Fluid Mechanics for Path Planning and Obstacle Avoidance of Mobile Robots

Rainer Palm and Dimiter Driankov
AASS, Örebro University, SE-70182, Örebro, Sweden

Keywords: Mobile Robots, Obstacle Avoidance, Fluid Mechanics, Velocity Potential.

Abstract: Obstacle avoidance is an important issue for off-line path planning and on-line reaction to unforeseen appearance of obstacles during motion of a non-holonomic mobile robot along a predefined trajectory. Possible trajectories for obstacle avoidance are modeled by the velocity potential using a uniform flow plus a doublet representing a cylindrical obstacle. In the case of an appearance of an obstacle in the sensor cone of the robot a set of streamlines is computed from which a streamline is selected that guarantees a smooth transition from/to the planned trajectory. To avoid collisions with other robots a combination of velocity potential and force potential and/or the change of streamlines during operation (lane hopping) are discussed.

1 INTRODUCTION

Obstacle avoidance is important for off-line planning and on-line reaction to unforeseen and sudden appearance of obstacles during motion of non-holonomic mobile robots. Several methods have been applied to obstacle avoidance in the artificial force potential field method introduced by Khatib in 1985 (Khatib, 1985). The idea is to introduce artificial attractive and repulsive forces that enable the robot to move around an obstacle while aiming at a final target at the same time. Optimization techniques like market-based optimization (MBO) particle swarm optimization (PSO) influencing artificial potential fields have been presented by Palm and Bouguerra (R.Palm and Bouguerra, 2011; Palm and Bouguerra, 2013a). Other approaches have been presented by Borenstein (Borenstein and Koren, 1991), who introduced the vector field histogram technique, and Michels (Michels et al., 2005) who applied the reinforcement learning method. Specific ad hoc heuristics have been proposed by Fayen (B.R.Fayen and W.H.Warren, 2003) and Becker (Becker et al., 2006).

Despite of the simplicity and elegance of the artificial force potential field method the risk of deadlocks (local minima) or undesired movements in the vicinity of obstacles should be realized. Reinforcement learning may be able to cope with this drawback but to the costs of a high computational effort.

Another kind of artificial potential for obstacle avoidance was therefore introduced by Khosla and Volpe (1988) who used the velocity potential of fluid mechanics to construct stream lines in a working area of a mobile robot moving around obstacles in a very natural way. The velocity potential approach is a method which considers both the path/trajectory planning in the case of a well known scenario including static obstacles and the on-line reaction to unplanned situations like obstacle avoidance in an unknown terrain.

Kim and Khosla continued this work with the use of the velocity potential function to avoid obstacles in real time (Kim and Khosla, 1992). Further similar research has been published by Li et al (Li and Bui, 1998), Ge et al (Ge and Cui, 2002), Waydo and Murray (Waydo and Murray, 2003), Daily and Bevly (Daily and Bevly, 2008), Sugiyama (Sugiyama et al., 2008), Girgans et al (Girgans et al., 2010), and Owen et al (Owen et al, 2011). Most of these approaches use a point source/point sink combination for flow construction. This can be of disadvantage in the presence of a combination of tracking velocity vectors and obstacle avoidance vectors.

Therefore in this paper the uniform flow of a fluid around an obstacle is preferred. Possible trajectories for obstacle avoidance are modeled by the velocity potential using a uniform flow plus a doublet representing a cylindrical obstacle. The motion of a non-holonomic mobile robot is firstly defined by a predefined trajectory. In the case of an appearance of one or more obstacles in the sensor cone of the robot...
a set of streamlines is computed from which those streamline is selected that guarantees a smooth transition from the planned trajectory to the streamline and, after having left behind the obstacle, back to the original trajectory. To avoid collisions with other moving obstacles (e.g. robots) a combination of velocity potential and force potential is discussed. In the case of possible collisions between robots moving on crossing streamlines a change between streamlines during operation (lane hopping) is presented.

2 MODELING OF THE SYSTEM

2.1 Kinematics

We consider a non-holonomic rear-wheel driven vehicle with the kinematics of a car. The kinematic of the non-holonomic vehicle is described by

\[\dot{q}_i = R_i(q_i) \cdot u_i \]

where

\[q_i = (x_i, y_i, \Theta_i, \phi_i)^T \]

\[R_i(q_i) = \begin{bmatrix} \cos \Theta_i & 0 \\ \sin \Theta_i & 0 \\ \frac{l_i}{l_i} \tan \phi_i & 0 \\ \frac{l_i}{l_i} & 1 \end{bmatrix} \]

and

\[u_i = (u_{1i}, u_{2i})^T \]

\[x_p = (x_i, y_i)^T \]

\[\Theta_i \] - orientation angle

\[\phi_i \] - steering angle

\[l_i \] - length of vehicle

2.2 Virtual Leader

Many tracking methods use a predefined path or a trajectory as a control reference for the vehicle to be controlled. In contrast to this a 'virtual' vehicle (the leader) is introduced that moves in front of the 'real' vehicle (the follower) (see also (Leonard and Fiorelli, 2001)). The virtual leader acts as trajectory generator for the real platform at every time step, based on starting and end position (target), obstacles to be avoided, other platforms to be taken into account etc (see Fig. 1). The dynamics of the virtual platform is designed as a first order system that automatically avoids abrupt changes in position and orientation

\[v_{vi} = k_{vi}(v_{ti} - v_{di}) \]

where

\[v_{ti} \in \mathbb{R}^2 \] - velocity of virtual platform \(P_i \)

\[v_{di} \in \mathbb{R}^2 \] - desired velocity of virtual platform \(P_i \)

\[k_{vi} \in \mathbb{R}^{2 \times 2} \] - damping matrix (diagonal)

\[v_{di} \] is composed of the tracking velocity \(v_{ti} \) and velocity terms due to artificial potential fields from obstacles and other platforms. The tracking velocity is designed as a control term

\[v_{ti} = k_{ti}(p_{xi} - x_{ti}) \]

where

\[x_{ti} \in \mathbb{R}^2 \] - position vector of target \(T_i \)

\[p_{xi} \in \mathbb{R}^2 \] - position vector of platform \(P_i \)

\[k_{ti} \in \mathbb{R}^{2 \times 2} \] - gain matrix (diagonal)

There are many ways of computing the control vector \(u_i \) for the follower in (1). Under the assumption of a slowly time varying 'leader-follower' system a local linear gain scheduler is applied that is designed according to (Palm and Bouguerra, 2013b).

3 SOME PRINCIPLES OF FLUID MECHANICS

A closer look at the problem of path planning and obstacle avoidance leads to a similar case when fluids circumvent obstacles in a smooth and energy saving way. The result is a bundle of trajectories from which one can conclude how an autonomous robot should behave under non-holonomic constraints. In the theory of fluids the terms velocity potential, stream function and complex potential are introduced (Nakayama, 1999). The so-called uniform parallel flow is introduced that corresponds to an undisturbed trajectory along straight lines. The flow of a doublet corresponds to a flow around a cylinder. Superposition of uniform flow and doublelet leads to a model of a uniform flow around a cylindrical obstacle.
3.1 Superposition of Uniform Flow and Doublet

The flow around a cylindrical object - an obstacle - is finally computed by a superposition of the uniform flow and the doublet which is a superposition of their complex potentials (see Fig. 2).

\[w(z) = U \cdot z + U \frac{r_0^2}{z-z_0} \]
(4)

where \(U \) is the flow, \(r_0 \) is the radius of the obstacle \(z = r(\cos \Theta + i \sin \Theta) \) is the complex variable, \(z_0 \) is the position of the obstacle in the complex plane, \(\Theta \) is the angle between \(z \) and the imaginary axis (see Fig. 2). The velocity components in polar coordinates are obtained as

\[v_r = U \cdot ((1 + \frac{r_0^2}{z_{re} + z_{im}}) \cos \Theta \]
\[+ \frac{2z_{re} \cdot r_0^2 (z_{re} \cos \Theta + z_{im} \sin \Theta)}{(z_{re} + z_{im})^2}) \]
(5)

\[v_\Theta = -U \cdot ((1 + \frac{r_0^2}{z_{re} + z_{im}}) \sin \Theta \]
\[+ \frac{2z_{re} \cdot r_0^2 (-z_{re} \sin \Theta + z_{im} \cos \Theta)}{(z_{re} + z_{im})^2}) \]
(6)

where \(z_{re} = r \cos \Theta - x_0 \) and \(z_{im} = r \sin \Theta - y_0 \). Here one has to mention that stream lines not only exist outside but also inside the cylinder. The specialty of this flow model is that the surface of the cylinder itself is a streamline. Therefore one can ignore the stream lines inside the cylinder because the surface of the cylinder serves as a borderline for stream lines that cannot be trespassed.

3.2 Superposition of Two or More Cylinders

For more than one cylinder weighting functions \(\mu_i \) for the flows \(U_i \) are introduced depending on the distance of the actual robot position \(d_i \) to the cylinder surfaces (Waydo and Murray, 2003), (Daily and Bevly, 2008)

\[\mu_i = \prod_{j \neq i}^n \frac{d_j}{d_i + d_j}; \quad U_i = \mu_i \cdot U \]
(7)

From (5), (6), and (7) one obtains velocity components \(v_r \) and \(v_\Theta \) in polar coordinates that will be transformed into cartesian coordinates by

\[\begin{pmatrix} u_i \vline v_i \end{pmatrix}^T = \begin{pmatrix} \cos(\Theta) & -\sin(\Theta) \\ \sin(\Theta) & \cos(\Theta) \end{pmatrix} \cdot \begin{pmatrix} v_r \vline v_\Theta \end{pmatrix}^T \]
(8)

\[\text{Summerizing the velocities } u_i \text{ in x-direction and } v_i \text{ in y-direction in cartesian coordinates} \]

\[U_{\text{tot}} = \sum_i u_i \quad v_{\text{tot}} = \sum_i v_i \]
(9)

leads to the streamlines for the multiple obstacle case.

3.3 Comparison between Velocity and Force Potential

In the following a comparison between velocity and force potential shows the contrasts and the similarities between these two types of potentials. The force potential of a circular object (see Fig. 3) is given by

\[P_{\text{force}} = \frac{c}{d} \]
(10)

with \(c \) - strength of potential field
\[d = \sqrt{r^2 - 2rr_{\text{obs}}\cos(\Theta - \Theta_{\text{obs}}) + r_{\text{obs}}^2} \]

For a point \(P(r, \Theta) \) the repulsive force and - with this - the repulsive velocity \(v_{\text{rep}} = (v_r, v_\Theta)^T \) yields

\[\frac{dp}{dr} = -\frac{c}{d^2} \cdot r - r_{\text{obs}} \cdot \cos(\Theta - \Theta_{\text{obs}}) \]
(11)

\[\frac{dp}{d\Theta} = -\frac{c}{d^2} \cdot r_{\text{obs}} \cdot \sin(\Theta - \Theta_{\text{obs}}) \]
(12)
Compared with the flow of a doublet and the corresponding velocities (5) and (6) we can conclude that these two concepts are different but also have common features: after some conversions the force potential appears as a term in the velocity potential. A crucial point, however, is that for the force potential the “streamlines” always point in the direction away from the “gravity center”. By contrast for the velocity potential field the streamlines \(\Psi \) always have a tangential component. This is of great advantage for obstacle avoidance because it helps a mobile vehicle to move around the obstacle in an optimal way in the sense that the streamlines are symmetrical with respect to the axis perpendicular to the flow going through the “poles” of the cylinder. However a combination of velocity and force potential should also be considered. Such a combination takes place if during tracking along a streamline an unforeseen moving obstacle - e.g. another robot - appears in the sensor cone. In this case the current trajectory given by the actual streamline is corrected by the repulsive force of the moving obstacle.

4 OBSTACLE AVOIDANCE USING THE VELOCITY POTENTIAL

The previous calculations of the velocity potential are performed in a coordinate frame corresponding to the local robot frame. In the multi-robot case this concerns every involved robot so that a total view of the whole scenario can only be obtained from the viewpoint of the base frame.

Figure 4 shows the relationship between the robot frame T1 and the base frame T0. The transformation matrix between T1 and T0 is

\[
A_{10} = \begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) & x_d \\
\sin(\alpha) & \cos(\alpha) & y_d \\
0 & 0 & 1
\end{pmatrix}
\]

(13)

To compute the streamline array \(v_{\text{flow},\text{rob}} = (v_r, v_{\Theta})^T \) in the base frame the following steps are necessary:

1. Transform the obstacle coordinates into the robot frame

\[
P_{\text{obs},\text{rob}} = A_{10}^{-1} \cdot P_{\text{obs},\text{base}}
\]

(14)

2. Calculate the streamline arrays \(v_{\text{flow},\text{rob}}(k) \), \(k \) - discrete time step, from eqs. (5) and (6) in T1 and the corresponding flow trajectory \(p_{\text{flow},\text{rob}}(k) \) of the flow.

3. Transform the flow trajectory \(p_{\text{flow},\text{rob}} \) into the base frame T0

\[
p_{\text{flow},\text{base}}(k) = A_{10} \cdot p_{\text{flow},\text{rob}}(k)
\]

(15)

Figure 5 shows the particular stages of the computation of stream lines.

Remark: A stagnation point near the obstacle should be recognized in a very early stage. A corresponding test is relatively simple and is to be done in the robot frame for every streamline: Check the x-coordinate \(x_{\text{end}i} \) of the endpoint of streamline \(i \) relative to the x-coordinate \(x_{\text{obs}} \) of the obstacle. If \(x_{\text{end}i} \leq x_{\text{obs}} \), then the regarding streamline ends up with a stagnation point and should be excluded. A more conservative test is \(x_{\text{end}i} \leq x_{\text{obs}} + C \), where \(C \) is a positive number, e.g. \(C = 2 \cdot r_0 \).

After that, those streamline is selected for the robot which lies closest to the original predefined trajectory. In order to get a smooth connection to the original trajectory the following transition filter is used.
\[p_s(k + 1) = p_s(k) + K_{filt} \cdot (x_{array}(k + 1) - p_s(k)) \]
\[p_s(k + 1) = p_s(k) + K_{filt} \cdot (x_{trajectory}(k + 1) - p_s(k)) \]
\[p_s(k + 1) = p_s(k) + K_{filt} \cdot (x_{trajectory}(k + 1) - p_s(k)) \]

where \(p_s(k) \in \mathbb{R}^2 \) - actual position of robot, \(x_{array}(k) = p_{flow,base}(k) \), \(K_{filt} \in \mathbb{R}^{2 \times 2} \) - filter matrix.

For the change from a streamline to the original trajectory we have to consider two cases:
1. A trajectory \(x_{trajectory}(k) \) is defined between starting point \(x_{trajectory}(1) \) and endpoint \(x_{trajectory}(k_{end}) \).
2. Only the target endpoint \(x_{trajectory} \) plus constraints upon the velocities \(v = (u, v)^T \) are defined.

Case 1 is difficult to solve because the original trajectory is cut into 3 parts: a part before entering the streamlines with \(k = 1 ... k_{in} \), a part which is covered by the area of streamlines with \(k = k_{in} ... k_{out} \), and a part with \(k = k_{out} ... k_{end} \) after the area of streamlines. Suppose that the trajectory leaves the area of streamlines between two endpoints of streamlines, \(x_{trajectory}(k_{end}) \) be the point on the trajectory at \(k_{in} \) when the robot (and the trajectory) enters the area of streamlines. \(x_{trajectory}(k_{out}) \) is the point on the trajectory at \(k_{out} \) when the trajectory leaves the area of streamlines. \(x_{trajectory}(k_{end}) \) is the end of the trajectory at \(k_{end} \).

At first one has to search for the first trajectory point \(x_{trajectory}(k_{out}) \) after having left the area of streamlines (see Fig. 6). A solution to this is the following:
1. Transform the total trajectory \(x_{trajectory}(k) \) into the robot frame \(T_1 \)
 \[x_{trajectory,rob}(k) = A_1(k_{out}) \cdot x_{trajectory}(k) \]
 \[A_1 = A_1^{-1} \cdot k = 1 ... k_{end} \]
 where \(k_{out} \) is the time point for the robot to leave the area of streamlines.

2. Search for the first trajectory point for which \(x_{trajectory,rob}(k) > 0 \); \(k > k_{in} \). The result is \(x_{trajectory,rob}(k_{out}) \). Choose another trajectory point \(x_{trajectory,rob}(k_{out,1}) > x_{trajectory,rob}(k_{out}) \); \(k_{out,1} > k_{out} \) to enable a smoother transition.

3. Activate a transition filter
 \[p_s(k + 1) = p_s(k) + K_{filt} \cdot (x_{trajectory}(k_{out,1}) + k) - p_s(k) \]
 where \(k = 1 ... (k_{out} - k_{out,1}) \), which guarantees a smooth transition to the original trajectory.

Case 2 is simpler: once having left a streamline it is immediately possible for the robot to move to the target \(x_{trajectory} \). We introduce another transition filter which guarantees a smooth transition between a streamline and the target. Let \(p_s(k) \) be the position of the robot at the end of the streamline. Then we obtain for the transition filter
 \[p_s(k + 1) = p_s(k) + K_{filt} \cdot (x_{trajectory}(k_{out}) - p_s(k)) \]
 where \(k \geq k_{out} \).
Lane hopping means the change from the current streamline to another streamline which may be a neighboring streamline but not necessarily. Figure 7 presents a case where the robot changes the streamlines to avoid a motion too close to the obstacles. This change should not be too abrupt but rather a smooth transition (see Fig. 8). This is again realized by a filter function either in the robot or world frame

\[
dx_{\text{fluid}}(k+1) = K_{\text{filt}} \cdot (x_{\text{array}}(k+1|\text{lane}_{\text{new}}) - p_x(k))
\]

where it is assumed that the \(x \)-positions in the robot frame \(x_{\text{array}}(k|\text{lane}_{\text{old}}) \approx x_{\text{array}}(k|\text{lane}_{\text{new}}) \). If \(x_{\text{array}}(k|\text{lane}_{\text{old}}) > x_{\text{array}}(k|\text{lane}_{\text{new}}) \) then (20) has to be corrected to

\[
dx_{\text{fluid}}(k+1) = K_{\text{filt}} \cdot (x_{\text{array}}(k+\delta|\text{lane}_{\text{new}}) - p_x(k))
\]

\(\delta \) is the number of time steps for which

\[
x_{\text{array}}(k|\text{lane}_{\text{old}}) \approx x_{\text{array}}(k+\delta|\text{lane}_{\text{new}})
\]

In the case of a global (centralized) control of the robot fleet it is possible to compute possible collisions of platforms in advance if they would keep on moving on the originally chosen lanes. Let us compare the 5 lanes each of platforms 1 and 2 and calculate the discrete time stamps at their crossings, and the difference between these time stamps. Let for example robot 1 move on lane 5 and robot 2 on lane 2. Lanes 5 and 2 cross at \(t = 367 \) for robot 1 (see Fig. 9, matrix K12, blue circle) and for robot 2 at \(t = 369 \) (see matrix J12, blue circle). The distance between the two entries is 2 (see Fig. 9, matrix del12) which points to a collision at time \(t \approx 367 \).

In order to avoid a collision many different options are possible. We have chosen the following option: robot 1 \(\rightarrow \) lane 4, robot 2 \(\rightarrow \) lane 1. The result can also be observed in Fig. 9, red circles. The difference (distance) between the time stamps \(t = 316 \) for robot 1 and \(t = 366 \) for robot 2 is 50 which is sufficient for avoiding a collision. See also Figs. 14 and 15

6 SIMULATION RESULTS

The simulation shows 3 mobile robots (platforms) aiming at their targets (see Fig. 10), crossing areas of 3 obstacles while sharing a common working area for some time. Platform p2 switches on first its streamline because obstacle O1 is first detected. Then follows p3 seeing O3 in its sensor cone and finally p1 with O1 in its sensor cone (see Fig. 11). Then the platforms ‘switch off’ their streamlines in the sequence p1, p3, p2 (because the obstacles disappear from their sensor cones) and reach finally their targets (see Fig. 12). The final trajectories show the interplay of different influences from planned trajectories, streamlines, and artificial force fields in the case when robots avoid each other. Figure 13 shows the regarding velocity profiles of the individual robots and the switching sequence of the streamlines.

As to the change of streamlines (lane hopping) the imminent danger of a collision between robots 1 and 2 is shown in Fig. 15. Figure 15 shows that lane hopping avoids a collision between robots 1 and 2 pro-
provided that the change of the lanes takes place in a sufficient distance to the possible collision. A practical solution is the following:

- Check the time t_{cross} to a possible collision
- Calculate the time t_{change} to change between two neighboring lanes
- Start changing at least $2 \cdot t_{change}$ before possible crossing

If it is not sufficient to change to a neighboring lane then apply the same procedure to another lane while taking into account longer changing times because of the longer distance between the lanes.

7 CONCLUSIONS

Fluid mechanics and its velocity potential principle is a powerful mean both for path planning and sensor guided on-line reaction to obstacles. The velocity potential has been used for avoiding static obstacles together with the force potential for moving obstacles. Finally it has been shown that the change of streamlines during operation can avoid imminent collisions between robots. This change is done in a smooth way and at an early stage before a possible collision. To avoid possible collisions between robots moving on crossing streamlines a change between streamlines during operation (lane hopping) is presented. A critical aspect is that obstacles are very rarely cylindrical. This, however, can easily be handled by a rough approximation of the obstacle by an appropriate number of cylinders. The driveable streamlines are then lying at the edges (left or right) of the conglomerate of cylinders (Daily and Bevly, 2008). The computational effort of the method is mainly determined by equations (5, 6, 8, 14, 15) computed for n streamlines and m time steps but only at the moment of the detection of an obstacle. A future work lies therefore in the modeling of the stream lines to make the use of the approach easier for real applications.

REFERENCES

Borenstein, J. and Koren, Y. (June 1991). The vector field

