate the neuron's nonlinear behaviour and 
dynamics. The compact polynomial representation 
will demonstrate that the intricate retina neural 
networks may be modelled in a compact compressed 
form. 

4.1 Data Pre-processing 

The overall goal of the pre-processing stage is to 
manipulate the data so that they form a regression 
dataset, i.e. input-output corresponding to the 
stimulus-response. In this case the dataset will be 
single-input single-output. 

The Gaussian white noise is a stochastic highly 
interleaved stimuli spanning a wide range of visual 
inputs, is relatively robust to fluctuations in 
responsivity, avoids adaptation to strong or 
prolonged stimuli and is well suited to simultaneous 
measurements from multiple neurons. Examples of 
stimuli are presented in Figure 1 where each image 
in the sequence is presented sequentially to the 
isolated retina. As the stimulus has uniform intensity 
there is no need to extract the stimulus in the region 
of the receptive field. 

Recordings of the ganglion cell neural response 
(spikes) to the full-field stimulation were supplied 
for two different ganglion cells in the case of this 
dataset. Each file contains the recorded times of 
spikes in seconds. For example,  

[1.76304, 1.76912, 1.78504,…,546.63776].  
Using these recorded spike times we compute a 
continuous temporal spike rate using the standard 
method of binning and convolution with a window 
function. Using this method we then have a 
continuous valued input-output dataset. For 
example, in Figure 2 we have illustrated the input 
data (stimulus intensity), recorded spikes and 
computed spike rate using an alpha window function 
for 500 milliseconds of a recording. Figure 2(a) 
illustrates the stimulus intensity, Figure 2(b) 
illustrates the recorded spikes, and Figure 2(c) 
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illustrates the spike computed using a half wave 
rectified α function. 
 After this pre-processing stage we can use the 
system identification method to obtain a polynomial 
model that models the ganglion cells spike rate as a 
function of the stimulus intensity where the spatially 
uniform stimulus intensity is used as input (Figure 
2(a)) and the computed spike rate (Figure 2(c)) is 
used as output. 
 

Figure 2: (a) Temporal stimulus intensity; (b) recorded 
spikes; (c) computed spike rate for 500ms of a recording. 

4.2 Identifying the RGC Linear Model 

Using the NARMAX procedure outlined in Section 
3 we construct a NARMAX model with an input 
regression of nu = 10, corresponding to 200ms of 
stimulus time and a polynomial of order 1. The 
resulting model contained 11 terms and is presented 
in equation (2). 
 

nr(t)= +10.8820504569 
+0.4133355718   * u1(n-1) 
+5.7712836251   * u1(n-2) 
+11.1532223508 * u1(n-3) 
+5.4095799493   * u1(n-4) 
-0.9100060568    * u1(n-5) 
-2.2967796022    * u1(n-6) 
-1.5449416639    * u1(n-7) 
-0.8126715957    * u1(n-8) 
-1.1259153820    * u1(n-9) 
-1.4256504406      * u1(n-10) 

(2) 

Using a new test stimulus sequence we then evaluate 
the performance of this NARMAX model and 
compare it to the actual neuronal response to the test 
stimulus. Results are presented in Figure 3.  
 

 

Figure 3: Comparison of linear polynomial NARMAX 
model and actual neuron response to novel test stimulus 
sequence. 

Figure 3 (a) illustrates the actual recorded spike rate 
(blue) and the linear NARMAX model predicted 
spike rate (green). Figure 3 (b) illustrates the model 
error. We have also computed the RMSE as 20.92 
and present a full comparison of RMSE results in 
Table 1. 

4.3 Identifying a RGC Quadratic 
Model 

Again using the same NARMAX procedure we 
construct a quadratic NARMAX model with an 
input regression of nu = 10, corresponding to 200ms 
of stimulus time and a polynomial of order 2. The 
resulting quadratic polynomial model contained 26 
terms and is presented in equation (3). 

Figure 4 (a) illustrates the actual recorded 
spike rate (blue) and the quadratic NARMAX model 
predicted spike rate (green). Figure 4 (b) illustrates 
the model error. We have also computed the RMSE 
as 18.31 and present a full comparison of RMSE 
results in Table 1. Visual examination reveals both 
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the linear and quadratic NARMAX models perform 
similarly with similar errors although the quadratic 
model has a reduced error compared to the linear 
model. 

 
nr(t)= +5.96244435 

+5.70629880 * u1(n-2) 
+11.10949549 * u1(n-3) 
+5.38644092 * u1(n-4) 
-0.89662644 * u1(n-5) 
-2.17791043 * u1(n-6) 
-1.41390802 * u1(n-7) 
-0.75777998 * u1(n-8) 
-1.08523454 * u1(n-9) 
-1.33837116 * u1(n-10) 
+1.65057833 * u1(n-2)^2 
+4.28603998 * u1(n-3)^2 
-1.01260994 * u1(n-5)^2 
+4.84809445 * u1(n-2) * u1(n-3) 
+1.55113103 * u1(n-2) * u1(n-4) 
-0.63963641 * u1(n-2) * u1(n-5) 
-0.71240927 * u1(n-2) * u1(n-6) 
+3.30083736 * u1(n-3) * u1(n-4) 
-1.14246640 * u1(n-3) * u1(n-5) 
-1.76540112 * u1(n-3) * u1(n-6) 
-0.95766543 * u1(n-3) * u1(n-7) 
-0.66097265 * u1(n-3) * u1(n-9) 
-1.10149068 * u1(n-3) * u1(n-10) 
-2.13889232 * u1(n-4) * u1(n-5) 
-1.68797033 * u1(n-4) * u1(n-6) 
-1.03141419 * u1(n-5) * u1(n-6) 

(3) 

4.4 Comparison with Linear-nonlinear 
Model 

To provide further comparison for the NARMAX 
models we evaluate against a standard benchmark by 
computing the Linear-Nonlinear (LNL) model 
(Ostojic, 2011). The first stage in computing the 
Linear-Nonlinear model is to compute the spike 
triggered average (STA) which is the average 
stimulus preceding a spike.  
To compute the STA, the stimulus in the time 
window preceding each spike is extracted, and the 
resulting (spike-triggered) stimuli are averaged. 
Using the same dataset as the previous analysis we 
compute the STA and the results are presented in 
Figure 5.  Here we can see that the RGC is an ON 
cell due to the positive peak in the temporal response 
of the filter. We can also see that the cell has a 
temporal memory of approximately 150-100ms. The 
plot illustrates the average values of stimulus 
intensity that elicit a response from the cell. 

 

Figure 4: Comparison of quadratic polynomial NARMAX 
model and actual neuron response to novel test stimulus 
sequence. 

The second stage in the Linear-Nonlinear 
model is used to re-construct the ganglion cells 
nonlinearity. We using the standard approach 
(Ostojic, 2011) of plotting the actual response 
against the STA predicted response, binning the 
values and fitting a curve using a cumulative density 
function. Figure 6 illustrates the obtained non-
linearity. Next, we apply the STA and nonlinearity 
to the same test stimulus and compute the response. 
We compare this estimated response to the actual 
neuronal response and plot the results as before. 
Results are presented in Figure 7. 
 

Figure 5: Computed spike triggered average for ON cell. 
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Figure 6: Nonlinearity computed for ON cell. 

Figure 7 (a) illustrates the actual recorded spike rate 
(blue) and the LNL model predicted spike rate 
(green). Figure 7 (b) illustrates the model error. We 
have also computed the RMSE as 32.29 and present 
a full comparison of RMSE results in Table 1. The 
RMSE results illustrate that the quadratic NARMAX 
model performs best. We have also plotted the actual 
neural response, LNL model predicted response and 
the quadratic NARMAX model predicted response 
in Figure 8 to illustrate comparative model accuracy. 
Visual examination reveals the quadratic NARMAX 
model has improved accuracy over the LNL model 
and is comparable to the actual neural response. 

Figure 7: Comparison of Linear-Nonlinear model and 
actual neuron response to novel test stimulus sequence. 

Figure 8: Comparative evaluation of actual spike rate, 
linear nonlinear model and quadratic NARMAX model. 

Table 1: Summary of RMSE for linear NARMAX, 
quadratic NARMAX and Linear-Nonlinear models. The 
computed RMSE values illustrate that the quadratic 
NARMAX approach results in the best fitting model for 
the selected dataset. 

Method RMSE 
Linear NARMAX 20.92 
Quadratic NARMAX 18.31 
Linear-Nonlinear model 32.29 

5 CONCLUSIONS 

Modelling biological systems is difficult due to 
insufficient knowledge about the internal 
components and organisation, and the complexity of 
the interactions within the system. Existing 
computational models of visual neurons can be 
derived by quantitatively fitting particular sets of 
physiological data using an input-output analysis 
where a known input is given to the system and its 
output is recorded as illustrated in the Linear-
Nonlinear approach in Section 4.4.  

At a computational level we have presented 
the use of the NARMAX system identification 
technique to accurately model individual retinal 
ganglion cells as shown in Section 4.2 and Section 
4.3. We have presented a comparison of the actual 
neuronal response and provided a comparison with 
the actual neuronal response. Visual comparison 
illustrates that all the methods can model the 
neuronal response with accuracy although some 
errors are present. Computing the RMSE provides a 
more quantitative measure of error and the results 
summarised in Table 1 illustrate that the quadratic 
NARMAX model performs substantially better than 
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both the LNL model and the linear NARMAX 
model.  

Using NARMAX system identification 
techniques to express the biological input-output 
coupling mathematically we have modelled highly 
complex neuronal structures, and thus "identified" 
ganglion cell behaviour with visual scenes. These 
polynomial models represent the mapping between 
perception and response. The next stage in this work 
will be to increase the complexity of the stimulus by 
having spatially varying stimuli; we have already 
started to test the effectiveness of this using the 
natural image sequences.  
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