
GPU Solver with Chi-square Kernels for SVM Classification of Big
Sparse Problems

Krzysztof Sopyla and Pawel Drozda
Department of Mathematics and Computer Science, University of Warmia and Mazury, Olsztyn, Poland

Keywords: SVM Classification, GPU Computing, Sparse Data Formats, SVM Kernels.

Abstract: This paper presents the ongoing research on the GPU SVM solutions for classification of big sparse datasets.
In particular, after the success of implementation of RBF kernel for sparse matrix formats in previous work
we decided to evaluate Chi2 and Exponential Chi2 kernels. Moreover, the details of GPU solver are pointed.
Experimental session summarizes results of GPU SVM classification for different sparse data formats and
different SVM kernels and demonstrates that solution for Exponential Chi2 achieves significant accelerations
in GPU SVM processing, while the results for Chi2 kernel are very far from satisfactory.

1 INTRODUCTION

The Support Vector Machine (Cortes and Vapnik,
1995; Vapnik, 1995; Boser et al., 1992; Chapelle
et al., 1999) algorithm (SVM) is considered to be
a robust and effective machine learning method for
many classification tasks in a variety of scientific
fields, for example Information Retrieval (Joachims,
1998), Content Based Image Retrieval (Lazebnik
et al., 2006; Gorecki et al., 2012) , Bioinformatics
(Acir and Guzelis, 2004) and many other.

Its popularity is proven by a great number of im-
plementations, which differ greatly in many aspects,
starting from the way in which underling optimiza-
tion problem is solved (Platt, 1998; Fan et al., 2005;
Joachims et al., 2009; Bottou, 2010), through special-
ized formulations with a particular kind of kernels,
like the linear one and ending on platforms, program-
ming languages and computing devices.

In recent years, many researchers began using the
cheap computing power of the Graphical Processor
Units (GPU) for time-consuming calculations. Dis-
tribution of computing tasks allows for a significant
acceleration of the whole process, but it requires a
skillful use of appropriate data structures as well as
the organization of computing in the parallel manner.

The main issue discussed in this paper is adapta-
tion of General Purpose GPU computing (GPGPU)
for solving SVM binary classification problems. Es-
pecially, we focus on the problems with a large num-
ber of features which can not be solved with the uti-
lization of standard GPU SVM solutions due to huge

memory occupation.
We extend our previous researches on SVM accel-

eration, in which the possibility of introducing sparse
matrix formats: CSR (Sopyla et al., 2012) and Sliced
Ellpack in SVM process was investigated. In partic-
ular, in previous works we have proven that the us-
age of sparse matrix formats significantly accelerates
kernel matrix computation for RBF kernel and makes
processing of large sparse datasets possible.

Whereas, in this paper we try to replace the com-
putationally expensive RBF kernel with Chi2 and Ex-
ponential Chi2 kernels and examine whether is is pos-
sible to obtain the acceleration of the SVM training
at the similar level as for RBF kernel. Moreover, the
detailed description of GPU solver is provided, which
improves the work (Sopyla et al., 2012) where slower
CPU solver was used.

Obtained results indicates that Exponential Chi2

works well in GPU SVM processing with sparse ma-
trix formats achieving accelerations up to 24 times,
while for Chi2 the results are far from satisfactory.

All presented algorithms are included in a free and
open source KMLib library, which is available for
download from https://github.com/ksirg/KMLib.

The paper is organized as follows. The next
section describes the SVM algorithm with available
CPU and GPU solvers. The implementations of GPU
solver and two SVM kernels are presented in section
3. In section 4 we presents experiments, which in-
dicates the achieved accelerations. The last section
concludes the paper.
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2 SUPPORT VECTOR MACHINES

The SVM algorithm is one of the most frequently
used binary classifier whose main task is to solve the
quadratic optimization task. As a result, the SVM re-
turns a hyperplane which separates the input dataset
into two distinct classes. It can be done by solving
one of the SVM formulations from which we chose
the dual form (1):

min
α

1
2

αTQα−eTα, (1)

yTα = 0,

∀i=1···l 0≤ αi ≤C,

where(xi ,yi) is a given set of instance-label pairs,
i = 1, . . . , l ; xi ∈ Rn;yi ∈ {−1,+1}, α is a vector of
Lagrange multipliers,e= [1, ...,1] is the ones vector
andQ is anl by l positive semidefinite matrix, defined
asQi j = yiy jK(xi ,x j) with K(xi ,x j) = φ(xi)

Tφ(x j) as
the kernel function.

The kernel function can take many different
forms. A linear approach is the one which is the most
frequently used and is thoroughly investigated in the
literature. In cases where the linear kernel is not suffi-
cient for solving the considered classification problem
the ”Kernel Trick” is often introduced. It involves re-
placing a linear function by one of the non-linear solu-
tions. In that group RBF, Polynomial and Chi2 are the
most important for the SVM classification purposes.

The decision for the new object is made on the ba-
sis of the support vector and the chosen kernel func-
tion and is represented by the following formula (2):

F(xnew) = sign

(

l

∑
i=1

yiαiK(xi ,xnew)+b

)

. (2)

2.1 CPU SVM Solvers

As the SVM classification became hard and time con-
suming there arose a need for SVM optimizing meth-
ods. The most significant researches in this field
without any parallel processing includes the SMO
(Sequential Minimal Optimization) algorithm (Platt,
1998), where author reduces greatly the number of
updated variables, paper (Keerthi et al., 2001) with
the maximal violating pair approach in the variable
selection procedure and (Fan et al., 2005), where the
second order information for the working set selection
was applied. The algorithm proposed by Fan is avail-
able in the state of the art library LibSVM (Chang and
Lin, 2011). A different but important solution was
proposed by Joachims in SVMlight (Joachims, 1999).

Next direction in SVM acceleration was based on
CPU parallel processing, where the synchronization

between CPU cores is one of the most challenging
tasks. In this group CascadeSVM (Graf et al., 2005)
is one of the successful implementation, where au-
thors used cascade of SVM in the form of inverted tree
and reported 4-5 times speed up for 16 CPU cores.
Keerthi et al. (Cao et al., 2006) used parallel ver-
sion of SMO with gradient based heuristics of choos-
ing optimization variables and reached linear accel-
eration for 8-16 processors. Next work (Zanni et al.,
2006) adopts SVMlight (Joachims, 1999), where au-
thors achieve the speed up, which varies from 5 up to
12 times for 16 processors. Special attention should
be given to PSVM (Chang et al., 2007), since authors
use computing cluster consisting of 500 machines.
They achieved 71 times speed up for 150 units, while
for 500 units the acceleration reached 169 times. It
has been also shown that the problem of scalability
for a large number of CPU nodes is still unsolved. Fi-
nally, the paper (Zhao and Magoules, 2011) applies
Map Reduce in MRPsvm algorithm with reported ac-
celerations varied from 2.1 to 5.2 times for 4 cores.

2.2 GPU SVM Solvers

The next step in SVM acceleration is associated with
applying modern hardware architectures (GPU) into
the classification process. Catanzaro et al. (Catan-
zaro et al., 2008) are considered the first who ap-
plied GPU processing for Support Vector algorithms.
In particular, the authors proposed the adaptation of
the SMO algorithm for parallel processing on the
GPU. A similar approach can be observed in (Car-
penter, 2009), where Carpenter proposed the solution
for SVM training, and additionally provided the sup-
port for single and double precision calculations. An-
other approach developed by (Herrero-Lopez et al.,
2010) focused on the multi-class classification prob-
lem, in which the main attention was given to the op-
timization of thread management. All the solutions
described above were implemented with the use of
Nvidia CUDA technology, involved only one graph-
ical unit each and reached the speed up by 12 to 37
times (depending on the test dataset).

The main disadvantage of the aforementioned im-
plementations results from the encoding of the dataset
as the dense matrix, where each row contains dense
feature vector. This greatly reduces the applicability
of this solution to feature rich problems. On the other
hand, such representation simplifies many operations
performed during classification such as computation
of the kernel matrix column, which is equivalent to
dense matrix (all dataset vectors) dense vector multi-
plication. For this reason (Catanzaro et al., 2008) use
level 2 BLAS operation implemented in CUBLAS,
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whereas (Carpenter, 2009) exploits the efficient
Volkov et al. (Volkov and Demmel, 2008) matrix im-
plementation.

The paper (Lin and Chien, 2010) was the first
work which tackles the problem of learning SVM for
big sparse datasets. The authors used the Ellpack-
R(Vázquez et al., 2009) sparse matrix format, so
that large datasets can be processed by Support Vec-
tor Machine algorithms. The second successful im-
plementation of the sparse matrix format for SVM
method is described in (Sopyla et al., 2012). Authors
used the CSR matrix format and (Bell and Garl, 2008)
CSR Vector matrix multiplication in order to achieve
good compress capabilities and noticeable accelera-
tion. The Ellpack-R format is well structured which
facilitates SVM implementation but does not reduce
the size of dataset greatly. It results in problems of
processing the vast amount of data. Second solution
with CSR format provides accurate data compression,
which makes computing of large datasets possible.
Moreover, after the introduction of NVidia Keppler
architecture the solutions with CSR format achieve
similar performance as for Ellpack-R format.

There should be also mentioned the work
GTSVM (Cotter et al., 2011) in which authors applied
a special clustering procedure in order to group vec-
tors which similar sparse patterns, which eventually
speed up the CUDA computations. As a solver they
use the approach similar to Joachims(Joachims, 1999)
SVMlight . Experiments conducted by authors of this
paper shows that GTSVM solution significantly ac-
celerates the SVM training process for data sets where
number of features is moderate (200 - 1000).

The major drawback of this solution is that it
can not handle large datasets(in terms of objects and
features), nevertheless in authors opinion is one of
the fastest SVM GPU implementation for medium
datasets.

In this paper we provide extension of (Sopyla
et al., 2012) by GPU solver as well as Chi2 and Ex-
ponential Chi2 kernel implementations for GPU, de-
tailed in next section.

3 GPU IMPLEMENTATIONS

This section presents our contribution to the field of
GPU SVM, where we investigate the usefulness of
sparse matrix formats for accelerating large feature
rich classification process. In particular, we provide
GPU solver as well as implementations of two ker-
nels for GPU processing. All the created solutions are
gathered in KMLib open source library which can be
downloaded from https://github.com/ksirg/KMLib.

3.1 GPU Solver

Following the work of (Catanzaro et al., 2008), (Car-
penter, 2009) and (Lin and Chien, 2010) as a SVM
solver we choose the SMO with a further modifica-
tion by (Fan et al., 2005).

In presented solution the goal of CPU host is
only to provide preliminary settings, call appropri-
ate CUDA functions and synchronize intermediate
stages. Whereas all main and the most time consum-
ing tasks are delegated to GPU computing. Moreover,
all kernel computations are also performed on the
GPU. Such approach results in no need of constantly
copying memory blocks between the CPU and GPU
which could considerably slow down the algorithm.
Finally, we provide a separation of kernel and solver
codes by defining them in separate classes which sig-
nificantly relaxes our implementation for the kernel or
solver changes.
The initial step of the main loop executed on GPU
involves searching the indexi by each running block
with the use of the modified parallel reduction method
(Harris, 2008), which is performed with ’max’ opera-
tor to reduce the target function gradient. As a result
the 128 dimensional vector is generated, since the ex-
periments reported the best efficiency for 128 running
blocks. Next, the resulting vector is transferred to the
CPU host where the final reduction is made and the
final i and gradient value are obtained. Further step
involves the computation of i-th kernel matrix column
which is delegated to the kernel function and executed
on GPU. With the use of i-th vector, the j-th kernel
matrix column is calculated, which is performed in
the similar way as for i-th value. Finally, two La-
grange multipliers are updated on CPU host and the
new value of gradient is computed on GPU.

It should be noted, that in our solution accessing to
the dense vector is done through the texture cache. It
can be also achieved with the use of the shared mem-
ory, which is significantly faster than texture, but it is
also strongly limited. For instance for GeForce 460
card there is 48KB, thus maximum dimension of the
vector stored in floats(4B) can be 12288. Due to this
restriction the texture cache is more appropriate for
feature rich problems.

Our implementation of GPU solver is quite simi-
lar to cuSVM solution. The main differences lie in the
way of the code organization. For the cuSVM there is
no clear separation of solver and kernel code, which
causes great difficulty when trying to change the ker-
nel function. In our approach, a separate class is cre-
ated for each element, so changing the kernel func-
tion or type of solver involves the swapping of classes
only.
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3.2 Chi-square and Exponential
Chi-square Kernels

This subsection presents two additional kernels for
SVM classification. In particular, the details of
Chi2 and Exponential Chi2 kernel implementation are
shown and the way in which they are combined with
sparse data formats is provided. The main goal of us-
ing these kernels is to verify whether it is possible to
obtain significant acceleration of GPU SVM training
for other kernels than RBF.

The Chi2 kernel for SVM classification is defined
for x,y∈ R

D
+ and is given by formula (3):

K(x,y) =
D

∑
i=1

2xiyi

xi + yi
. (3)

while Exponential Chi2 is presented in equation (4):

K(x,y) = exp(−γ χ2(x,y)),

havingχ2(x,y) =
1
2

D

∑
i=1

(xi − yi)
2

xi + yi
.

(4)

wherex,y∈ R
D
+.

The choice of these kernels derives from the fact
that both kernel functions are easy to implement as the
scalar product and are very popular in CBIR domain.
The Chi Square kernel formula is in the form of scalar
product, while for Exponential Chi Square it can be
converted to (5):

K(x,y)= exp

(

−γ
1
2

(

D

∑
i=1

xi +
D

∑
i=1

yi −4
D

∑
i=1

xiyi

xi + yi

))

.

(5)
It greatly limits the number of ’if’ instructions,

which are the very high computationally expensive
operations in CUDA programming. In particular, for
multiplication of sparse and dense vector the scalar
product needs only the operation for non-zero ele-
ments of sparse vectors.

A next essential factor, apart from choosing appro-
priate kernel, is the organization of sparse data format
processing on GPU in such a way as to use parallel
processing in the most efficient way. In particular,
the way in which the considered formats are handling
nonzero values greatly affects the final performance.
Regarding the Ellpack-R format, which is the most
regular and CUDA friendly, only one thread is as-
signed to computation of one kernel value, firstly the
column index of nonzero value based on thread and
block number is determined and then,i − th nonzero
value is read and added to the accumulator. However,
this simplicity is associated with the increased mem-
ory occupation. The Sliced EllR-T implementation

use T threads (in our case T=4) for one matrix row, all
the nonzero values are grouped into blocks each size
of 4. It provides coalesced reads and forces utilization
of shared memory for reduction T partial results.

4 EXPERIMENTS

The main goal of the experiments was to verify if the
usage of Chi2 and Exponential Chi2 kernels on GPU
devices for SVM algorithm allows for achieving sig-
nificant acceleration with respect to LibSVM algo-
rithm launched on 8 CPU cores with use OpenMP
technology. For this purpose, we used the machine:
Intel Core i7-2600 3.4GHz with 4 physical cores ex-
tended to 8 with the ’Intel Hyper Treading’ Technol-
ogy and GPU GeForce 690. For the tests the most
frequently used machine learning datasets were cho-
sen, downloaded from LibSVM web page (see the
first column of Tables 1 and 2). The SVM stop-
ping criterion is equal to 0.001 and the parameters for
kernels were set to the values:C = 4 for Chi2 and
C= 4,γ = 0.5 for Exponential Chi2.

The results of the experiments are summarized in
the Tables 1 and 2. Table 1 includes training times of
GPU solver with Chi2 kernel, where the Ellpack and
Sliced EllR-T sparse matrix formats are utilized. The
experiment summarized in Table 2 was conducted in
the same manner, but the kernel was changed to the
Exponential Chi2. In both cases, the results were
compared with training times of LibSVM algorithm.

Firstly, it is worth noting, that the processing of
the 20 Newsgroup, Real-Sim and Rcv1.binary rev.
datasets in Ellpack format is impossible. It derives
from the fact that these datasets do not fit into the Ell-
pack format into the GPU memory. Secondly, the re-
sults for Chi2 kernel are very far from the expected.
In the most cases GPU Chi2 solution obtains much
worse performance than standard LibSVM algorithm,
where Chi2 solution is from 1.2 up to 11 times slower.
This is due to the fact that LibSVM uses caching and
needs much less power for the calculation of ’i’ and
’j’ kernel column for the Chi2 kernel for small and
medium-sized datasets. For the Chi2 kernel, from a
certain moment of the SVM process, indexes i and j
change very slightly, which allows retrieving recently
selected vectors from the cache. In our solution there
is no cache, which causes the necessity of i and j vec-
tors computation in every iteration of algorithm. Only
for Dominionstats.scale and web-spam Chi2 solution
overperforms LibSVM, since these datasets are much
larger than others.

For the Exponential Chi2 the obtained results are
significantly better. For all datasets the training is
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Table 1: SVM training times for Chi2 kernel (C = 4).

Dataset LibSVM
Ellpack Sliced EllR-T

T[s] x T[s] x
Web (w8a) 13.3 147.7 0.09x 126.6 0.10x
Adult (a9a) 30.8 92.2 0.33x 97.4 0.31x
20 Newsgroup 338.9 - - 404.0 0.83x
Real-Sim 218.7 - - 355.3 0.61x
Rcv1.binary rev. 37287.4 - - 43521.9 0.85x
Mnist* 7211.4 12763.7 0.56x 10979.6 0.65x
Dominionstats.scale 120423.1 43600.3 2.76x 41103.0 2.92x
Tweet.full 2352.8 1909.7 1.23x 1963.0 1.20x
web-spam 3409.1 596.9 5.71x 611.3 5.57x

Table 2: SVM training times for ExpChi2 kernel (C = 4,γ = 0.5).

Dataset LibSVM
Ellpack Sliced EllR-T

T[s] x T[s] x
Web (w8a) 150.2 40.8 3.7x 35.0 4.3x
Adult (a9a) 79.8 24.1 3.3x 26.9 3.0x
20 Newsgroup 755.3 - - 498.7 1.5x
Real-Sim 1461.7 - - 452.5 3.2x
Rcv1.binary rev. 163799.1 - - 15882.1 10.3x
Mnist* 7486.6 571.8 13.1x 495.7 15.1x
Dominionstats.scale 98582.2 4377.0 22.5x 4120.2 23.9x
Tweet.full 6562.6 491.1 13.4x 511.8 12.8x
web-spam 3116.7 384.6 8.1x 396.6 7.9x

much faster and the acceleration varies from 1.5x for
20 Newsgroup to 23.9x for Dominionstats.scale.

5 CONCLUSIONS

This paper presents the ongoing research which aim is
to combine different SVM kernels with sparse matrix
formats in GPU SVM processing. The successful so-
lutions were presented in (Sopyla et al., 2012) where
in the first work CSR format was combined with RBF
kernel and in the second paper Ellpack and Sliced
EllR-T formats were introduced for RBF and com-
pared with popular sparse GPU solutions. This paper
showed the detailed description of GPU solver as well
as the possibility of the usage of Chi2 and Exponential
Chi2 kernels with Ellpack and Sliced EllR-T sparse
matrix formats. Chi2 kernel proved to be completely
unsuitable for the proposed approach while the results
for the second kernel seem to be very promising. To
complete our contribution we plan to implement sim-
ilar solutions for CSR format and to collate all imple-
mented GPU solutions with the state of the art GPU
algorithms.
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