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Abstract: The amount of data in our world has been exploding. Integrating, managing and analyzing large amounts of 
data – i.e. Big Data - will become a key issue for businesses for better operating and competing in today’s 
markets. Data are only useful if used in a smart way. We introduce the concept of Smart Data that is web 
and enterprise structured and unstructured big data with explicit and implicit semantics that leverages 
context to understand intent for better driving business processes and for better and more informed decisions 
making. This paper proposes a language able to give a representation of Big Data based on ontologies and a 
system that implements an approach capable to satisfy the increasing need for efficiency and scalability in 
semantic data management. The proposed MANTRA Language allows for: (i) representing the semantics of 
data by knowledge representation constructs; (ii) acquiring data from disparate heterogeneous sources (e.g. 
data bases, documents); (iii) integrating and managing data; (iv) reasoning and querying with Big Data. The 
syntax of the proposed language is partially derived from logic programming, but the semantic is 
completely revised. The novelty of the language we propose is that a class can be thought of as a flexible 
collection of structurally heterogeneous individuals that have different properties (schema-less). The 
language also allows executing efficient querying and reasoning for revealing implicit knowledge. These 
have been achieved by using a triple-based data persistency model and a scalable No-SQL storage system. 

1 INTRODUCTION 

One of the key challenges in making use of Big Data 
lies in finding ways of dealing with heterogeneity, 
diversity, and complexity of the data. Big Data 
volume, variety and velocity forbid the adoption of 
data integration and management solutions available 
for smaller datasets based on traditional Extract 
Transformation and Load (ETL) or manual  data 
manipulation approaches.  

Big Data, locked in the web and enterprise 
sources, can include both structured and 
unstructured data. If smartly utilized it can yield 
unprecedented insights into solving tough business 
issues and improving customer relations. We 
introduce the concept of Smart Data that is data with 
explicit semantics combined with implicit semantics 
that leverages context for better understanding 
intent, optimizing business processes, and 
supporting smarter decision-making. The challenge 
is using Smart Data, rather than just Big Data, to 

unlock the value held in data. 
Implicit semantics can be obtained, for instance, 

by means of annotation, entity and metadata 
extraction, and natural language processing. 
Inference and machine learning techniques can 
discover implicit semantics. Ontologies are 
considered a key technology enabling semantic 
interoperability and integration of data, processes 
and querying (Motta, 1999)(Staab et al. 2001) for 
both structured data and unstructured data (Haase et 
al., 2008)(Cimiano et al., 2007).  

Associating Big Data to an ontology description 
that allows for reasoning on large amounts of data is 
becoming an issue assuming increasingly 
importance. In order to recognize and join 
information contained in a system to concepts in the 
web or outside of your system, it is necessary a 
language in which represent, organize and reason 
about entities. This is the goal of the Semantic Web 
of the last 15 years (Berners-Lee et al., 2001). 
However, semantic web systems generally generate 
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metadata and identify entities manually or 
serializing database values. Actually, the tagging 
process is very hard. An important issue is how to 
store ontologies and how to reason with them, 
without losing out of sight the need for scalability. 
In fact, the effective use of ontologies requires not 
only a well-designed and well-defined semantic 
language, but also adeguate support to operations. 
The Linked Data paradigm (Bizer et al., 2009) is one 
approach to cope with Big Data. Linked Data 
represents semantically well-structured, 
interconnected, syntactically interoperable datasets. 
Numerous commercial and non-commercial 
organisations have started to utilize Linked Data for 
purposes like acquisition, enrichment, or integration 
of information. But, only a small part of the web of 
documents is represented as rich data. 

In this work we provide an initial contribution on 
open issues related to the semantic management of 
Big Data. The objective of this paper is twofold. 
First, we describe initial work on a new language, 
named MANTRA Language (ML), which allows for: 
(i) representing the semantics of data by knowledge 
representation constructs; (ii) acquiring Big Data 
from disparate heterogeneous sources (e.g. 
databases, web documents, social networks); (iii) 
integrating and managing data; (iv) reasoning and 
querying. Second, we present a triple-based data 
persistency model, which enables efficient storage 
and querying of Smart Data, and the implemented 
system supporting the ML. This has been achieved 
by using a triple-based data persistency model and a 
scalable storage system that allows to store Big Data 
in the form of triples, like RDF (W3C RDF) for the 
Semantic Web, and to execute efficient querying and 
reasoning operations in a distributed way. Roughly 
speaking, the ML and its supporting system enable 
to deal with Big Data from a knowledge 
representation perspective. They enable to extract 
data from heterogeneous data sources in order to 
integrate them and execute efficient reasoning and 
querying operations to reveal implicit knowledge.  

The paper is organized as follows: Section 2 
presents the MANTRA Language and Section 3 
presents the main architecture of the system 
supporting the language. 

2 MANTRA LANGUAGE 

Businesses are increasingly looking for semantic 
tools that enable to model and manage complex 
domain-knowledge and to solve real-world problems 
(Dao, 2011) (Blomqvist, 2012). It is necessary a 

language in which represent, organize and reason 
about entities. 

This section presents the MANTRA Language 
(ML). The ML introduces ontological constructs and 
database and linguistic descriptors, which enable to 
extract and integrate data available in heterogeneous 
data sources. The syntax is based on the intuitive 
logic programming. In particular, ontological 
constructs are partially derived from OntoDLP 
(Calimeri et al., 2003) (Ricca and Leone, 2007), 
whereas acquisition formalism are based on the 
XOnto language (Oro and Ruffolo, 2008) (Oro et Al, 
2009). OntoDLP  introduces many interesting 
features, including complex types, e.g. sets or lists, 
and intentional relations, which are used in ML. 
XOnto describes a simple way to equip ontological 
element by a set of rules that describe how recognize 
and extract objects contained into documents.  

2.1 Ontology Constructs 

Constructs that enable to define the structure of an 
ontology (light schema) and its instances are 
presented in the following. 

Classes. A class can be thought of as a flexible 
collection of structurally heterogeneous individuals 
that may have different properties. Such collections 
can be defined by using the keyword class followed 
by its name. Class attributes can be specified by 
means of pairs (attribute-name:attribute-type), 
where attribute-name is the name of the property 
and attribute-type  is the class the attribute belongs 
to. Class attributes model canonical properties 
present in class instances and admit null and 
multiple values by exploiting the triple-based data 
persistency model. Unlike OntoDLP, the ML allows 
for storing objects which properties do not match the 
declared class schema and objects that have different 
set of attributes. The syntax for declaring a class is 
shown below: 
 

class_person(name:string, age:integer, 
father:person). 
 

Class Instances. Class domains contain individuals, 
which are called objects or instances. Each 
individual in the ML belongs to a class and is 
uniquely identified by a constant called object 
identifier (oid). Objects are declared by asserting a 
special kind of logic facts (asserting that a given 
instance belongs to a class). However, as shown in 
following paragraphs, the most common way to 
define class instances in the ML is to use 
descriptors. The syntax that allows defining objects 
is the following: 
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oid:class_name(att_name_1:value_1,…, 
att_name_n:value_n). 
 

p1: person(name:‘Jhon’, age:21, 
father:p2). 
 

P2: person(name:‘Sam’, age:50, 
father:p3, income:3000).  
 

Tanomies. Ontology concepts are usually organized 
in taxonomies by using the 
specialization/generalization mechanism. This is 
usually done when it is possible to identify subsets 
of individuals having different sets of attributes. In 
particular, individuals that have at least one attribute 
more than a given set of objects can be considered a 
sub-class (specialization) of such objects. In the ML 
are allowed specializations that represent not 
exhaustive decompositions of the instances of a class 
in which objects may have different sets of 
attributes. The syntax that allows defining subclass 
is the following: 
 

subclass_name(new_att_name_1:value_1,…, 
att_name_n:new_value_n)  

subclassof superclass_name(). 
 

Relations. Another important feature of an ontology 
language is the ability to model n-ary relationships 
among individuals. Relations are declared like 
classes: the keyword relation precedes a list of 
canonical attributes. The set of attributes of a 
relation is called relation schema and can be flexible 
as for classes. The cardinality of the schema, also 
called arity, can vary for different relation instances. 
The ML allows for organizing relations in 
taxonomies. Relation instances are equipped with an 
oid when the number of attributes is above two 
(reification). 

2.2 Data Integration Constructs 

Database and linguistic descriptors, which enable to 
extract and integrate data available in heterogeneous 
data sources, are presented in the following.  

Descriptors are founded on the basic idea 
described in (Oro and Ruffolo, 2008) and (Oro et Al, 
2009) which describe a system for Information 
Extraction (IE) from PDF documents. It represents 
an approach founded on the idea that objects and 
classes of ontologies can be equipped by a set of 
rules that describe how recognize and extract objects 
contained into an external source. We use 
descriptors in order to acquire Big Data from 
disparate heterogeneous sources. In particular, we 
present two different kind of descriptors: for 
database and for documents in natural language.  

A descriptor is a rule with the form hb in 

which b (descriptor body) constitutes a pattern of 
ontology objects that allows recognizing a (set of) 
specific object defined in the left-side h (descriptor 
head). Database and Linguistic descriptors are 
described separately as follows. 
 

Database descriptors. These descriptors allow for 
describing how to recognize and extract objects and 
relations instances starting from tuples stored in a 
relational database. Database descriptors can be 
defined by using the keyword descriptor followed 
by related class (or relation) name in the head. While 
in the body of the rule, there are: a built-in that 
enables database connection and the list of atoms 
that perform query operations on the knowledge 
base. For each concept in the ontology, can be 
defined a database descriptor able to connect the 
database, perform queries and assign the query 
results to variables declared in the head.  

For example, suppose to have the following two 
relations: 

 

holdsCar(owner:Person, car:Car) 
 

hasCar(owner,car) 
 

where the relation holdsCar assign for each Person, 
the owned Car. The table hasCar connects the 
owners to their cars, stored on disk.  
If we want to extract information about the owned 
cars of the known persons from a database and 
populate the ontology, we have to state as follows: 
 

Descriptor holdsCar(O,C)  
#query(“mysql:port:user:password”,SELEC
T * FROM hasCar”,O,C),O:Person(). 
 

The assignment of the value to the variables in the 
head can be done in the #query construct directly or 
in the following part of the descriptor body. If the 
view returned from the query has more variables 
than those in the list, the schema of the class 
(relation) in the head is increased with new attributes 
of generic type named with the column name. So a 
class can be seen as a container of objects potentially 
belonging to multiple subclasses. This implicit 
knowledge can be made explicit by reasoning 
operations and specific algorithms. 
 

Linguistic descriptors. These descriptors extract 
concepts from an input text or document. For 
example, given the input string “John owns a 
Bentley Continental GT”, the following descriptors 
enable to extract the person, the car and the relation 
between them. 
 

person(X) <- X:#entity(“Person”). 
 

car(X) <- X:#dictionary(“Car”). 
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carOwner(X,Y) <<- (sentence) 
X:#entity(Person) Z:#lemma("own") 
Y:#dictionary("Car"). 
 

In this example, we search the concept carOwner as 
a weak sequence of concepts: a person, a lemma of 
the verb “to own” and a car. In order to identify 
persons we used the construct #entity that 
enables to use sophisticated algorithms for 
recognizing a specific type of entities, whereas for 
recognizing cars we used a simple dictionary by 
exploiting the construct #dictionary. In the 
example, a car is recognized only if the term in the 
input text matches to a term contained into the 
dictionary named "Car". In order to recognize a 
lemma of the verb “to own” we used the construct 
#lemma. The constraints (sentence) ensure that 
these items are contained in the same sentence. 

2.3 Querying and Reasoning 

The language enables to define reasoning tasks that 
reason on the knowledge base and infer classes and 
relations. As said before, the ML gives the 
possibility to define classes as collections of 
instances belonging to different, potentially 
unknown, subclasses. So, in order to explicit 
subclasses membership of instances, reasoning 
modules are required to create new subclasses based 
on certain properties.  

In ML, it is possible to derive new knowledge 
not only by reasoning on class and relation 
instances, but also by meta-reasoning on the 
structure of classes and relations. Currently, meta-
reasoning is possible by using the following built-in 
constructs:  

 #class (name:string): contains a fact class(“c”) for 
each class with name “c”;  

 #relation (name:string): contains a fact 
relation(“r”) for each relation with name “r”;  

 #subclass(sub:string,super:string): contains a fact 
for each class “sub” that is subclass of “super” (a 
built-in with the same meaning exists for the 
relationships #subrelation); 

 #type(class:string, instance:object): for each 
instance of class “c” contains a fact 
#type(class:“c”,instance:oid);  

 #attribute( name:string,attr:string): contains a fact 
#attribute(name:“c”,attr:“a”) for each 
class/relation “c” that has an attribute named “a”.  

The language can be used not only to derive new 
knowledge but also simply to query in order to 
extract knowledge contained in the ontology also not 
directly expressed.  

For example, suppose you want to find all the 
Persons from Rome who have at least two cars. To 
express the query we have to use the following 
expression: 
 

holds2Cars(N) <- person(name:N, 
city:”Rome”), holdsCar(N,C1), 
holdsCar(N,C2),C1<>C2. 
 

Querying and meta-querying constructs can be 
merged in order to obtain also the schema 
information about objects. 

3 SYSTEM IMPLEMENTATION 

This section shortly describes the system 
implementing ML. The system represents a 
complete framework that allows for acquiring and 
integrating data coming from heterogeneous sources, 
for transforming data into Smart Data and for 
querying and reasoning on them. 

Main components of the system implementing 
the ML are shown in  Figure 1 and are described in 
the following.  

 

 The Parser Module reads code listing and builds, 
in main memory, an image of the ML constructs it 
recognizes. Eventually, it throws error messages if 
syntax errors are found. 

 The Type Checker module checks for 
inconsistencies in the ontology. It verifies the 
defined ontology contains some admissibility 
problem (i.e. a class is declared twice). It also 
ensures the compatibility of the defined and 
assigned types. Enabling schema-less 
representation consistency checking is a more 
robust problem that is better to not address here 
due to lack of space.  

 The Descriptor Evaluator Module executes 
descriptors on data sources. In particular, for 
database descriptors, this module executes 
connection and queries to the particular database 
that contains data to extract. for  linguistic 
descriptors, this module evaluates linguistic 
patterns on a given document and extract object 
instances when patterns are recognized.  

 The functionalities of Reasoning and Querying 
Modules execute reasoning and querying tasks. It 
is noteworthy that the novelty of our approach 
consists in the triple-based data model with 
distributed persistency. This allows pushing 
integration algorithms directly within data storage 
environments exploiting map reduce approaches 
(Dean and Ghemawat, 2008). In particular the use 
of triple model enable to use map reduce approach 
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presented in (Sun and Jin, 2010) to querying 
distributed data store. 

 Persistency Manager module deals with the 
persistency of schema and instances of the 
ontology. 

 

Figure 1: System Architecture. 

To perform querying and reasoning operations is 
necessary to define a storage model able to make 
efficient operations. In fact, although OWL (Smith 
and Welty, 2003), based on Descriptive Logics 
(Baader et al., 2003), has been designed for the 
semantic Web, data in OWL is not easy to 
manipulate or query when they grow up. In order to 
overcome this problem, we need to study a tailored 
storage model for our ML. We believe that a specific 
physical representation of schemas and instances 
and an ad hoc index structures are necessary.  In this 
work, we decided to store the ontology structure (T-
Box in OWL) separate from the data (A-Box in 
OWL). The proposal is to obtain scalability by 
storing light schemas of ontologies and instances 
using NoSQL technologies. In particular, light 
schemas can be expressed by graphs in which nodes 
represent classes and reified relations of the 
ontology, while edges represent semantic 
relationships between classes (e.g. subclass, 
equivalence) and roles. Therefore, the use of graph 
database seems to be the most natural solution to 
store light schemas. In particular, we decided to 
store ontology structure in Neo4j (Neo4j). It is a full 
ACID-transaction compliant graph database written 
in Java. Although the data can also be viewed as a 
graph, it is not possible to adopt the same storage 
pattern seen for the schema above. We have to 
consider the different nature of the operations to be 
performed and the larger size of the data respect to 
the schema. We believe that querying operations 
respect some well-defined patterns. The most 

common queries consist in finding an object with a 
certain value for a specific attribute, all objects 
having a specific property, etc. Each query involves, 
like in SPARQL for RDF, three different entity: 
subject (S), predicate (P) and object (O). This led us 
to choose triple-based storage model for ontology 
instances. We decided to adopt the well-known open 
source project, Hbase, for distributed storage of 
triples. A data row in HBase is composed of a 
sortable row key and an arbitrary number of 
columns, which are further grouped into column 
families. Regarding the storage model, we adopt the 
idea of (Sun and Jin, 2010) which uses six tables to 
persist triples, one for each combination of subject, 
predicate and object: S_PO, P_SO, O_SP, PS_O, 
SO_P and PO_S. In these tables data are stored in 
row keys and column names (values are left empty). 
Each of these has only one column family and all 
columns belong to this. As we can see in (Sun and 
Jin, 2010), this storage model enable to execute 
efficient querying operations on distributed data 
store using map reduce strategy. The disadvantage 
of this approach is that it requires more storage 
space. There are several copies of data which locate 
in different tables. But storage space can be 
considered as infinite in a distributed environment. 

4 CONCLUSIONS 

In this work we addressed open issues related to the 
semantic management of Big Data emerging in 
several application areas. We described initial work 
on the MANTRA Language (ML) and the supporting 
system, which allows for representing the semantics 
of big data, acquiring big data from heterogeneous 
sources and enabling efficient reasoning and 
querying on them. Even though the MANTRA 
Language has a logic programming based syntax, it 
differs from logic programming becouse the schema 
of  classes or relations is not fixed. This is possible 
because of the underlying triple-based persistence 
model, an one of the key feature of our framework. 
As future work we will deeply study and define 
formal syntax and semantic of the language and 
related coplexity issues. We will define semantic 
integration algorithms that can be pushed directly 
within data storage environments exploiting map 
reduce approaches (Dean and Ghemawat, 2008). 
Moreover, real examples of applications will be 
provided. 
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