
External Database Extension Framework

Alexander Adam1 and Wolfgang Benn2
1Dimensio Informatics GmbH, Brückenstraße 4, 09111 Chemnitz, Germany

2Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany

Keywords: Database Extension, External Indexing, Query Processing, Legacy Systems.

Abstract: Database systems nowadays show an incredible amount of extensibility interfaces, ranging from simple user
defined functions to extensible indexing frameworks as seen in e. g. DB2 and Oracle. Approaching new
projects using these interfaces definitely is a valuable option. For legacy systems, already set up and running
in production environments, these options are often not available since most of them impose a change in
the applications. In this work we present a database extension framework, that enables the user to define
functionality which does not reside inside the database. We show different ways to integrate it into existing
application landscapes without further modifications.

1 INTRODUCTION

Currently there is a vast amount of database systems
on the market, ranging from small embedded solu-
tions up to full scale cluster versions. To meet the
needs of most customers, vendors integrate interfaces
into their systems to extend the database systems ca-
pabilities. They range from user defined functions and
types up to user defined indexing and data storage.
(Stolze and Steinbach, 2003; IBM, 2009; Rich, 2011;
Belden et al., 2009)

For new projects all of these options are avail-
able for usage and should be thoroughly evaluated.
However, running systems in production environ-
ments limit the amount of possibilities to modify the
databases structure. The main reason for this limita-
tion is the need to adapt the queries the application
passes to the database system. In deployed environ-
ments changing the application can be regarded as not
feasible. This leaves only to alter non-query-changing
options in the database.

Database administrators who are responsible for
keeping their systems up and running face this situ-
ation. As the amount of data stored grows, systems
change their behavior: certain content tables begin
having increasing data retrieval times, database par-
titions reach their size limits and many more. All of
these effects may lead to a degrading application per-
formance. Common approaches inside the database
are (not limited to) the use of partitioned tables, in-
dexes and the optimization of the database buffer

pools. On the hardware side there is the KIWI ap-
proach (“Kill It With Iron”). That is more main mem-
ory, more computing units, faster storage systems,
clustering and in-memory solutions.

As shown in (Leuoth et al., 2010) not all situa-
tions can be resolved by applying the aforementioned
standard methods changes inside the database would
be necessary. In this paper we present an extensibility
framework for, especially but not limited to, relational
database management systems (RDBMS) to master
the challenge of introducing new functionality virtu-
ally “into” the database system. It can be applied in
production systems, where neither the database sys-
tem nor the software are allowed to be changed to
suite new needs or performance requirements.

The following sections present the current ap-
proaches to these problems and their limitations. As
examplary scenario used throughout this paper the in-
tegration of an indexing method was chosen. After
that we analyze the behavior of an environment con-
taining an RDBMS and how our framework can be
transparently plugged into it. Finally we present an
implementation of a database external indexing and
result cache.

249Adam A. and Benn W..
External Database Extension Framework.
DOI: 10.5220/0004896302490255
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 249-255
ISBN: 978-989-758-027-7
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 CURRENT APPROACHES

2.1 Scenario

Sticking to the example of indexing, RDBMS cur-
rently include many indexing methods. In the field
of high dimensional indexing (50+ dimensions) there
is no efficient, non-KIWI solution available. There is
an indexing approach for exactly this problem, devel-
oped at the Chemnitz University of Technology, the
ICIx (Görlitz, 2005). This multi-dimensional index
resides outside of the database system and has to be
used explicitly by an application using an API. It de-
livers primary keys of the relevant data to the applica-
tion which in turn includes these information to enrich
its queries to the database.

We now have a look at how current RDBMS can
help to integrate such an index.

2.2 User Defined Functions

A first approach might be to work with user defined
functions (UDF). User defined functions are functions
made available to the user through the SQL language
interface. They are either written in the database
systems internal SQL programming language (e. g.
PL/pgSQL (Pos, 2009), PL/SQL (Rich, 2011) or
SQL/PSM (IBM, 2009)) or using an external lan-
guage that can be interfaced on a binary level with
the RDBMS.

Using UDF to incorporate a call to an external in-
dex, one has to define a function that calls the API
of the external index. We will not cover the details of
how to call an external API function, just assume, that
it is possible. Finally the new UDF has to be used in
the queries, so that it is called.

SELECT *
FROM employees
WHERE id IN (idx_lookup_smaller(

employees.salary, 2000)
)

Obviously every query, using the index, has to in-
corporate the UDF. Every data modification, has to
be transported manually to the index, e. g. using an-
other UDF. All in all that requires an adaption of the
application and the integration of the new functions
into the RDBMS. We consider the first point being the
more pressing one, as it requires the software vendor
to change the software. Modifications to the database
can be isolated in other namespaces and are thus very
unlikely to interfere with the current operation.

2.3 Extensible Indexing Frameworks

Extensible indexing frameworks give the user a spe-
cialized interface, that enables the user to define func-
tions which are called on certain events. It further
gives a clean integration into the SQL language. The
RDBMS guarantees transaction safety of the actions
triggered in certain events. Those events include the
creation of the index, modification of data and the se-
lection on columns managed by the index. For all but
the selection the extensible indexing frameworks pro-
vide a transparent access to the index. On selection
a special predicate has to be defined and used, taking
the form of a function thats return is compared to a
value. (Belden et al., 2009) The following example
illustrates the use of such an indexing extension:

SELECT *
FROM employees
WHERE idx_lookup_smaller(

employees.salary, 2000)
) = 1

So the selection operation is not transparent to
the application and thus the application has to be
adapted. Though not as deeply integrated as the UDF
approach, not many vendors will be reluctant to inte-
grate a functionality on just a few customer requests.

2.4 Current External Approaches

Our example of the index integration is relatively
complex. For less complex functionalities, ap-
proaches that are integrated into the network commu-
nication exist.

The TDS Protocol Analyzer (TDS, 2013) is a tool
that operates on the TDS (Tabular Data Streams) pro-
tocol used to communicate with the Microsoft SQL
Server. Its use is the interception, recording and anal-
ysis of packets sent by a client to the database. These
packets can be inspected for statistical analysis and
vulnerability inspections. (Guo and Wu, 2009)

GreenSQL is an open source proxy with the goal
to increase the security of MySQL and PostgreSQL.
In a commercial version it also supports Microsoft
SQL Server with TDS. It scans the communication of
clients with the database for suspicious requests that
might be able to exploit security vulnerabilities. It
also is able to work as a firewall. (Gre, 2013)

In a last project, the Security Testing Framework,
syntactically wrong packages for the DRDA (Dis-
tributed Relational Database Architecture) (The Open
Group, 2011) protocol are generated, to test the ro-
bustness of the implementation. (Aboelfotoh et al.,
2009)

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

250

All of these tools concentrate on a top level view
of the protocol and do not deeply integrate into the
interaction of the application with a database.

3 DATABASE INTERACTION

To find integration points we first analyze how appli-
cations interact with databases. For the rest of this
paper, we assume that an application is a process us-
ing a library to communicate with a database process.
The communication channel is a network connection.
This basic setup is also shown in Figure 1.

Database

DB Driver

Network

Protocol

Network

Application

Network

Protocol

Figure 1: Basic scheme of how an application communi-
cates with a database.

The way of a query, beginning from the applica-
tion, includes the following steps:

1. application hands over query to RDBMS API

2. application gives additional information (such as
bind parameters) to RDBMS API

3. RDBMS API sends network packet with query to
RDBMS

4. RDBMS receives network packet, extracts infor-
mation and processes them (intentionally short-
ened here)

5. RDBMS sends results over network to applica-
tion’s RDMBS API

6. RDBMS API receives and extracts network
packet

7. RDBMS API provides results to application

We will have a closer look at the steps outside of
the database system and application. These are the
API communication (steps 1, 2 and 7) and the net-
working layer (steps 3 and 5). As the network level
simply reflects the steps initiated at the API level, we
can introduce an abstract interface for both of them.
The abstraction layer we use is thereby composed
of the above steps and named according to other
event driven functions with the prefix‘‘on..." and
the suffix‘‘...request" and‘‘...reply" to indi-
cate the communication direction. For our work we

first implement the basic functionsprepare, bind,
execute andfetch. The use of these functions to
implement helpful functionality, is shown in the fol-
lowing section and illustrated later in Figure 3.

Below we describe methods to integrate function-
ality into these layers.

3.1 API-level Integration

The first possibility, we have a closer look at, will be
the integration into the API layer. Usually, database
vendors deliver at least one library to interact with
their database system. This library exposes a certain
API. Examples for these vendor specific APIs are e. g.
libpq(Pos, 2009) and OCI (Melnick, 2009). To have
an abstraction layer on top of these, portable APIs
were developed. Among these are ODBC (ODB,
1995), JDBC (Menon, 2005), OLE DB (Blakeley,
1997)and ADO.NET (Kansy and Schwichtenberg,
2012).

An application links against such a database li-
brary and subsequently uses its API. We showed that
it is possible to redirect the API calls to an own li-
brary that implements the exact same interface as the
library originally used by the application.

To minimize development efforts, one can use
system specific support. In Linux there is the
LD PRELOAD environment variable, allowing a user to
load a specific library before any other library. This li-
brary populates the symbol tables of the process. Any
other library that is loaded afterwards is only able to
set the symbols not already set. In Microsoft Win-
dows one can generate a wrapper library, which routes
all symbols, that are not directly needed to the origi-
nal ones and only “overloads” the ones that are needed
for the desired functionality. In both cases, the over-
loaded functionality has to redirect the calls to the
original library function after its completion. Figure
2 illustrates this setup.

Database

DB Driver

Network

Protocol

Network

Application

Network

Protocol

DB Driver

Wrapper

User

Function

p
re

p
ar

eS
ta

te
m

en
t

se
tI

n
t

ex
ec

u
te

Q
u
er

y

g
et

S
tr

in
g

g
et

C
o
n
n
ec

ti
o
n

cl
o
se

DB Driver

DB Driver

Wrapper

User

Function

p
re

p
ar

eS
ta

te
m

en
t

se
tI

n
t

ex
ec

u
te

Q
u

er
y

g
et

S
tr

in
g

g
et

C
o

n
n

ec
ti

o
n

cl
o

se

Figure 2: Partly changed driver to integrate user functional-
ity.

External�Database�Extension�Framework

251

It opens up the interaction of the application with
the database to user manipulations. To give an idea
of what is possible, we use the OCI API (Melnick,
2009) functionOCIPrepare. This function gets the
statement that is to be sent to the database. If we over-
load the function to manipulate the statement we can
make the application do different things. We could in-
troduce a new selection after the ones already present,
we could change/amend theWHERE conditions or redi-
rect the database tables from which the statements
wants to take the data. The associate API functions in
our abstraction layer would beon prepare request
andon prepare reply.

A very basic example of the possibilities, is the
amendment of the projection elements in a statement.
We additionally want to get the rowid (physical ad-
dress of a data record in Oracle):

SELECT id, name FROM employees

This statement could be changed to the following:

SELECT id, name, rowid FROM employees

As we also are able to modify the func-
tions to fetch the data–using our API method
on fetch reply–we can easily filter out the addi-
tional element to hide this change from the applica-
tion.

3.2 Network-level Integration

All the actions, an application does on the API level,
have to be transported to the database. For this, in
most cases, a network connection is used. Database
vendors develop different protocols to interact with
their databases. Oracle introduced TNS, Microsoft
TDS and IBM the DRDA for DB2.

We developed a network proxy, that is capable of
understanding those protocols and gives an abstrac-
tion of the actions observed in the network. For this,
the applications simply enter this proxy as their new
database server and the proxy then relays the packets
to the “real” database system.

Our proxy is capable of presenting the actions,
that are observed in the network traffic, to user written
modules. These actions are:

• preparation of statements

• binding of parameters

• execution of statements

• fetching results

• allocation and disposal of handles

As the network communication mirrors the ac-
tions on the API-level, it is possible to transform the
API-calls to that abstraction. We have shown the

feasability of this approach in (Phoonsarakun et al.,
2013). Using this technique enables us to use the
same modules on API as well as the network integra-
tion.

4 INTEGRATION EXAMPLES

Having shown how functionality can be introduced in
an application-database-environment, we also want to
give an example, how to use this technique to inte-
grate real functionality. As mentioned in the intro-
duction, we want to show this with an index and a
statement cache.

4.1 Index Integration

At first, we have a closer look at how an index ac-
celerates queries inside a database. An index is a
data structure containing locations of data records or-
dered by attributes. We e. g. could have employ-
ees with names, identifiers and certain salaries. The
table is ordered according to the employees’ identi-
fiers. If a query only incorporates the salaries inside
its predicates, all data records have to be visited to
determine if the predicate is true. Having an index
on the salaries, the query would first go to that in-
dex which in turn delivers the data records locations
that fulfill the predicate. The index lookup is much
faster due to its ordering according to the attribute it
is searched for. It returns the relevant data records.
Reading those is also faster than reading all records,
if the index lookup only turns up a fraction of all data.
Inside databases this is used widely. The next sections
describe the different aspects of having a database-
external index.

4.1.1 Index Lookups

Our index, the ICIx, does not reside inside the
database. However, we can use the same techniques
that the database system uses inside to accelerate
statements. Have a look at the following statement
on our employee example from above:

SELECT name, id
FROM employees
WHERE salary > 2000

Let us further assume, that the database does not
have an index on the salary column. We could amend
the statement with the identifiers of the employees to
give in a predicate, that is indexed by the database in
the following way:

SELECT name, id
FROM employees

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

252

WHERE salary > 2000
AND id IN (17, 19, 29)

The database systems optimizer identifies a pred-
icate on a column that is indexed and will prefer it.
After the selection on theid the remaining predicate
is only to be evaluated on a very reduced data set and
thus, fast.

We observed that the database system’s accepted
length of statements is limited and that the time for
simply parsing the statement increases at least linearly
with the length of the statement. To integrate the in-
dex results, we implemented a slight modification of
the above approach. We insert our results into a sepa-
rate table and replace theIN list with a subselect. The
final statement for the above example then looks like
this:

SELECT name, id
FROM employees
WHERE salary > 2000

AND id IN (SELECT idx_result FROM tmp_tbl)

Figure 3 shows the way the index is integrated into
the communication of the application with a database.
The kind of integration–library or proxy–does not
matter, as only the abstract functions introduced ear-
lier are used.

4.1.2 Index Maintenance

Up to now, we just had a look at how an index may
deliver results to amend a statement. Most real data
sets change over time. Database internal indexes are
created, deleted and updated as the corresponding ta-
ble changes. Further consistency conditions have to
be met.

We found the Extensible Indexing Frameworks of
databases (Stolze and Steinbach, 2003; Belden et al.,
2009) as a good point to be integrated. These frame-
works offer callback functions, that are called from
the database system. This is done in a way that the
ACID conditions are met. We use these callbacks,
that are called in the events of creation, deletion, up-
date and transactional operations to manage our index
outside the database.

4.2 Statement Cache

Using our framework, it becomes possible to cache
the results of statements, that are repeatedly executed.
Allthough databases already implement such func-
tionality, dependent on the application, we found, that
some statements are executed over and over, without
ever to expect any different result. Every statement
triggers a database roundtrip, even with a database-
side result cache. So what we did was to remove that

DatabaseIntegrationClient

on_prepare_request

on_prepare_reply

on_bind_request

on_bind_reply

on_execute_request

prepare

bind

execute

query index and
insert results

prepare

on_execute_reply

on_fetch_request

on_fetch_reply

bind

execute

fetch

fetch

Figure 3: Scheme of how an index can be integrated into
the communication of an application with a database.

roundtrip. In local networks that saves around 1 ms
of network time, in wide area networks this time in-
creases, depending on the network quality and tech-
nology.

Our approach is to intercept the function calls,
that set up the statement execution. In our API
these areon prepare ..., on bind ... and
on execute We cache only statements, that are
listed in a configuration, so to not accidentally alter
statement results. If the statement matches a config-
ured one, then we either execute it, in case the state-
ments parameters were not already cached, and store
the results. Otherwise, we answer the query from our
cache.

5 RESULTS

For the results we want to concentrate on our frame-
work. There are two major parts, the API integration
and the network integration. All our tests were con-

External�Database�Extension�Framework

253

Figure 4: Times for different SQL lengths and protocol
types.

ducted on an Intel Core i5 with 3 GHz and 4 GB of
main memory running Debian 6 64 bit.

For the API integration, there is one relevant time,
the overhead for the call into our framework and back
to the “real” API. We measured function calls with
approximately 3µs. When an overloaded function is
called within our framework, the only overhead is one
additional call to the real function as well as the time
needed to run the code inside.

The more interesting analysis concerns the net-
work level integration. The proxy introduces one ad-
ditional network hop into the communication of the
application with the database server. In our local area
network we measured this with approximately 100µs
per message. As the proxy needs to analyze the traffic
to and from the database server, this time is doubled
for each communication step.

A second time, introduced by the proxy is the time
needed to understand the data that was sent. Figure 4
shows the times needed to parse SQL statements of
different length using different database protocols. It
is clearly visible, that the various protocols need dif-
ferent time to process. This is due to the amount of
work that has to be put into the parsing of the pro-
tocol packets. For TNS we had to reverse engineer
the semantics and have some testing in the protocol
analysis. This makes TNS the hardest to understand.
DRDA then at increasing packet lengths shows in-
creasing parsing times because of the inherent com-
plexity. Of course the times also increase with the
length of the statement. At the network layer this
effect also increases the overall response times, as a
packet has to first fully arrive at the proxy before it
can be parsed and forwarded to the database system.

For the test with the index, we used our employ-
ees example. A table with an index only on the id col-
umn, and a statement, whoseWHERE condition uses
an unindexed attributesalary. We could show that

the index worked the way we showed above. We only
give a short overview of the results as they vary de-
pending on the database system, its configuration and
the hardware environment.

The statement cache worked also as expected.
We could almost completely eliminate the network
roundtrip times. The cache we implemented did a
simple string matching of the statements and was very
fast. For a number of less than 1000 statements in the
cache, the lookup times were regularly less than 1ms.

6 FUTURE WORK

Our future work has two directions, a technological
and a systematic one. For the technological part,
we want to extend our framework to support more
database systems. The market is in constant change
and so will be this technological foundation. Then
there is the speed of the integration. Our results show
delays introduced with our technology, especially us-
ing the network proxy. We want to minimize these
times.

For the systematic part, we have to futher abstract
the low level APIs of database vendors, especially
when it comes to specialized functions such as the at-
tributes of queries and parameters. Currently we ig-
nore these and are thus limited in the application of
our framework.

We also want to explore more ways to integrate
results of our index. This is not always transparent to
the application. We could e. g. organize the table in
the database in a way that corresponds to the internal
structure of our index, this could drastically lower the
read times inside the database. In this scenario also
automation is of interest for us. We need to incorpo-
rate metrics to decide whether or not to use our index
with certain queries.

REFERENCES

(1995). International Standard for Database Language SQL
- Part 3: Call Level Interface.

(2009). PostgreSQL 8.4.3 Documentation. The Post-
gresSQL Global Development Group.

(2013). http://www.greensql.com.
(2013).Tabular Data Stream Protocol. Microsoft Corpora-

tion.
Aboelfotoh, M., Dean, T., and Mayor, R. (2009). An em-

pirical evaluation of a language-based security testing
technique. InProceedings of the 2009 Conference of
the Center for Advanced Studies on Collaborative Re-
search, pages 112–121. ACM.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

254

Belden, E., Chorma, T., Das, D., Hu, Y., Kotsovolos, S.,
Lee, G., Leyderman, R., Mavris, S., Moore, V., Morsi,
M., Murray, C., Raphaely, D., Slattery, H., Sundara,
S., and Yoaz, A. (2009).Oracle Database Data Car-
tridge Developers Guide, 11g Release 2 (11.2). Ora-
cle.

Blakeley, J. (1997). InCompcon ’97. Proceedings, IEEE,
title=Universal data access with OLE DB, pages 2–7.

Görlitz, O. (2005).Inhaltsorientierte Indexierung auf Basis
künstlicher neuronaler Netze. PhD thesis.

Guo, L. and Wu, H. (2009). Design and implementation of
TDS protocol analyzer. InComputer Science and In-
formation Technology, 2009. ICCSIT 2009. 2nd IEEE
International Conference on, pages 633–636.

IBM (2009). SQL Reference, Volume 1. IBM Corporation.
Kansy, T. and Schwichtenberg, H. (2012).Datenbankpro-

grammierung mit .NET 4.5: Mit Visual Studio 2012
und SQL Server 2012. .NET-Bibliothek. Hanser Fach-
buchverlag.

Leuoth, S., Adam, A., and Benn, W. (2010). Profit of ex-
tending standard relational databases with the Intelli-
gent Cluster Index (ICIx). InICARCV, pages 1198–
1205. IEEE.

Melnick, J. (2009). Oracle Call Interface Programmer’s
Guide, 11g Release 2 (11.2). Oracle.

Menon, R. (2005). Expert Oracle JDBC Programming.
Apress.

Phoonsarakun, P., Adam, A., Lamtanyakul, K., and Benn,
W. (2013). Extensible Database Communication
Modification Framework. In Singh, R. K., editor,Pro-
ceedings of the Second International Conference on
Advances in Information Technology AIT 2013.

Rich, B. (2011).Oracle Database Reference, 11g Release
2 (11.2).

Stolze, K. and Steinbach, T. (2003). DB2 Index Extensions
by example and in detail, IBM Developer works DB2
library.

The Open Group (2011).DRDA V5 Vol. 1: Distributed Re-
lational Database Architecture.

External�Database�Extension�Framework

255

