Complementarity between Simulation and Formal Verification

Transformation of PROMELA Models into FDDEVS Models: Application to a Case Study

Aznam Yacoub, Maamar Hamri and Claudia Frydman

Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296, 13397, Marseille, France

Keywords: Formal Methods, Spin, PROMELA, Formal Verification, DEVS, FDDEVS, Simulation, Transformation.

Abstract: Discrete Event System Specification (DEVS) is a simple comprehensive way to describe complex discrete-event systems in a hierarchical way. Few years ago, Finite and Deterministic DEVS (FDDEVS) was introduced to support verification analysis of a subclass of DEVS problems, in the same way as formal methods. This paper presents guidelines to transform behavioral models used in formal methods like critical sections, especially described in PROMELA in this case, into FDDEVS models, and shows the benefits of such a transformation.

1 INTRODUCTION

With the growing complexity of systems, designing stable and robust systems has become harder and harder. Nowadays, creating reliable software, hardware or systems without any bug needs a lot of strong knowledge and experience. But for many years, two disciplines which make these tasks easier have emerged: on the one hand, Modeling and Simulation (M&S) allow working on a model and to perform some tests, which are generally too expensive or impractical to do on the real system. In order to design the simulated system, M&S bases the theory on assumptions done from the real system; the quality of the simulation consequently depends on the quality of the theory about the system which is being studied (Zeigler, 1984). On the other hand, Verification and Validation (V&V) which use formal methods allow guaranteeing the absence of problems on a system by mathematical verification: using a rigourous description of the system with a formal and expressive mathematical language (like propositional logic), these techniques ensure that the system fits on specifications by testing them as qualitative properties on the model of the real system. But, modeling an entire system with these techniques is very hard, because of the complexity of the formalisms.

2 MOTIVATIONS

The work described in this paper is a part of our desire to make M&S and formal V&V closer. Approaches developed in both disciplines could be complementary. Finding a general method to transform formal models into simulation models and vice versa will then allow us taking advantages of formal verification and simulation. In this sense, we could use simulation to verify systems for which formal verification failed.

On the one hand, Discrete Event Simulation (DES) provides a simpler way to verify, analyze and validate systems through a modular and hierarchical formalism: Discrete Event System Specification (DEVS) introduced by Zeigler (Zeigler, 1976). DEVs allows representing a full range of systems which can be assimilated to discrete-event systems. Some of the advantages of DEVS Framework, as a fundamental requirement of the M&S theory, is the separation of modeling from simulation, enabling reusability, stand-alone testing and hierarchical construction. Furthermore, the expressiveness of the DEVS formalism makes modeling easier, and identification of a specific experimental frame appropriate to a model makes easier the uncovering of assumptions on the real system. But, that also means that simulation is depending on specific scenarios, and allows testing the system only in some circumstances, unlike formal methods which guarantee the correctness of the system in all cases.
On the other hand, V&V can encounter in few cases, especially with model-based formal methods, some difficulties like the State Explosion Problem for instance. When the system grows up, the size of the state space exponentially also grows. Even model checking tools like SPIN are able to verify models with 10^{120} states thanks to the use of Binary Decision Diagrams (BDD) for the representation of the state space (Miller et al., 2010), these verification tools do not fit to bigger systems. Formal verification can not apparently likewise verify systems with an uncountably infinite state space in practice. For these cases, simulation approach could be a very interesting complementary approach to the verification tools, especially as FDDEVS supports both verification and simulation.

Due to the fact that there are many various techniques used in each of these disciplines, we only focus here on two formalisms, in order to validate our approach: FDDEVS (Hwang and Zeigler, 2006a) and PROMELA (Holzmann, 2004). One must keep in mind that the approach which we want to develop does not depend on the choice of the formalisms: Finite and Deterministic Discrete Event-system Specification (FDDEVS) is a subclass of DEVS problem, which is used to describe, model and simulate discrete event systems. Discrete Event Systems (Zeigler, 1976) are those whose the evaluation of their current state is done at some specific points in the time, called events. Across that, PROMELA is especially used to describe, model and verify asynchronous and concurrent systems. In these terms, reader can think that the case studies concerned with one or the other of these languages, our work is focusing on PROMELA language introduced by Holzmann (Holzmann, 1997) (Holzmann, 2004). PROMELA is especially designed to verify dynamic concurrent systems, which are then translated into non-deterministic automata. Properties which must be verified are expressed in Linear Temporal Logic (LTL) before being translated into Büchi Automata. The SPIN model-checker performs verification on these two final models. Moreover, the SPIN model-checker can also operate as a simulator, which allows us making a good comparison between this tool and our approach with the FDDEVS simulator.

We will then introduce here a way to transform PROMELA models into FDDEVS models through one example, and show why using a simulation approach could be beneficial for formal methods in some cases, before speaking about the possible contributions of such a method for both domains.

3 VERIFICATION OF THE DEKKER’S ALGORITHM

In this paper, we will exclusively handle our problem through one example which is representative of classic problems concerned by V&V and model-based formal methods. Our work introduced in this paper is thus based on the problem of mutual exclusion, and especially its resolution by the Dekker’s algorithm.

3.1 The Dekker’s Algorithm of the Mutual Exclusion Problem

The Dekker’s algorithm of mutual exclusion was introduced in 1965 by Theodorus Dekker, according to Dijkstra (Dijkstra, 2002). This is the first and a relatively simple solution for a well-known problem in concurrent systems: the mutual exclusion that allows two processes accessing a shared critical resource.

The algorithm for a process \(p \) considers two variables \(b_p, b_q \) and a flag \(k \). The two first boolean variables indicate whether processes \(p \) and \(q \) want to access to the critical resource or not. If both of them wish to reach the resource, the flag \(k \) acts as a referee and indicates which of them can immediately have the resource. Then, the process, which is forbidden to enter the critical section, turns his willingness flag to \(false \) and enters active waiting while the other process enters the critical section. At the end, the process, which had the resource in this turn, sets the flag \(k \) to the value of the other process, that guarantees the fairness property which ensures processes are fairly executed.

3.2 Verification by Model-checking

Model-checking is a model-based formal method (Huth and Ryan, 2000) in which the considered system is described as a state transition system \(M \) used by the model-checker to verify if \(M \models \phi \), where \(\phi \) is a set of properties expressed in a temporal logic. Among all model-checking languages, our work is focusing on PROMELA language introduced by Holzmann (Holzmann, 1997) (Holzmann, 2004). PROMELA was especially designed to verify dynamic concurrent systems, which are then translated into Büchi Automata. Properties which must be verified are expressed in Linear Temporal Logic (LTL) before being translated into Büchi Automata. The SPIN model-checker performs verification on these two final models. Moreover, the SPIN model-checker can also operate as a simulator, which allows us making a good comparison between this tool and our approach with the FDDEVS simulator.

The PROMELA implementation of the Dekker’s algorithm (given in Program 1) is very natural, thanks to the characteristics of the language. Processes are expressed as proctype blocks, and communication between both of them is done through global variables wantp, wantq and turn, which respectively represent
Figure 1: Automata generated by the PROMELA implementation of the Dekker’s algorithm.

the variables \(b_i, b_j, \) and \(k. \) The boolean variables \(\text{cs}_p \) and \(\text{cs}_q \) mean that the processes \(p \) and \(q \) are respectively in the critical section or not. In this example, we also test the safety property (line 5): “The processes \(p \) and \(q \) never enter the critical section at the same time”.

The SPIN model-checker thus verifies the LTL property by firstly translating the property into a Büchi automaton, and then by computing the synchronous product between this automaton and the asynchronous product of two others automata that represents the processes \(p \) and \(q \) (Figure 1). The emptiness of the language accepted by the resulting automaton indicates whether the property is satisfied or not (Holzmann, 1997).

The total state space of the final reachability graph thus includes 148 states, and 279 transitions. In 131 cases, transitions led to a path already verified. It will be interesting to remember it, when we will compare this verification method with new one that we will introduce later.

Note that the verification by the model-checking method has many advantages. Among them, translation from the informal algorithm is very intuitive. Moreover, SPIN is a mature tool with many efficient algorithms to reduce the total state space and increase the speed of the verification. The use of LTL is also a good thing, because the verification is then based on a simple logic formula. Furthermore, SPIN integrates a simulation tool which allows engineers verifying the trace of the execution of the program. In this case, verification by model-checking seems to be an easy and safety way which ensures that a system has no bug relative to the given specifications. However, M&S provides another approach for problem modelling. DEVS and its subclass FDDEVS were designed (Hwang and Zeigler, 2006a) to formalize discrete-event systems in a very intuitive way. We show in the next section how to simulate and verify the Dekker’s Algorithm with the FDDEVS formalism.

Program 1: Implementation of the Dekker’s algorithm in PROMELA

```plaintext
1: bool want p = false, want q = false;
2: byte turn = 1;
3: bool csp = false, csq = false;
4: ltl { [](!(csp and csq) ) }
5: active proctype p() {
6:  do
7:   :: want p = true;
8:   do
9:     :: !want q → break;
10:    :: else →
11:     if
12:       :: (turn == 1)
13:       :: (turn == 2) →
14:         want p = false;
15:         (turn == 1);
16:        want p = true;
17:     fi;
18:   od;
19:  od;
20:  csp = true;
21:  csq = false;
22:  want p = false;
23:  turn = 2
24: od;
25: ...
26: } ...
27: [... the process q is symmetrical to the process p ...]
```

4 THE DEKKER’S ALGORITHM AS A FDDEVS

4.1 Simulation-based Verification

As we previously said, discrete-event simulation provides a more natural way for modelling, verification and validation of discrete-event systems. Simulation is done under specific conditions, called Experimental Frame (EF) (Zeigler, 1976). Simulation-based verification consists then to verify that outputs produced by the model for a specific EF (in others terms, for specific inputs) meet some system requirements or specifications. Simulation also allows verifying the behaviour of a system, meaning its real evolution, unlike
formal methods which only guarantee that the model meets requirements under all circumstances. In others words, simulation allows understanding how the system reacts when an unexpected event occurs. Simulation, thus, provides not only a way to verify that a system meets requirements in an EF, but also allows understanding how it evolves in the time. It’s why we believe using jointly simulation and formal verification ensures that the system of interest meets initial specification in all cases and its behaviour (its real temporal evolution) conforms to what was expected.

4.2 Introduction to FDDEVS

Finite and Deterministic Discrete Event-system Specification (FDDEVS) is a formalism based on the DEVS formalism (Zeigler, 1976) and introduced in (Hwang and Zeigler, 2006a) to model and analyze discrete event systems in both simulation and verification (FDDEVS is a formalism based on the Finite and Deterministic Discrete Event-system Specification in all cases and its behaviour (its real temporal evolution) conforms to what was expected.

4.3 PROMELA to FDDEVS

Transformation Rules

As we said, FDDEVS allows analysis of problem in simulation way, in the same manner as DEVS. It is thus interesting to compare the analyzing of the Dekker’s algorithm provided in the previous section, and the results obtained with a simulation approach using FDDEVS.

Note that, instead of modeling the problem from the informal Dekker’s algorithm, we directly wanted to obtain the FDDEVS model from the PROMELA code. Firstly, we know that the PROMELA implementation of the Dekker’s algorithm can be translated to a FDDEVS model. If we consider how SPIN simulation is working, we can decide that the execution of each line of the PROMELA code corresponds to an event in our FDDEVS model. In fact, we consider only the change of the value of each variable wantp, wantq and turn as done by an internal or an external event. Moreover, we saw in the section 3.2 that the sets of state of each automata representing each process in PROMELA are finite sets. The second and third restriction of a FDDEVS can be arbitrary decided in our case, because no explicit time restriction appears in the PROMELA verification way.

Now we know we can translate the PROMELA code into a FDDEVS model, we slightly change the algorithm for convenience: instead of global variables wantp, wantq and turn, we consider three variables wantme, wantother and my_turn for each process. In the same way, we consider esp and csq variables as local variables (and not as global variables anymore). Besides, lines wantp = false; turn = 2 and wantq = false; turn = 1 are considered as atomic instructions. Then, we define each process as an atomic FDDEVS model defined by :

\[P = \langle X, Y, S, x_0, \tau, \delta_x, \delta_y \rangle \]

where

- \(X = \{?W_m, ?W_n, ?T_c\}\), where \(?W_m\) denotes the other process wants to enter critical section. \(?W_n\) denotes the other process does not want to enter the critical section anymore. \(?T_c\) denotes the change of the value of the my_turn variable;
- \(Y = \{!W_m, !W_n, !T_c\}\), where \(!W_m\) is sent when the current process wants to enter critical section. \(!W_n\) is sent when the current process doesn’t want to enter the critical section anymore. \(!T_c\) is sent when the current process leaves the critical section;
- \(S = \{(wantme, wantother, my_turn) \in \{0, 1\} \times \{0, 1\} \times \{0, 1\} \cup \{Cr\} \cup \{Wait\}\}\), where wantme means if the current process wants to enter critical section, wantother the other process wants to enter critical section, my_turn if the current process has the priority upon the critical section; the state “Cr” means the current process is in critical section; the state “Wait” represents the active waiting of the lines 14-18 of the PROMELA code;
- \(x_0 = (0, 0, 0) \) or \(x_0 = (0, 0, 1) \) depending on the value of the turn variable in the PROMELA code;

Now, in order to make the transition table of each FDDEVS atomic model and to define the transitions functions, we apply the following rules :

1. Each modification of a global variable leads to a new state;
2. The initial state of each FDDEVS atomic model depends on the turn variable. If turn is equal to 1, the process P1 in is \(s_0 = (0, 0, 1) \) and P2 in \(s_0 = (0, 0, 0) \), otherwise P1 in is \(s_0 = (0, 0, 0) \) and P2 in \(s_0 = (0, 0, 1) \);
3. When the value of a global variable is changed, the process which changes the value emits an output event before exiting its current state by the internal transition function; the other process changes its current state when it receives the input event;

4. If a state is changed by an input event, the internal schedule is preserved;

5. Lifespan of each state \(s \) is given by \(\tau(s) = 0 \) except for the states \((1, 1, 1)\) and \(\text{Wait} \) (because the loop condition only depends on the value of a global variable which is not updated in the loop).

With these rules, we obtain the following FD-DEVS model in Figure 2.

5 RESULTS AND DISCUSSION

5.1 Verification with FDDEVS

Framework

After designing the FDDEVS model, we implement it using the Hwang’s Framework (Hwang and Zeigler, 2006a) which generates a reachability graph (Hwang and Zeigler, 2006b) of 13 vertices and 17 edges for the verification. The property \(G\neg (\text{cmd} \land \text{csq}) \) was verified by checking if a state exists in the reachability graph for which both processes are in the Critical state. Moreover, the simulation with DEVS shows the importance of the execution order of the instructions. Indeed, the lifespan of each state directly influences on the scenario of the model. We see, with the configuration where \(\tau(s) = 0 \) for each state, that process \(p \) directly enters critical section, and the active wait problem is never encountered. But, if \(\tau(s) = \alpha \) with \(\alpha > 0 \), then the scenario given by the model is the scenario where both processes want to enter critical section at the same time. Scenario of simulation is then included in the model given by the transformation. In fact, this problem comes from the precedence of external transition upon internal transition, or the internal transition upon external transition. In other words, if two events occur at the same time, the model will give the priority to the internal transition or external transition according to a \(\delta_{\text{confluent}} \) function defined by \(\delta_{\text{confluent}} : S \times X \rightarrow S \), that leads to repeat only one possible execution. This problem could be solved by generating one model per state of the base FDDEVS atomic model, in which we change the \(\delta_{\text{confluent}} \) function to change the priority of the events. But, for the Dekker’s Algorithm, the critical point is when both processes want to enter the critical section at the same time, so only two coupled models are needed to cover the verification of the entire problem.

Moreover, the transformation shows something which is implicit in the PROMELA model: if the execution order of the instructions is not really taken into account in the algorithm, it depends on the system, meaning the FDDEVS model better represents the reality of the operating system scheduler than the PROMELA model, although model-checking verifies all possibilities of execution too.

Furthermore, because of the size of the reachability graph obtained by this method, we show transformation could be really economic to verify some targeted scenarios. Then, instead of directly verifying the PROMELA model for all scenarios, designers and modelers could use transformation to verify precise scenarios, before using the model-checker tools.

5.2 Discussion around ”Wait” State and ”Critical” State

There is another problem of the method introduced in this paper. It concerns the wait active loop given in the lines 14-18, which we redesigned as a Wait state for convenience and simplification. In the same way, considering lines following the exit as atomic instructions was a great simplification. In fact, if we rigorously apply our method, the atomic model of process would be incorrect for some reason. Firstly, applying rigorously our method would force to create internal transition to the existing state \((0, 1, 0)\). But because \(\tau(0, 1, 0) = 0 \) by definition, process would try again to go to \((1, 1, 0)\) at the end of the lifespan, which is not the behaviour of the algorithm. Besides, because we cannot redefine the \(\tau \) function, we must then define our state space as a set of 4-uplet

\[
S = \{(\text{want}_p, \text{want}_q, \text{my turn}, \alpha)\} \cup S'
\]

where

\[
S' = \{\text{Cr}\} \cup \{\text{Wait}\}
\]

and \(A \) is a finite set of real values, and redefine our \(\tau \) function like

\[
\forall s \in S, \tau(s) = \alpha
\]

in order to solve this problem. This leads to differentiate states by their lifespan, but it is not a satisfying solution because it corresponds to a transformation based on semantics. We could also argue that the need to define a lifespan value for each state is also based on semantics. However, the method we previously introduced allows defining default values. For instance, if loop condition only depends on a global
variable, then we could decide that the lifespan of the corresponding state will be \(\infty\). Otherwise, the lifespan will be equal to 0, as we previously defined.

In the same way, the state \texttt{Critical} creates the same problem if we don’t consider the instructions following the exit as atomic instructions.

6 CONCLUSION AND FUTURE WORKS

In this paper, we showed we can translate a formal algorithm written in PROMELA into a FDDEVS model, which supports verification and simulation. The transformation has the advantage to allow verification of some interesting scenarios in a reduced state space, in comparison with the state space generated by the model-checker. Moreover, the resulting model is more representative model the reality, in the sense that time is thus explicitly expressed. Taking into account that, transforming the PROMELA model into a FDDEVS model allows working on a complementary model during the design phase. A simulation with SPIN executes instructions step-by-step allowing simulation of randomness of the processor, but working on an explicit temporal model has the advantage to allow explicit changes of the behaviour of the system over time. However, semantic changes done on the initial PROMELA code, in order to produce a good equivalent FDDEVS model, raises the legitimate question about the equivalence of the models. These changes based on semantic was intended to make feasible the transformation, but we must show they allow expressing the same system. Moreover, the method introduced in this paper also opens the question of the generalizability of this approach to any others formalisms and any others systems, and also of the automaticity of the transformation.

REFERENCES

