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Abstract: Previous work (Yamauchi et al., PRE 79 and Nakata et al., Physica A 389) found several social-dilemma 
structures in phases of traffic flows created by bottlenecks resulting from lane closings. We investigate 
another question: whether or not such structures can be formed from frequent lane changes in a usual traffic 
flow without any explicit bottlenecks. In our model system, two classes of driver-agents coexist: C-agents 
(cooperative strategy) always remain in the lane they are initially assigned, while D-agents (defective 
strategy) try to change lanes to move ahead. In relatively high-density flows, such as the metastable and 
high-density phases, we found structures that correspond to either n-person Prisoner’s Dilemma (n-PD) 
games or to quasi-PD games. In these situations, lane changes by D-agents create heavy traffic jams that 
reduce social efficiency. 

1 INTRODUCTION 

In growing social concerns on traffic problems, there 
have been lots of previous studies dealing with the 
so-called traffic model (e.g. Kerner, 2009). 
Especially, it has struck many statistical physicists 
as interesting, just because a traffic flow can be 
interrupted as a self-driven multi-particles system. In 
that particular sense, among several traffic models 
such as the kinetic gas theory, fluid dynamical 
model, car-following model, cellular automaton 
(CA) model has been most heavily concerned. 
However, none of these previous studies provided a 
comprehensive understanding on real traffic flow 
phenomena because these models did not include the 
decision-making process of the drivers. If we 
recognize that the traffic flow results from 
competition for a finite resource (“road”) among 
many drivers who are seeking shorter driving times 
and more comfortable driving, it is natural to ask 
whether or not a social dilemma originates from the 
intentions of drivers. If so, we question the class of 
dilemma, such as the Prisoner’s Dilemma (PD) 
game, Chicken (Snow Drift) game, or something 
additional, lies hidden beneath the observed traffic 
flow and performs the game change when the flow 
changes from one kind of phase to another. With this 
background, we detected that several social dilemma 
structures, represented by n-person Prisoner’s 

Dilemma (n-PD) games, appear in certain traffic 
flow phases at a bottleneck caused by a lane closing 
(Yamauchi et al., 2009; Nakata et al., 2010). We 
confirmed that an n-PD game structure appears in 
the high-density phase area, but no social dilemma 
exists in the free-flow and jam phases. It seems 
plausible for a social dilemma to underlie such 
traffic flows because closing a lane creates an 
obvious bottleneck. Thus, our next challenge is 
whether a social dilemma still lies beneath traffic 
flow that does not involve any explicit bottleneck 
like a lane closing, on-ramp (merging), off-ramp 
(exit), or uphill travel. This paper addresses whether 
or not only lane-changing actions by drivers can 
give rise to a social dilemma in an ordinal two-lane 
road system with cyclic boundaries. 

2 MODEL SETUP 

We applied the Revised S-NFS model (Kokubo, 
2011) for driving vehicles forward. Revised S-NFS 
model takes into account motions that are commonly 
observed in real vehicles: slow-to-start (S2S), quick 
start (QS), and random braking (RB). S2S implies an 
inertial effect, which is important for producing 
metastable states in fundamental diagrams, also 
improve reproducibility of the so-called three-phase 
theory by Kerner (2009).  
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We applied the lane-changing rule used by 
Kukida et al. (2009) in the CA model. 
Concerning Revised S-NFS model and Kukida’s 
lane change model, we assumed a set of model 
parameters to reproduce realistic traffic flow. Also 
we set the system length to L = 500. 

In the system there are two types of agents: 
cooperators (C-agents) remain in the lane initially 
assigned without making any lane changes, and 
defectors (D-agents) change lanes. We denote 
fraction of cooperators among all agents by Pc. We 
use cyclic boundary conditions to keep the vehicle 
density constant during a single simulation episode. 

3 RESULT AND DISCUSSION 

Figure 1 shows fundamental diagrams for (a) Pc = 1 
and (b) Pc = 0 in which each dilemma class 
discussed below is identified by a different color. 
Figure 1(a) shows that flows of all cooperators can 
exhibit the so-called metastable phase, while Figure 
1(b) shows that no metastable phase occurs in flows 
of all defectors. This seems plausible because a flow 
in relatively high-density regions can be stable with 
high traffic flux so long as none of the vehicles 
change lanes. In contrast, a flow with lane changes 
becomes volatile, since turbulence caused by 
frequent lane changes promotes traffic jams. 
Behaviors of the observed dilemma classes are 
explicitly discussed below; here, we merely note that 
only the Prisoner’s Dilemma (including quasi-PD 
and quasi-little PD) class appears in the middle 

density region with relatively high traffic fluxes. The 
Trivial game and Neutral game also appear there, 
but these are not categories of social dilemmas. 
Figure 2 shows the payoff functions and velocity 
frequencies for Case A in Figure 1(a) ( 1.0 ), 

which is in the free-flow phase. Panel 2(a) shows 
that all payoffs for Case A are insensitive to the 
cooperation fraction; this implies a kind of gameless 
situation. So we denote this as a Neutral game class. 
This is not surprising because most of the vehicles in 
Case A run at maximum velocity (see Panel 2(b)), so 
lane changes in the system are rare. 

Figures 3 to 9 show counterparts of Figure 2 for 
the other cases explicitly marked in Figure 1(a). The 
situation in Figure 3 ( 141.0 ) can be called a 

Trivial game because Nash equilibrium (NE) 
accords with the Equal Pareto Optimum (EPO) at Pc 
= 0. This game is dominated by defection, since the 
defector’s payoff is always larger than that of the 
cooperator. However, the maximum social payoff 
also appears at all defector states. In a nutshell, we 
call this a D-dominate Trivial game, which implies 
that more frequent lane changing is preferable in this 
density region from both social and individual points 
of view. 

Figures 5 ( 179.0 ) and 9 ( 6.0 ) show the 

same tendencies as in Figure 3. Thus, all these 
should be classified as D-dominate Trivial games. 
The fact that the jam phase belongs to the D-
dominate Trivial game (Fig. 9) seems reasonable 
because lane changes into even a slightly small 
vacant space between jamming vehicles brings 
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Figure 1: Fundamental diagrams (normalized flux vs normalized density) for situations with (a) all cooperators (Pc = 1) 
and (b) all defectors (Pc =0). Colored symbols identify (A) Neutral game, (B) Prisoner’s Dilemma game at two densities 
in Panels (a) and (b), (C) D-dominate Trivial game at three densities in Panels (a) and (b), (D) D-dominate quasi-PD 
game, and (E) D-dominate quasi-light-PD game . 
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benefits for not only the focal vehicle who changes 
lanes but also for the society as a whole, even if its 
frequency is low.  

Figure 4 ( 155.0 ) suggests a weak Prisoner’s 

Dilemma (PD). This is confirmed by the following 
facts. At Pc = 0, NE is trapped because the defector’s 
payoff is always greater than that of the cooperator. 
EPO appears at Pc = 1 because the social payoff 
increases with increasing cooperation fraction, 
although the effect is subtle. The same tendency 
appears in Figure 7 ( 211.0 ), although the extent 

of this dilemma seems more severe than that in 
Figure 4. In Figure 7, the social payoff function does 
not monotonically increase with the increase in the 
cooperation fraction, as observed in Figure 4; rather, 
it shows an N-character shape, in which a local peak 
(much smaller than EPO at Pc = 1) appears at a 
lower cooperation fraction. This point is carefully 
discussed in Sec. 3.2. 

Figure 6 ( 194.0 ) differs slightly from the 

simple PD because EPO is not observed at Pc = 1, 
although NE is trapped at Pc = 0. At any rate, EPO is 
largely inconsistent with NE since EPO, which is the 
peak of social payoff, appears above Pc = 0.5. 
Therefore, we call this game structure a D-dominate 
quasi-Prisoner’s Dilemma game. 

Figure 8 ( 244.0 ) seems odd; it looks 

analogous to a D-dominate quasi-PD Game (Fig. 6), 
but it differs. EPO defined by the peak of social 
payoff appears below Pc = 0.5 and is relatively close 
to NE found at Pc = 0. Therefore, we call this a D-
dominate quasi-light PD game. 
Figure 10 shows the effects of vehicle density on the 
strength of dilemma,  , defined by Nakata et al. 

(2011). Figure 10 shows that the density at severe 
dilemma strength is consistent with the density 
observed in the high-flux region, including the 
metastable phase (Fig.1 (a)). This seems physically 
plausible because, in this density region, a driver has 
a strong incentive for changing lanes to exploit other 
drivers and ensure his own benefit is maximized 
(smaller travel time). However, when one driver 
changes lanes, others might follow. Therefore, states 
with high flux, say in the metastable phase, collapse 
with the phase shifting to the jam phase. 

4 CONCLUSIONS 

For ordinal traffic flows, we have successfully 
demonstrated that there are hidden social-dilemma 

structures evoked by drivers’ decisions whether or 
not they should change lanes. This was confirmed by 
a series of numerical simulations using the revised 
S-NFS cellular automaton model combined with a 
lane-changing model that we developed and applied 
with cyclic boundary conditions.  

Interestingly, social dilemmas, as classified by 
the Prisoner’s Dilemma game or its variants, were 
only observed in situations of middle vehicle 
density; these situations correspond to the region on 
the fundamental diagram, including the metastable 
phase, in which data are scattered. This seems 
plausible because, when a driver is surrounded by 
other vehicles, that driver has a serious incentive to 
change lanes. However, if all drivers make the same 
decision, social efficiency declines phenomenally 
and huge traffic jams emerge. We also evaluated the 
relation between dilemma strength and density of 
vehicles. 
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APPENDIX 
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Figure 2: Results for 1.0  at point A in Figure 1(a). (a) Effect of fraction of cooperators (Pc) on payoff functions 

(velocity and flux). Red closed circles are average payoffs of defectors, and blue triangle are average payoffs of 
cooperators. Green bold line indicates traffic flux as a social payoff. (b) Effect of fraction of cooperators (Pc) on velocity 
frequency. This behavior corresponds to a Neutral game. 
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Figure 3: Same as in Figure 2, except at 141.0 , which corresponds to one of the three points C in Figure 1(a). This 

behavior corresponds to a D-dominate Trivial game. 
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Figure 4: Same as in Figure 2, except at 155.0 , which corresponds to one of the two points B in Figure 1(a). This 

behavior corresponds to a weak Prisoner’s Dilemma game. 
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Figure 5: Same as in Figure 2, except at 179.0 , which corresponds to one of the three points C in Figure 1(a). This 

behavior corresponds to a D-dominate Trivial game. 
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Figure 6: Same as in Figure 2, except at 194.0 , which corresponds to point D in Figure 1(a). This behavior 

corresponds to a D-dominate quasi-Prisoner’s Dilemma game. 
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Figure 7: Same as in Figure 2, except at 211.0 , which corresponds to one of the two points B in Figure 1(a). This 

behavior corresponds to a weak Prisoner’s Dilemma game. 
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Figure 8: Same as in Figure 2, except at 244.0 , which corresponds to point E in Figure 1(a). This behavior 

corresponds to a D-dominate quasi-light PD game. 
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Figure 9: Same as in Figure 2, except at 6.0 , which corresponds to one of the three points C in Figure 1(a). This 

behavior corresponds to a D-dominate Trivial game. 
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Figure 10: Effects of vehicle density on dilemma strength,  . Each color identifies one of the dilemma classses shown in 

Figure 1(a): (A) Neutral game, (B) Prisoner’s Dilemma game, (C) D-dominate Trivial game, (D) D-dominate quasi-PD 
game, and (E) D-dominate quasi-light-PD game. 
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