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Abstract. A multi-core cluster is a cluster composed of numbers of nodes 
where each node has a number of processors, each with more than one core 
within each single chip. Cluster nodes are connected via an interconnection 
network. Multi-cored processors are able to achieve higher performance with-
out driving up power consumption and heat, which is the main concern in a 
single-core processor. A general problem in the network arises from the fact 
that multiple messages can be in transit at the same time on the same network 
links. This paper considers the communication latencies of a multi-core mul-
ti-cluster architecture will be investigated using simulation experiments and 
measurements under various working conditions.  

1 Introduction 

In the past, it was a trend to increase a processor’s speed to get better performance. 
Moore’s Law, which states that the number of transistors on a processor will double 
approximately every two years has been proven to be consistent due to the transistors 
getting smaller in successive processor technologies [1]. However, reducing the tran-
sistor size and increasing clock speeds causes transistors to consume more power and 
generate more heat [2]. These concerns limit cost-effective increases in performance 
which can be achieved by raising processor speed alone. These issues gave computer 
engineers the idea of designing the multi-core processor, a single processor with two 
or more cores [3].   

Multi-core processors are used extensively in parallel and cluster computing. As 
far back as 2009, more than 95% of the systems listed in the Top 500 supercomputer 
list used dual-core or quad-core processors [4]. The motivation in this realm is the 
advances in multi-core processor technology that makes them an excellent choice to 
use in cluster architecture [5]. From the combination of cluster computing and mul-
ti-core processor, the multi-core cluster architecture has emerged. The multi-core 
cluster architecture becomes more powerful due to the combination of faster proces-
sors and faster interconnection [6]. 

Overall performance of multi-core cluster always determined by the efficiency of 
its communication and interconnection networks [7]. Hence, performance analysis of 
the interconnection networks is vital. A general problem in the network may arise 
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from multiple messages being in transmission at once on the same network links and 
this will cause delays. Such delays increase the communication latency of the inter-
connection network and it is therefore important to minimise this. A high communica-
tion latency of interconnection network can dramatically reduce the efficiency of the 
cluster system [8]. 

Many studies [9-11] have been carried out to improve the performance of multi-
core cluster but few clearly distinguish the key issue of the performance of intercon-
nection networks. Although the cluster interconnection network is critical for deliver-
ing efficient performance, as it needs to handle the networking requirements of each 
processor core [8], existing models do not address the potential performance issues of 
the interconnection networks within multi-core clusters. 

Scalability is a very important aspect to examine when evaluating clusters.  Ab-
delgadir, Pathan, & Ahmed [12] find that having good network bandwidth and faster 
network will produce better scalability of clusters. Scaling up by adding more proces-
sors to each node to increase the processing power creates too much heat [3]. The 
conventional approach to improving cluster throughput is to add more processors but 
there is a limit to the scalability of this approach; the infrastructure cannot provide 
effective memory access to unlimited numbers of processors and the interconnection 
network(s) become saturated [13]. Technological advances have made it viable to 
overcome these problems by combining multiple clusters of heterogeneous networked 
resources into what is known as a multi-cluster architecture [14].  

We describe a scalable approach to building heterogeneous multi-cluster architec-
ture and are the first investigation into network latency within such architecture. 

2 The Architecture 

Multi-core processor is a single processor within a chip with two or more cores [3]. 
Multi-core processors are the answer for the deficiencies of single-core processors; as 
processor speed increase, the amount of heat produced and the amount of power con-
sume by the processor increase with it. Multi-core processors can perform more work 
within a given amount of time by dividing the work between two or more cores while 
reduce the power consumption and dissipate the heat [15]. Due to their greater com-
puting power and cost-to-performance effectiveness, cluster computing uses mul-
ti-core processors extensively [16].  

A multi-core cluster is a cluster where all the nodes in the cluster have multi-core 
processors. In addition, each node may have multiple processors (each of which con-
tains multiple cores). With such cluster nodes, the processors in the node share both 
memory and their connections to the outside. A new architecture known as the Multi-
Core Multi-Cluster Architecture (MCMCA) is introduced in Fig. 1. The structure of 
MCMCA is derived from a Multi-Stage Clustering System (MSCS) [13] which is 
based on a basic cluster using single-core nodes. The MCMCA is built up of numbers 
of clusters where each cluster is composed of numbers of nodes. The numbers of 
nodes are determined at run time. Each node of a multi-core cluster has more than one 
processor. Cores on the same chip share local memory but have their own L2 cache. 
The interconnection network connects the cluster nodes. 
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Fig. 1. Overview of the proposed Multi-Core Multi-Cluster Architecture (MCMCA). 

3 Communication Network 

The performance of a cluster system depends on its communication latency of the 
interconnection network. The research conjecture is that low communication latency 
is essential to achieving a faster network and increasing the efficiency of a cluster. In 
order to understand the communication network of the Multi-Core Multi-Cluster Ar-
chitecture (MCMCA), this section explains in detail the different types of communi-
cation networks.  

There are five communication networks in MCMCA. Three of them are common-
ly found in any multi-core cluster architecture, these are: the intra-chip communica-
tion network (AC); the inter-chip communication network (EC) and the intra-cluster 
network (ACN). The new communication networks introduced in this paper are the 
intercluster network (ECN) and the multi-cluster network (MCN). 

The communication between two processor cores on the same chip is the in-
tra-chip communication network (AC), as shown in Fig. 2. Messages from source A 
to destination B travel via the AC communication network, which acts as a connector 
between two processor cores on the same chip.  

Fig. 3 shows an inter-chip communication network (EC) for communicating 
across processors in different chips but within a node. Messages travelling to different 
chips from source A in the same node first have to communicate within the chip via 
the intra-chip communication network (AC), and then travel between the chips via the 
EC network to reach their destination B. Each node has two communication connec-
tions which are intra-cluster network (ACN) for transmission within a cluster and 
inter-cluster network (ECN) for transmission between clusters. 

An intra-cluster network (ACN) is used for messages within a cluster. In order for 
messages to cross the nodes, messages have to communicate with the intra-chip 
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communication network (AC) and the inter-chip communication network (EC) to 
pass between chips. Then messages travel via the ACN to enter different nodes to 
reach their destination, as shown in Fig. 4.  

Messages travelling from source A to destination B between clusters communicate 
via two communication networks to reach other clusters, as shown in Fig. 5. An in-
ter-cluster network (ECN) is used to transmit messages between clusters. The clusters 
are connected to each other via the multi cluster network (MCN). When the messages 
reach the other cluster, they have to communicate with the ECN of the target cluster 
before arriving at their destination.  

All levels of communication are critical in order to optimise the overall perfor-
mance of the Multi-Core Multi-Cluster Architecture (MCMCA). The overall commu-
nication latency gathered from all communication networks will be calculated. The 
derived simulation results will be analysed for comparison between the existing archi-
tecture and the MCMCA architecture. 

 

 
Fig. 2. Communication network flow A for message passing between two processor cores on 
the same chip. 

 
Fig. 3. Communication network flow B for message passing across processors in different 
chips but within a node. 
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Fig. 4. Communication network flow C for message passing between processors on different 
nodes but within the same cluster. 

 

Fig. 5. Communication network flow D for transmitting messages between clusters. 

4 Research Methodology 

This work will use computer simulation to model the architecture. The model will be 
validated using computer simulation experiments.  

4.1 Simulation Tool 

OMNeT++ network simulation tool [17],  a C++ based open-source discrete-event 
simulator has been chosen to model MCMCA. Comparison studies of network simu-
lators have been conducted which involved OMNeT++, MATLAB, ns-2, ns-3, OPNet 
and QualNet [18-21]. NS-2 is still the most widely used network simulator in aca-
demia, but OMNeT++ provides more infrastructures. OMNeT++ is also popular in 
academia and industry because of its extensibility since it is also open source. There 
is also plentiful online documentation and mailing lists for general discussion. Alt-
hough NS-3 demonstrated the best overall performance, NS-3 still needs to improve 
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its simulation credibility [19] and OMNeT++ can be considered as a viable alterna-
tive. OPNet has similar foundations to OMNeT++ although it is a commercial prod-
uct, and contains an extensive model library and provides several additional programs 
and GUI tools. The other two commercial products are QualNet, which emphasises 
wireless simulations, and MATLAB, which needs several prerequisite components 
for its files to function normally. 

4.2 Simulation Development 

An early stage of simulation experiments under various configurations and design 
parameters has been completed. The performance evaluation focused on communica-
tion latency in the MCMCA architecture. As a preliminary study, the communication 
network performance experiments are based on a single-core multi-cluster architec-
ture. A simulation model has been built to measure the performance of single-core 
multi-cluster architecture. This evaluation was then compared to the model of multi-
cluster architecture presented by Javadi et al., [22] with the given configuration and 
parameters to match the work in their papers.  

This work focuses on measuring steady-state performance of a network; the per-
formance of a network with a stationary traffic source after it has reached steadiness. 
A network has reached steadiness when its average queue lengths have reached their 
steady-state values. To measure steady-state performance, the simulation experiments 
were conducted in three phases: warm-up, measurement and drain [7]. The network 
has necessarily reached a steady-state once the network is warmed up [22]. This 
means that the statistics of the network are stationary and no longer changing with 
time, which will determine an accurate estimation. 

4.3 Simulation Setup 

The model behaviour built into each Network Description (NED) file will be captured 
in C++ files as code and can be edited in the Integrated Development Environment 
[23]. Each NED file has its own C++ simple module source. Unlike many formats of 
deterministic discrete event simulation, the model is built at run-time to form a topol-
ogy that represents the geometric structure and the communication links between the 
modules. At the start of each execution, the simulator reads the initialisation file (.INI 
file) that tells the tool which network file is to be simulated. In this initialisation file 
the parameters of the model, such as number of cores per node, number of clusters, 
number of messages to be generated, message length (M), flit length (F) and in-
ter-arrival time, are specified. The simulation can also behave with different initialisa-
tion inputs and all the values can be stored in an .INI file, usually called omnetpp.ini, 
containing settings that control how the simulation is executed.  

When the simulation is started, it will show how the messages hop from module to 
module following the routing algorithm. Each message will be partitioned into a se-
quence of packets first before being generated at each tree-node, following the as-
sumptions that the message destinations are uniformly distributed by using a uniform 
random number generator. Packets travelling from source to its destination will ac-
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cess the available processor through a chip first, where a chip can contain one or 
more processors. Then, each processor will divide the packets into the number of 
cores. If first processor is busy, it will pass the packets to another processor in the 
same chip within the same node first, before determining via the communication net-
work if other processors in other chips can process the packets. Packets will access 
the processors, chips and nodes in the same cluster first before accessing other clus-
ters via communication network. 

The routing file will determine the path the packets will follow in the network 
from the source to the destination. Based on the path given, the packets will travel 
using communication switch to get through the communication network. If there is a 
situation where more than one packet needs to use the same route, the communication 
switch will determine which packet can go through first or if the packet needs to 
queue (buffer) until the route is available. Each packet is time-stamped after its gen-
eration and the message completion time is defined on each tree-node to compute 
message latency. Statistics will be gathered for every event in the simulation for anal-
ysis of the results. 

5 Results and Discussion 

A number of examples of the simulation of the single-core multi-cluster model have 
been examined to establish its performance under various workload conditions. The 
first case was performed for an 8-single-core cluster system with message length (M) 
= 32 flits, flit length (F) = 256 bytes and 512 bytes. The second case was performed 
with the same 8-single-core cluster system and the same flit length (F) = 256 bytes 
and 512 bytes but with longer message length (M) = 64 flits. The X axis denotes the 
traffic rate, while the Y axis indicates the communication latency. 
 

 

Fig. 6. Average latency of 8-cluster system 
with M=32 flits, F=256 bytes and 512 bytes. 

Fig. 7. Average latency of 8-cluster system 
with M=64 flits, F=256 bytes and 512 bytes. 

Simulation experiments have revealed that the results obtained from the sin-
gle-core multi-cluster architecture closely match the results from the model of multi-
cluster architecture presented by Javadi et al. [22], when compared. The results have 
shown that as the traffic rate increases, the average communication latency increases 
following the assumptions that the messages are delayed by having to wait for re-
sources before traversing into a network. At low traffic rates, latency will approach 
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zero-load latency. The results confirm that the simulation model is a good basis to 
measure the communication latency for a large-scale cluster, and can be extended to 
multi-core multi-cluster architecture. 

6 Conclusion and Future Work 

This paper has presented architecture for measuring the performance of communica-
tion networks in Multi-Core Multi-Cluster Architecture (MCMCA). Preliminary stage 
of the research involved the development of the single-core multi-cluster simulation 
model. Simulation experiments have been conducted to evaluate the single-core mul-
ti-cluster and baseline results were produced. Simulation results demonstrated that the 
simulation model is a good basis to measure the communication latency for a 
large-scale cluster, and can be extended to MCMCA. 

Our future work will be developing a simulation model for MCMCA. Experi-
ments will be run in simulation to investigate the model’s performance under various 
configurations. This will provide communication network performance results for 
comparisons to be made between the model of the MCMCA and models of existing 
cluster architectures [15, 22]. The simulation will measure communication latency of 
a cluster when applying multi-core processor technology, under a multi-cluster archi-
tecture environment. The approach taken and accuracy of the simulation outcome will 
make it a good reference for predicting the performance behaviour of MCMCA. 
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