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Abstract: Web service composition builds a new value-added web service using existing web services. A web service 
may have many implementations, all of which have the same functionality, but may have different Quality 
of Service (QoS) values. Hence, a challenging issue of web service composition is how to meet QoS and to 
fulfil cloud customers’ expectations and preferences in the inherently dynamic environment of the Cloud. 
Addressing the QoS based web service selection and resource allocation is the focus of this paper. This 
challenge is a multi-objective optimization problem. To tackle this complex problem, we propose a new 
Penalty Genetic Algorithm (PGA) to help a Cloud provider quickly determine a set of services that compose 
the workflow of the composite web service. The proposed approach aims to, at the one hand, meet QoS 
constraints prioritized by the Cloud customer and, at the other hand, respect the resource constraints of the 
Cloud provider. To the best of our knowledge, this is the first attempt to handle the problem of the optimal 
selection of web services while taking into account the resource allocation in order to guarantee the QoS 
imposed by the Cloud customer and to maximize the profit of the Cloud provider. The experimental results 
of Penalty Genetic Algorithm show that it outperforms the Integer Programming method when the number 
of web services and the number of resources are large. 

1 INTRODUCTION 

Nowadays, web service composition is the ultimate 
solution for building successful Software as a 
Service application (SaaS) in the cloud environment 
(Espadas et al., 2013). Recently, Cloud providers 
have focused on developing SaaS that would be able 
to effectively address different levels of customer 
Quality of Service. In such context, introducing QoS 
in service composition (i.e. SaaS application) raises 
many challenges. Given a specific feature needed in 
a service composition (abstract service), several 
services (concrete services) realizing such a feature 
may be available. All concrete services 
corresponding to an abstract service are functionally 
equivalent and thus the choice among them can be 
dictated by QoS attributes. For instance, one may 
decide to choose the cheapest service, the fastest, or 
maybe a compromise between the two. Hence, given 
a composition, a relevant problem is to determine 
the set of concretizations (i.e., bindings between 
abstract and concrete services) that satisfy the QoS 
constraints imposed by the customer.  

Furthermore, the deployment of a composite 
service as a SaaS application in a cloud data centre 
introduces new challenges for SaaS resource 
management. Large-scale data centres usually 
consist of thousands of physical machines 
interconnected with network links. Virtualization 
technology is used to guarantee simultaneous use of 
resources in the physical servers. Thanks to the 
virtualization technology, a physical server is sliced 
into a number of virtual machines (VMs) (Qiang, 
2010). These VMs are assigned as a chunk of their 
physical servers' resources including processing 
capacity, memory and storage and host the deployed 
services. The VM must have sufficient capacities in 
order to achieve the performance level of the 
service, as dictated by the customer requirements. 
Due to the dynamic environment of the cloud data 
centre, where the workload of applications and the 
resources capacities keep changing over time, the 
placement of composite service is a challenging 
issue (Yusoh et al., 2012). The SaaS provider should 
consider the current resource capacities while 
placing the composite service with the desired QoS. 
It is not interesting to propose a good concretization 
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that reflects the QoS constraints imposed by the 
customer while ignoring the placement as well as the 
resource constraints.  

Previous research papers for QoS aware 
composition propose interesting applications of 
constraint handling methods and search strategies 
from operational or artificial intelligence research cf. 
(Canfora et al., 2005; Li et al., 2013). However, 
none of these approaches considers constraints on 
provider related resources as a guarantee for the 
desired QoS.  

Our research question is as follows: Given the 
abstract specification of a composite web service, 
how can we select a web service implementation for 
each of the tasks in the abstract specification so that 
the overall QoS of the composition is optimal, whilst 
accommodating constraints imposed by the provider 
resources?   

Finding a solution for this problem is NP-hard 
(Yusoh et al., 2012) and the  number of possible 
combinations of web service implementations for 
composite service grows as the number of tasks 
involved in the composite service and the number of 
web service implementations for each task increases. 
In addition, the constraints on the provider resources 
may make finding a feasible solution very difficult. 
Therefore, scalable selection methods are necessary 
to ensure a good quality composition solution in a 
short time. To this end, different strategies can be 
adopted like Integer Programming or meta-heuristic 
optimization algorithms like Simulated Annealing or 
Genetic Algorithms (GA). 

The remaining of this paper is organized as 
follows. Section 2 discusses the related work. The 
problem formulation is described in Section 3. 
Section 4 presents the proposed solution design 
whose evaluation is discussed in Section 5. The 
concluding remarks are presented in Section 6. 

2 RELATED WORK 

Several solutions to the service selection problem 
have been reported (Canfora et al., 2005; Wada et 
al., 2012; Wang et al., 2011). This problem consists 
in determining the set of concretizations that satisfy 
the QoS constraints imposed by the customer.  

(Canfora et al., 2005)propose an approach based 
on Genetic Algorithms to determine a set of concrete 
services to be bound to the abstract services 
composing the workflow of a composite service so 
as to meet the QoS constraints established in the 
SLA. Their approach aims also to optimize a 
function of some other QoS parameters. In their 

work, Canfora et al. do not address the selection of 
the necessary amount of resources while selecting 
the optimal service. 

(Wada et al., 2012) propose an optimization 
framework called Evolutionary multi objective 
service composition optimizer (E3). E3 defines a 
service deployment model and provides two multi 
objective genetic algorithms (GAs): E3-MOGA and 
Extreme-E3 (X-E3). Both of them produce a set of 
Pareto solutions for service compositions that satisfy 
the given SLAs. E3-MOGA and X-E3 determine 
how many instances of each concrete service to be 
selected in order to satisfy a certain SLA when a 
definition of a workflow and a set of abstract 
services are given. Similar to (Canfora et al., 2005)’s 
approach, this one offers no means to select the set 
of resources to run the selected services in order to 
guarantee the QoS constraints. In addition the 
proposed approach is not implemented on the cloud 
environment. 

(Wang et al., 2011) propose a QoS-aware service 
selection approach which consists of two phases. 
The first phase employs a cloud model to compute 
the QoS uncertainty for pruning redundant services 
while transforming the quantitative QoS to the 
qualitative QoS for the QoS uncertainty 
computation. The second phase aims to select the 
optimal services based on the mixed integer 
programming. Unlike our approach, this approach 
does not consider the user preferences in their QoS 
models. Besides, the service discovery ignores the 
resource selection issue. In our approach, we define 
weight values for each QoS using priority and the 
selection of the optimal service taking into account 
the resource allocation. 

Yusoh et al. (Yusoh et al., 2012) present the 
problem formulation and modelling of the multiple 
composite SaaS component placement in the cloud. 
They aim to reconfigure the initial placement by 
clustering the components, for instance the new 
placement can minimize the resources used while 
satisfying the SaaS SLA. In order to address this 
issue, a Grouping Genetic Algorithm (GGA) has 
been proposed and implemented. The SaaS 
placement approach tries to allocate the adequate 
resource in order to guarantee the SLA. This way of 
thinking is similar to our work. However, in their 
work, the SaaS application is considered as a black 
box (i.e a well-defined application) while in our 
work we consider both the dynamic selection 
services as well as the discovering resources that 
meet the QoS constraints. In addition, in their 
approach, the authors consider the response time of 
the SaaS only as the SLA attribute. Unlike our 
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approach, we consider the response time, the cost, 
the reliability and the throughput and we also 
consider a weight for each QoS Characteristics. 

Linlin et al. (Linlin et al., 2011)propose a 
resource allocation algorithms for SaaS providers 
who want to minimize infrastructure cost and SLA 
violations. The proposed algorithms are designed in 
a way to ensure that SaaS providers are able to 
manage the dynamic change of customers, mapping 
customer requests to infrastructure level parameters 
and handling heterogeneity of VM. They design and 
implement scheduling mechanisms to ensure the 
following issues. The scheduling mechanism 
determines where and which type of VM has to be 
initiated by incorporating the heterogeneity of VMs. 
Unlike our approach, this approach does not 
consider the service discovery. 

Several approaches have been proposed to deal 
with the resource allocation problem based on the 
application workload (Zhu and Agrawal, 2012; 
Papagianni et al., 2013; Karakoc et al., 2006; 
BangYu et al., 2007). In our review, we will not 
present these works, since they tackled only the 
resource allocation and neglected the service 
concretization problem. To the best of our 
knowledge, this is the first attempt to handle the 
service selection and the resource allocation in the 
cloud to guarantee the QoS constraint of the cloud 
customer and his preferences expressed by a weight 
for each QoS Characteristic.  

3 PROBLEM FORMULATION 

Our work aims to propose an approach for cloud 
provider to quickly determine, using a PGA, a set of 
concrete services to be bound to abstract services 
composing the workflow of a composite service. 
The binding must: 
 

1. Meet the QoS constraints expressed by the 
cloud customer. For example, the customer 
can have multiple QoS constraints for a 
composite service, such as minimal response 
time and price, maximal availability and 
reliability simultaneously;  

 
2. Optimize a function of some QoS 

Characteristics. The customer may want to 
minimize the response time while keeping 
the cost below a limit. The customer may 
also have preferences for the QoS 
characteristics, which can be expressed in 
terms of weighting of preferences; and 

3. Meet the resource constraints of the 
provider's IT infrastructure. For all service 
components placed in a virtual machine, the 
total requirements of the composite service 
must not exceed the VM's capacities which 
are defined by processing, memory, network 
as well as storage capacities. 

According to the above requirements, we 
formulate the problem as follows:  
 A= {A1, A2, A3, A4,... An} is a set of abstract 

services involved in a composition scenario 
where n is the total number of web services in 
the composition;  

 Si = {Si1, Si2, Si3, Si4,... Sim} is a set of 
concrete services Si for each of the abstract 
service Ai where and m is the total number of 
services for abstract service Ai. 

3.1 Concrete Services Related 
Constraints: SC 

We define the Concrete services related Constraints 
by: 
 v ,v , v , and v  are the QoS Characteristic 

values for concrete web service Sij.  
 MSij is the Memory requirement for concrete 

service Sij. 
 TSij is the task size of concrete service Sij.  
 SSij is the storage requirement of concrete 

service Sij. 

3.2 Customer Related Constraints: CC 

We define the set of QoS Constraints imposed by the 
Customer by CC where the inequality CC(X)  0 
(Coello, 2010). The QoS constraints are assertions 
on the overall values of QoS characteristics, e.g.: 
Cost < 50 and ResponseTime < 100. 

We consider w1, w2, w3, and w4 as the weights 
for QoS characteristics:  response time, cost, 
reliability and throughput where: 
 

∑ w 1 (1) 

3.3 Resources related Constraints: RC 

We consider R= {r1, r2, r3,…rk}as the set of 
resources available within a Cloud Provider Data 
centre where rk∈ R is the r  virtual machine (or 
resource). Each resource rk is defined by four basic 
attributes: Mrk, Srk , Prk and Urk where:  

 
 Mrk: is the Memory capacity of the resource rk. 
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 Mrkt: is the Memory capacity of the resource rk 
at time t. 

 Srk: is the Storage capacity of the resource rk. 
 Srkt: is the Storage capacity of the resource rk 

at time t. 
 Prk: is the Processing capacity of the resource 

rk. 
 Prkt: is the Processing capacity of the resource 

rk at time t. 
 Urk: is the Utilization rate of the resource rk.  
 Urkt: is the Utilization rate of the resource rk at 

time t. 
We define the set of resource capacities 

constraints by the following constraints. The first 
one is imposed on the memory capacity if the plan X 
(the concrete web service) is placed on the 
resourcer 	. The second one is related to the storage 
capacity. The last one concerns the processing 
capacity. 
 

∃	r 	 ∈ R M
∈ 	

	M M 	|	P X rk (2) 

∃	r 	 ∈ R	/	 S
∈ 	

		S S 	 (3) 

∃	r 	 ∈ R	/	 P 	
∈ 	

P P 	 (4) 

 
The total response time of the candidate 

composite web service is defined based on three 
essential attributes: (i) the set of rules proposed by 
(Cardoso, 2002) to compute all the possible paths 
within the composite service, (ii) the processing time 
of the candidate composite service in a selected 
resource r, and (iii) the sum of the different paths. 
By relying on these attributes the response time RT 
(X) is determined. The RT must not exceed the 
response time imposed by the customer. This 
constraint is defined as:  
 

∃	 	 ∈ 	/		RT X 	  (5) 
 

The utilization rate of the resource r where the 
plan X is executed should not be overloaded. 
 

∃	 	 ∈ 	/	 	100% (6) 
 

So, the problem is to find X (x1, x2, x3, xn), 
meaning abstract web service Ai uses concrete 
service Six such that:  

∗

∗  

(7) 

 
Where F(X) is maximal subject to SC, CC and 

RC (Concrete services-related Constraints, 
Customer-related Constraints, and Resource-related 
Constraints respectively), Function F(X) returns the 
overall score of the web service selection plan X, in 
which:  
 V  = max (v , v 	, v 	 … . . v 	  :  the 

internal v , v 	, v 	 … . . v 	 in the max 
function refers to all values from the 
considered QoS vectors referring to the 
relevant QoS characteristic l. V denotes the 
maximal value of the lth QoS characteristic 
(1 l 4),  

 V denotes the minimal value of the lth QoS 
characteristic (1 l 4),  

 V X  is the value of lth QoS Characteristic of 
the composite service under the web service 
selection plan X.  

The chosen objective function for an individual 
X is based on the simple additive weight method for 
multiple QoS proposed by Jaeger in (Jaeger, 2006).   

In the following part, we will discuss the design 
of the penalty based GA to address the QoS-based 
web service selection with constraints on the 
underlying resources.  

4 IMPLEMENTATION OF A 
GENETIC ALGORITHM FOR 
QoS BASED SELECTION IN 
THE CLOUD 

GA is a search heuristic that mimics the process 
of natural selection where the survival of the fittest 
is the major principal. In a genetic algorithm, 
a population of candidate solutions (called 
individuals, creatures, or phenotypes) to an 
optimization problem is evolved toward better 
solutions. Each candidate solution has a set of 
properties (its chromosomes or genotype) which can 
be mutated and altered. Applied to the selection 
problem, an individual represents an assignment of a 
candidate for each abstract service and thus can be 
represented by a tuple. A population is a set of 
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individuals and, thus, represents a set of concrete 
service assignments. The fitness depicts a measure 
that is considered by a genetic algorithm to select 
individuals of the population for further evolution. 

The problem formulated in section 3 is a 
constrained optimization problem: how to achieve 
the best QoS for a composite service while taking 
into account the customer constraints (the optimality 
issue), and how to ensure that a composite web 
service satisfies the provider resources (the 
resources responsible for achieving the desired 
QoS). Traditionally GAs can only address 
unconstraint problems. However, they can integrate 
some constraints handling a method to take into 
account constraints such as penalty function and 
repairing methods among others(Coello, 2010). In 
our work we propose a penalty based GA that 
applies a penalty to an infeasible solution that 
violates constraints.  
 

 

Figure 1: Problem encoding in the chromosome. 

4.1 Chromosome Representation 

To allow the GA to search for a solution, we first 
need to encode the problem with a suitable 
chromosome. In our case, the latter is represented by 
an integer array with a number of items equals to the 
number of distinct abstract services composing the 
service. Each item, in turn, contains an index to the 
array of the concrete services matching the abstract 
service. Figure 1 shows an illustrative example of 
the encoding procedure, where a composite web 
service is represented by a chromosome with five 
genes and having a set of constraints. In the 
chromosome, X1=2 means the first abstract service 
X1 uses the second concrete web service from the 
candidate web service set for the abstract web 
service X1, and X2 =9 means the second abstract 

service X2 uses the ninth concrete web service from 
the candidate web service set for abstract web 
service X2. 

4.2 Infeasible Solutions 

The chromosomes generated in a solution may be 
infeasible due to some constraint violations.  (See 
Section 3 for the constraints). All the solutions that 
do not comply with theses constraints are considered 
as infeasible solutions, and their fitness value is 
decreased by a penalty. The infeasible solutions 
have less chance to survive in the evolution process 
than feasible ones. 

4.3 The Crossover and the Mutation 
Operators 

The crossover operator is the standard one-point 
crossover (i.e., a single crossover point selects 
randomly the parts of the two parents after the 
crossover positions are exchanged to form two 
offspring).  

The mutation operator randomly selects an 
abstract service (i.e., a position in the chromosome) 
and randomly replaces the corresponding concrete 
service with another one among those available.  

4.4 The Fitness Function 

In our work, the fitness function (8) is defined taking 
into account two considerations: i) it should penalize 
infeasible individuals in the sense that it should have 
less fitness than a feasible one; and ii) it should 
penalize more those individuals that violate more 
constraints. We suppose that the penalty factors do 
not depend on the current generation number in any 
way, and therefore, remain constant during the entire 
evolutionary process; that is, we adopt a static 
penalty strategy as defined in equation (9). 

 
Fitness Function= F(X)+P(X) (8) 

 

P(X) =
0 if ϑ X 0

0.9 , otherwise (9) 

 
Note that the proposed fitness function (equation 

(8)) includes both the objective function defined in 
section 3 and a penalty value P(X) given to the 
individual X. The penalty function (equation (9)) 
adopts the most cited static penalty proposed by 
Kuri morales in (Kuri Morales and C.V. Quezada, 
1998), where ϑ X  is the total number of constraint 
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violations of X, and ϑ stands for the maximal 
number of the constraint violations. According to the 
fitness function, if an individual is feasible its 
penalty value is 0. Otherwise, the penalty value is 

computed based on the expression 0.9  , 

which guarantees that more constraints an infeasible 
individual violates, the higher penalty it has. 
Besides, the value of the fitness function of a 
fesasible individual is between 0 and 1, since the 
objective function is in the range [0,1]. However an 
infeasible individual’s fitness function is 

F(X)	 0.9  , the value of which is less than 0, 

which guarantee that an infeasible individual has 
always less fitness value than any feasible one. 

4.5 Penalty Genetic Algorithm 

A penalty-based GA follows the same process as a 
classic GA, its major specificity is the fitness 
function which contains a penalty strategy to penalty 
infeasible individuals that violate customer-related 
constraints, concrete services-related constraints or 
resources-related constraints or both. Figure 2depicts 
the pseudo code of the PGA: the population is 
initialized randomly. The fitness is computed for 
each individual and the population then undergoes 
the genetic operations and fitter individuals will be 
copied in the next generation. This process will be 
conducted iteratively until the termination condition 
is met.  

 

Figure 2: Pseudo code of the Penalty Genetic Algorithm. 

 

 

5 EVALUATION 

The Penalty GA described above has been 
implemented using Java. Our evaluation covers three 
factors: the number of composite services involved 
in the problem, the number of concrete services for 
each abstract service and the number of the available 
resources in the data centre. These three parts of the 
evaluation permit to determine how the variation of 
the number of the three cited factors affects the 
computation time and solution quality of the PGA. 
These experiments show also the scalability and the 
effectiveness of the Penalty GA (PGA) tested on a 
number of problem instances with different sizes and 
complexities. To better position our algorithm, we 
compare its performance with the Integer 
Programming method (IP) one.  

The experiments were carried out on a desktop 
computer with 3 GHz Intel Core 2 Duo CPU and 
4GB RAM. The parameter settings for the PGA are 
listed in Table 1. These parameters were obtained 
through doing trials on randomly generated test 
problems. We tested the PGA for 10 test cases 
which represent combinations of the three factors 
cited above. For the Integer Programming, we 
performed each test case only once, because the 
execution times and the solution found are fixed for 
each test. 

Table 1: Parameters setting for PGA. 

Attribute Value/Condition 
Population size 100 

Initial population Randomly generated 
solutions 

Crossover probability 0,80 
Mutation probability 0,10 

Termination condition No improvement for the best 
individual in 30 consecutive 

generations 
 
 Test cases with different numbers of 

composite web services 
 

We build six tests by fixing the number of resources 
and with different numbers of composite services 
ranging from 5 to 30 with an increment of 5, each of 
which has ten abstract services. From this test case, 
we can construct the other four problems. This 
experimentation shows how the quality of the 
solution and the computation time of the PGA may 
be affected by the number of composite web 
services.  

Figure 3 shows that the computation time, when 
the number of composite service is small (5) Integer 
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Programming outperforms PGA. For about 6 
Composite services the performances of the two 
approaches tend to be the same. Then, while the 
PGA is able to keep its timing performance closely 
to linear, the computation time of the Integer 
Programming increases in super linear trend. So we 
conclude that when we have a large number of 
composite services, PGAs should be preferred 
instead of Integer Programming. And in most cases, 
the number of composed services is higher than 6. 

 

 

Figure 3: the computation time of the PGA and IP when 
varying the number of composite services. 

 Test problem with different numbers of 
concrete services for each abstract service 
 

We construct six tests with different concrete web 
service by fixing the number of resources, the 
number of composite web services and varying the 
number of concrete web services from 5 to 30. 
The growth trend of the computation time of the 
Penalty GA, as the number of concrete services 
increases, is shown in Figure 4. From the figure we 
can see that when the number of concrete service is 
small (5-9) Integer Programming exceeds PGA. For 
about 10 concrete services the performances of the 
two approaches tend to be the same. Then, while the 
Penalty GA is able to keep its timing performance 
almost constant, this is not the case for Integer 
Programming, for which we see an exponential 
growth. So we conclude that when we have a large 
number of concrete services available for each 
abstract service, GAs should be preferred instead of 
Integer Programming. This will be the case of 
widely used services, such as hotel booking, weather 
services or e-commerce services. On the other hand, 
whenever the number of concrete services available 
is limited, Integer Programming is preferred. This 
would be the case of very specific (e.g., scientific 
computation) services. 
 

 

Figure 4:  the computation time of PGA and IP when 
varying the number of concrete services. 

 Test problem with different resources 
 

We construct six tests with different number of 
resources by fixing the number of composite web 
services, concrete web services and varying the 
number of resource from 150 to 600 VMs with an 
increment of 150. This experiment is an evaluation 
of how the number of the resources affects the 
computation time and solution quality of the Penalty 
GA and Integer Programming. Figure 5visualizes the 
computation time taken by the Penalty GA and the 
Integer Programming for finding the solutions for 
each of the test cases. It shows that when the number 
of VM is small, the PGA and IP are similar, but 
when the number of VM is up to 450 VMs, the GPA 
grows slowly and outweighs IP which progresses 
linearly. 
 

 

Figure 5: Computation time of PGA and IP when varying 
the number of VM. 

6 CONCLUSION 

This paper studied the application of penalty genetic 
algorithms to the problem of QoS based web service 
composition deployed on the cloud. It proposed and 
developed a penalty genetic algorithm to address this 
problem, which is characterized by complex, highly 
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constrained and multi objective problem. More 
precisely, our contribution allows SaaS provider to 
quickly determine, using a penalty based GA, a set 
of services (concrete services) to be bound to 
abstract services composing the workflow of a 
composite service. The binding both optimizes a 
function of some QoS characteristics requested by 
the customer with some weighing preferences, and 
meets the resource constraints of the provider. 
Indeed, for all service components placed in a virtual 
machine, the total requirements of the composite 
service must not exceed the VM's capacities. These 
goals were successfully achieved by an evaluation 
showing the effectiveness of the Penalty GA. To the 
best of our knowledge, this is the first attempt to 
handle the service selection and resource allocation 
in a dynamic Cloud environment.  

Based on our preliminary experimental results, 
the proposed Penalty GA often produces a feasible 
solution for all test problems. We are in the process 
of conducting further experimental evaluations to 
further confirm these results. 
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