
Towards a Language for Representing and Managing the Semantics
of Big Data

Ermelinda Oro1,2, Massimo Ruffolo1,2, Pietro Gentile1 and Giuseppe Bartone2
1Institute of High Performance Computing and Networking, CNR, Via P. Bucci 41/C, 87036 Rende (CS), Italy

2ALTILIA srl, Piazza Vermicelli, snc, 87036 Rende (CS), Italy

Keywords: Knowledge Representation and Reasoning, Big Data, Smart Data, Unstructured Data, Data Integration,
Extract Transform and Load (ETL), Smart ETL, Database, NoSQL.

Abstract: The amount of data in our world has been exploding. Integrating, managing and analyzing large amounts of
data – i.e. Big Data - will become a key issue for businesses for better operating and competing in today’s
markets. Data are only useful if used in a smart way. We introduce the concept of Smart Data that is web
and enterprise structured and unstructured big data with explicit and implicit semantics that leverages
context to understand intent for better driving business processes and for better and more informed decisions
making. This paper proposes a language able to give a representation of Big Data based on ontologies and a
system that implements an approach capable to satisfy the increasing need for efficiency and scalability in
semantic data management. The proposed MANTRA Language allows for: (i) representing the semantics of
data by knowledge representation constructs; (ii) acquiring data from disparate heterogeneous sources (e.g.
data bases, documents); (iii) integrating and managing data; (iv) reasoning and querying with Big Data. The
syntax of the proposed language is partially derived from logic programming, but the semantic is
completely revised. The novelty of the language we propose is that a class can be thought of as a flexible
collection of structurally heterogeneous individuals that have different properties (schema-less). The
language also allows executing efficient querying and reasoning for revealing implicit knowledge. These
have been achieved by using a triple-based data persistency model and a scalable No-SQL storage system.

1 INTRODUCTION

One of the key challenges in making use of Big Data
lies in finding ways of dealing with heterogeneity,
diversity, and complexity of the data. Big Data
volume, variety and velocity forbid the adoption of
data integration and management solutions available
for smaller datasets based on traditional Extract
Transformation and Load (ETL) or manual data
manipulation approaches.

Big Data, locked in the web and enterprise
sources, can include both structured and
unstructured data. If smartly utilized it can yield
unprecedented insights into solving tough business
issues and improving customer relations. We
introduce the concept of Smart Data that is data with
explicit semantics combined with implicit semantics
that leverages context for better understanding
intent, optimizing business processes, and
supporting smarter decision-making. The challenge
is using Smart Data, rather than just Big Data, to

unlock the value held in data.
Implicit semantics can be obtained, for instance,

by means of annotation, entity and metadata
extraction, and natural language processing.
Inference and machine learning techniques can
discover implicit semantics. Ontologies are
considered a key technology enabling semantic
interoperability and integration of data, processes
and querying (Motta, 1999)(Staab et al. 2001) for
both structured data and unstructured data (Haase et
al., 2008)(Cimiano et al., 2007).

Associating Big Data to an ontology description
that allows for reasoning on large amounts of data is
becoming an issue assuming increasingly
importance. In order to recognize and join
information contained in a system to concepts in the
web or outside of your system, it is necessary a
language in which represent, organize and reason
about entities. This is the goal of the Semantic Web
of the last 15 years (Berners-Lee et al., 2001).
However, semantic web systems generally generate

651Oro E., Ruffolo M., Gentile P. and Bartone G..
Towards a Language for Representing and Managing the Semantics of Big Data.
DOI: 10.5220/0004916906510656
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 651-656
ISBN: 978-989-758-015-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

metadata and identify entities manually or
serializing database values. Actually, the tagging
process is very hard. An important issue is how to
store ontologies and how to reason with them,
without losing out of sight the need for scalability.
In fact, the effective use of ontologies requires not
only a well-designed and well-defined semantic
language, but also adeguate support to operations.
The Linked Data paradigm (Bizer et al., 2009) is one
approach to cope with Big Data. Linked Data
represents semantically well-structured,
interconnected, syntactically interoperable datasets.
Numerous commercial and non-commercial
organisations have started to utilize Linked Data for
purposes like acquisition, enrichment, or integration
of information. But, only a small part of the web of
documents is represented as rich data.

In this work we provide an initial contribution on
open issues related to the semantic management of
Big Data. The objective of this paper is twofold.
First, we describe initial work on a new language,
named MANTRA Language (ML), which allows for:
(i) representing the semantics of data by knowledge
representation constructs; (ii) acquiring Big Data
from disparate heterogeneous sources (e.g.
databases, web documents, social networks); (iii)
integrating and managing data; (iv) reasoning and
querying. Second, we present a triple-based data
persistency model, which enables efficient storage
and querying of Smart Data, and the implemented
system supporting the ML. This has been achieved
by using a triple-based data persistency model and a
scalable storage system that allows to store Big Data
in the form of triples, like RDF (W3C RDF) for the
Semantic Web, and to execute efficient querying and
reasoning operations in a distributed way. Roughly
speaking, the ML and its supporting system enable
to deal with Big Data from a knowledge
representation perspective. They enable to extract
data from heterogeneous data sources in order to
integrate them and execute efficient reasoning and
querying operations to reveal implicit knowledge.

The paper is organized as follows: Section 2
presents the MANTRA Language and Section 3
presents the main architecture of the system
supporting the language.

2 MANTRA LANGUAGE

Businesses are increasingly looking for semantic
tools that enable to model and manage complex
domain-knowledge and to solve real-world problems
(Dao, 2011) (Blomqvist, 2012). It is necessary a

language in which represent, organize and reason
about entities.

This section presents the MANTRA Language
(ML). The ML introduces ontological constructs and
database and linguistic descriptors, which enable to
extract and integrate data available in heterogeneous
data sources. The syntax is based on the intuitive
logic programming. In particular, ontological
constructs are partially derived from OntoDLP
(Calimeri et al., 2003) (Ricca and Leone, 2007),
whereas acquisition formalism are based on the
XOnto language (Oro and Ruffolo, 2008) (Oro et Al,
2009). OntoDLP introduces many interesting
features, including complex types, e.g. sets or lists,
and intentional relations, which are used in ML.
XOnto describes a simple way to equip ontological
element by a set of rules that describe how recognize
and extract objects contained into documents.

2.1 Ontology Constructs

Constructs that enable to define the structure of an
ontology (light schema) and its instances are
presented in the following.

Classes. A class can be thought of as a flexible
collection of structurally heterogeneous individuals
that may have different properties. Such collections
can be defined by using the keyword class followed
by its name. Class attributes can be specified by
means of pairs (attribute-name:attribute-type),
where attribute-name is the name of the property
and attribute-type is the class the attribute belongs
to. Class attributes model canonical properties
present in class instances and admit null and
multiple values by exploiting the triple-based data
persistency model. Unlike OntoDLP, the ML allows
for storing objects which properties do not match the
declared class schema and objects that have different
set of attributes. The syntax for declaring a class is
shown below:

class_person(name:string, age:integer,
father:person).

Class Instances. Class domains contain individuals,
which are called objects or instances. Each
individual in the ML belongs to a class and is
uniquely identified by a constant called object
identifier (oid). Objects are declared by asserting a
special kind of logic facts (asserting that a given
instance belongs to a class). However, as shown in
following paragraphs, the most common way to
define class instances in the ML is to use
descriptors. The syntax that allows defining objects
is the following:

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

652

oid:class_name(att_name_1:value_1,…,
att_name_n:value_n).

p1: person(name:‘Jhon’, age:21,
father:p2).

P2: person(name:‘Sam’, age:50,
father:p3, income:3000).

Tanomies. Ontology concepts are usually organized
in taxonomies by using the
specialization/generalization mechanism. This is
usually done when it is possible to identify subsets
of individuals having different sets of attributes. In
particular, individuals that have at least one attribute
more than a given set of objects can be considered a
sub-class (specialization) of such objects. In the ML
are allowed specializations that represent not
exhaustive decompositions of the instances of a class
in which objects may have different sets of
attributes. The syntax that allows defining subclass
is the following:

subclass_name(new_att_name_1:value_1,…,
att_name_n:new_value_n)

subclassof superclass_name().

Relations. Another important feature of an ontology
language is the ability to model n-ary relationships
among individuals. Relations are declared like
classes: the keyword relation precedes a list of
canonical attributes. The set of attributes of a
relation is called relation schema and can be flexible
as for classes. The cardinality of the schema, also
called arity, can vary for different relation instances.
The ML allows for organizing relations in
taxonomies. Relation instances are equipped with an
oid when the number of attributes is above two
(reification).

2.2 Data Integration Constructs

Database and linguistic descriptors, which enable to
extract and integrate data available in heterogeneous
data sources, are presented in the following.

Descriptors are founded on the basic idea
described in (Oro and Ruffolo, 2008) and (Oro et Al,
2009) which describe a system for Information
Extraction (IE) from PDF documents. It represents
an approach founded on the idea that objects and
classes of ontologies can be equipped by a set of
rules that describe how recognize and extract objects
contained into an external source. We use
descriptors in order to acquire Big Data from
disparate heterogeneous sources. In particular, we
present two different kind of descriptors: for
database and for documents in natural language.

A descriptor is a rule with the form hb in

which b (descriptor body) constitutes a pattern of
ontology objects that allows recognizing a (set of)
specific object defined in the left-side h (descriptor
head). Database and Linguistic descriptors are
described separately as follows.

Database descriptors. These descriptors allow for
describing how to recognize and extract objects and
relations instances starting from tuples stored in a
relational database. Database descriptors can be
defined by using the keyword descriptor followed
by related class (or relation) name in the head. While
in the body of the rule, there are: a built-in that
enables database connection and the list of atoms
that perform query operations on the knowledge
base. For each concept in the ontology, can be
defined a database descriptor able to connect the
database, perform queries and assign the query
results to variables declared in the head.

For example, suppose to have the following two
relations:

holdsCar(owner:Person, car:Car)

hasCar(owner,car)

where the relation holdsCar assign for each Person,
the owned Car. The table hasCar connects the
owners to their cars, stored on disk.
If we want to extract information about the owned
cars of the known persons from a database and
populate the ontology, we have to state as follows:

Descriptor holdsCar(O,C)
#query(“mysql:port:user:password”,SELEC
T * FROM hasCar”,O,C),O:Person().

The assignment of the value to the variables in the
head can be done in the #query construct directly or
in the following part of the descriptor body. If the
view returned from the query has more variables
than those in the list, the schema of the class
(relation) in the head is increased with new attributes
of generic type named with the column name. So a
class can be seen as a container of objects potentially
belonging to multiple subclasses. This implicit
knowledge can be made explicit by reasoning
operations and specific algorithms.

Linguistic descriptors. These descriptors extract
concepts from an input text or document. For
example, given the input string “John owns a
Bentley Continental GT”, the following descriptors
enable to extract the person, the car and the relation
between them.

person(X) <- X:#entity(“Person”).

car(X) <- X:#dictionary(“Car”).

Towards�a�Language�for�Representing�and�Managing�the�Semantics�of�Big�Data

653

carOwner(X,Y) <<- (sentence)
X:#entity(Person) Z:#lemma("own")
Y:#dictionary("Car").

In this example, we search the concept carOwner as
a weak sequence of concepts: a person, a lemma of
the verb “to own” and a car. In order to identify
persons we used the construct #entity that
enables to use sophisticated algorithms for
recognizing a specific type of entities, whereas for
recognizing cars we used a simple dictionary by
exploiting the construct #dictionary. In the
example, a car is recognized only if the term in the
input text matches to a term contained into the
dictionary named "Car". In order to recognize a
lemma of the verb “to own” we used the construct
#lemma. The constraints (sentence) ensure that
these items are contained in the same sentence.

2.3 Querying and Reasoning

The language enables to define reasoning tasks that
reason on the knowledge base and infer classes and
relations. As said before, the ML gives the
possibility to define classes as collections of
instances belonging to different, potentially
unknown, subclasses. So, in order to explicit
subclasses membership of instances, reasoning
modules are required to create new subclasses based
on certain properties.

In ML, it is possible to derive new knowledge
not only by reasoning on class and relation
instances, but also by meta-reasoning on the
structure of classes and relations. Currently, meta-
reasoning is possible by using the following built-in
constructs:

 #class (name:string): contains a fact class(“c”) for
each class with name “c”;

 #relation (name:string): contains a fact
relation(“r”) for each relation with name “r”;

 #subclass(sub:string,super:string): contains a fact
for each class “sub” that is subclass of “super” (a
built-in with the same meaning exists for the
relationships #subrelation);

 #type(class:string, instance:object): for each
instance of class “c” contains a fact
#type(class:“c”,instance:oid);

 #attribute(name:string,attr:string): contains a fact
#attribute(name:“c”,attr:“a”) for each
class/relation “c” that has an attribute named “a”.

The language can be used not only to derive new
knowledge but also simply to query in order to
extract knowledge contained in the ontology also not
directly expressed.

For example, suppose you want to find all the
Persons from Rome who have at least two cars. To
express the query we have to use the following
expression:

holds2Cars(N) <- person(name:N,
city:”Rome”), holdsCar(N,C1),
holdsCar(N,C2),C1<>C2.

Querying and meta-querying constructs can be
merged in order to obtain also the schema
information about objects.

3 SYSTEM IMPLEMENTATION

This section shortly describes the system
implementing ML. The system represents a
complete framework that allows for acquiring and
integrating data coming from heterogeneous sources,
for transforming data into Smart Data and for
querying and reasoning on them.

Main components of the system implementing
the ML are shown in Figure 1 and are described in
the following.

 The Parser Module reads code listing and builds,
in main memory, an image of the ML constructs it
recognizes. Eventually, it throws error messages if
syntax errors are found.

 The Type Checker module checks for
inconsistencies in the ontology. It verifies the
defined ontology contains some admissibility
problem (i.e. a class is declared twice). It also
ensures the compatibility of the defined and
assigned types. Enabling schema-less
representation consistency checking is a more
robust problem that is better to not address here
due to lack of space.

 The Descriptor Evaluator Module executes
descriptors on data sources. In particular, for
database descriptors, this module executes
connection and queries to the particular database
that contains data to extract. for linguistic
descriptors, this module evaluates linguistic
patterns on a given document and extract object
instances when patterns are recognized.

 The functionalities of Reasoning and Querying
Modules execute reasoning and querying tasks. It
is noteworthy that the novelty of our approach
consists in the triple-based data model with
distributed persistency. This allows pushing
integration algorithms directly within data storage
environments exploiting map reduce approaches
(Dean and Ghemawat, 2008). In particular the use
of triple model enable to use map reduce approach

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

654

presented in (Sun and Jin, 2010) to querying
distributed data store.

 Persistency Manager module deals with the
persistency of schema and instances of the
ontology.

Figure 1: System Architecture.

To perform querying and reasoning operations is
necessary to define a storage model able to make
efficient operations. In fact, although OWL (Smith
and Welty, 2003), based on Descriptive Logics
(Baader et al., 2003), has been designed for the
semantic Web, data in OWL is not easy to
manipulate or query when they grow up. In order to
overcome this problem, we need to study a tailored
storage model for our ML. We believe that a specific
physical representation of schemas and instances
and an ad hoc index structures are necessary. In this
work, we decided to store the ontology structure (T-
Box in OWL) separate from the data (A-Box in
OWL). The proposal is to obtain scalability by
storing light schemas of ontologies and instances
using NoSQL technologies. In particular, light
schemas can be expressed by graphs in which nodes
represent classes and reified relations of the
ontology, while edges represent semantic
relationships between classes (e.g. subclass,
equivalence) and roles. Therefore, the use of graph
database seems to be the most natural solution to
store light schemas. In particular, we decided to
store ontology structure in Neo4j (Neo4j). It is a full
ACID-transaction compliant graph database written
in Java. Although the data can also be viewed as a
graph, it is not possible to adopt the same storage
pattern seen for the schema above. We have to
consider the different nature of the operations to be
performed and the larger size of the data respect to
the schema. We believe that querying operations
respect some well-defined patterns. The most

common queries consist in finding an object with a
certain value for a specific attribute, all objects
having a specific property, etc. Each query involves,
like in SPARQL for RDF, three different entity:
subject (S), predicate (P) and object (O). This led us
to choose triple-based storage model for ontology
instances. We decided to adopt the well-known open
source project, Hbase, for distributed storage of
triples. A data row in HBase is composed of a
sortable row key and an arbitrary number of
columns, which are further grouped into column
families. Regarding the storage model, we adopt the
idea of (Sun and Jin, 2010) which uses six tables to
persist triples, one for each combination of subject,
predicate and object: S_PO, P_SO, O_SP, PS_O,
SO_P and PO_S. In these tables data are stored in
row keys and column names (values are left empty).
Each of these has only one column family and all
columns belong to this. As we can see in (Sun and
Jin, 2010), this storage model enable to execute
efficient querying operations on distributed data
store using map reduce strategy. The disadvantage
of this approach is that it requires more storage
space. There are several copies of data which locate
in different tables. But storage space can be
considered as infinite in a distributed environment.

4 CONCLUSIONS

In this work we addressed open issues related to the
semantic management of Big Data emerging in
several application areas. We described initial work
on the MANTRA Language (ML) and the supporting
system, which allows for representing the semantics
of big data, acquiring big data from heterogeneous
sources and enabling efficient reasoning and
querying on them. Even though the MANTRA
Language has a logic programming based syntax, it
differs from logic programming becouse the schema
of classes or relations is not fixed. This is possible
because of the underlying triple-based persistence
model, an one of the key feature of our framework.
As future work we will deeply study and define
formal syntax and semantic of the language and
related coplexity issues. We will define semantic
integration algorithms that can be pushed directly
within data storage environments exploiting map
reduce approaches (Dean and Ghemawat, 2008).
Moreover, real examples of applications will be
provided.

Towards�a�Language�for�Representing�and�Managing�the�Semantics�of�Big�Data

655

REFERENCES

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
Patel-Schneider, P. F., 2003. The Description Logic
Handbook: Theory, Implementation, and Applications,
Cambridge University Press, Cambridge.

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The
Semantic Web. Scientific American, 279 (5): p.34-43.

Bizer, C., Heath, T., Berners-Lee, T., 2009. Linked Data -
The Story So Far. International Journal on Semantic
Web and Information Systems, Volume 5.

Blomqvist, E., 2012. The use of Semantic Web
Technologies for Decision Support – A Survey,
Semantic Web.

Calimeri, F., Galizia, S., Ruffolo, M., Rullo, P., 2003.
OntoDLP: a Logic Formalism for Knowledge
Representation. Anwer Set Programming.

Cimiano, P., Haase, P., Herold, M., Mantel, M., Buitelaar,
P., 2007. LexOnto: A Model for Ontology Lexicons
for Ontology-based NLP. In Proceedings OntoLex
(Workshop ISWC).

Dao, F., 2011. Semantic technologies for enterprises.
Technical report, SAP AG.

Dean, J., Ghemawat, S., 2008. MapReduce: simplified
data processing on large clusters. Commun. ACM 51.

Haase, P., Lewen, H., Studer, R., Erdmann, M., Gmbh, O.,
2008. The NeOn Ontology Engineering Toolkit. In
17th International World Wide Web Conference.

Motta, E., 1999. Reusable Components for Knowledge
Modelling, IOS Press. Amsterdam, The Netherlands.

Neo4j Graph Database, http://www.neo4j.org/. Retrieved
12/2013.

Oro, E., Ruffolo, M., 2008. XONTO: An Ontology-Based
System for Semantic Information Extraction from
PDF Documents. ICTAI.

Oro E., Ruffolo, M., Saccà, D., 2009. Ontology-Based
Information Extraction from PDF Documents with
Xonto. International Journal on Artificial Intelligence
Tools 18(5): 673-695.

Ricca, F., Leone, N., 2007. Disjunctive logic programming
with types and objects: The DLV+ system, Journal of
Applied Logic, Volume 5, Issue 3, 545-573.

Smith, M. K., Welty, C., McGuinnes, A.L., 2003. OWL
web ontology language guide. World Wide Web
Consortium.

Staab, S., Erdmann, M., Studer, R., Sure, Y., Schnurr, H.-
P., 2001. Knowledge Processes and Ontologies. IEEE
Intelligent Systems, 16(1): p.26-34.

Sun, J., Jin, Q., 2010. Scalable RDF Store Based on
HBase and MapReduce. ICACTE.

W3C. RDF. The Resource Description Framework.
http://www.w3.org/RDF/. Retrieved 12/2013.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

656

