Detection of Software Anomalies Using Object-oriented Metrics

Renato Correa Juliano¹, Bruno A. N. Travençolo² and Michel S. Soares³

¹Institute of Exact and Human Science, University of Araxá, Araxá, Minas Gerais, Brazil
²Faculty of Computing, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
³Computing Department, Federal University of Sergipe, Aracajú, Sergipe, Brazil

Keywords: Software Anomalies, Software Metrics, CK Metrics, Object-oriented Programming, Error Proneness.

Abstract: The development of quality software has always been the aim of many studies in past years, in which the focus was on seeking for better software production with high effectiveness and quality. In order to evaluate software quality, software metrics were proposed, providing an effective tool to analyze important features such as maintainability, reusability and testability. The Chidamber and Kemerer metrics (CK metrics) are frequently applied to analyze Object-Oriented Programming (OOP) features related to structure, inheritance and message calls. The main purpose of this article is to gather results from studies that used the CK metrics for source code evaluation, and based on the CK metrics, perform a review related to software metrics and the values obtained. Results on the mean and standard deviation obtained in all the studied papers is presented, both for Java and C++ projects. Therefore, software anomalies are identified comparing the results of software metrics described in those studies. This article contributes by suggesting values for software metrics that, according to the literature, can present high probabilities of failures. Another contribution is to analyze which CK metrics are successfully used (or not) in some activities such as to predict proneness error, analyze the impact of refactoring on metrics and examine the facility of white-box reuse based on metrics. We discovered that, in most of the studied articles, CBO, RFC and WMC are often useful and hierarchical metrics as DIT and NOC are not useful in the implementation of such activities. The results of this paper can be used to guide software development, helping to manage the development and preventing future problems.

1 INTRODUCTION

Development of software is a difficult, complex and time consuming activity, in which creativity and rigour have to be balanced. Complexity of developing, deploying and maintaining software is well-recognized and has been widely studied in past years (Glass, 1999; Berry, 2004; Boehm, 2006; Wirth, 2008). It is not uncommon that a number of problems arises during the development of a software project, such as extrapolated costs and deadlines and uncontrolled changing of requirements. Software failures have been responsible for financial losses and disasters (Bar-Yam, 2003; Charette, 2005).

In order to minimize these problems, some practices can be useful to analyze the error proneness during development phases, such as extracting software metrics (Fenton and Pfleeger, 1998). A number of characteristics of software, such as maintainability, testability, and understandability can be evaluated using software metrics (Olbrich et al., 2009). Many different software metrics were proposed in past years to evaluate object-oriented software (Lorenz and Kidd, 1994; Harrison et al., 1998; Chidamber and Kemerer, 1994). Among those, the CK metrics were well-applied in many projects since their introduction (Chidamber and Kemerer, 1994; Subramanyam and Krishnan, 2003; Zhoua et al., 2010).

Chidamber and Kemerer (Chidamber and Kemerer, 1994) proposed six metrics focused in object-oriented software: Depth of Inheritance Tree (DIT), Number of Children (NOC), Response for a Class (RFC), Lack of Cohesion in Methods (LCOM), Coupling Between Object Classes (CBO) and Weighted Methods per Class (WMC).

These metrics were created in order to verify and to analyze how the development is being accomplished and prevent, in advance, future errors. The CK metrics and other software metrics with focus on evaluating programming have been widely applied in past years. Johari and Kaur (Johari and Kaur, 2012) analyzed the applicability of object-oriented metrics...
in estimation of maintenance effort. They conduct an empirical study, using open source software, to check the applicability of metrics to estimate effort of revision per class. In (Dallal, 2012), the abilities of several quality metrics considered individually and in combination to predict the classes in need of refactoring by extracting subclass are studied. Systematic reviews proposed by Kitchenham (Kitchenham, 2010) describes the importance of evaluating software using metrics described in the literature. According to the author, although there is a large body of research related to software metrics, researchers still need to refine their empirical methodology before they can answer useful empirical questions (Kitchenham, 2010).

In another review (Radjenović et al., 2013), new insights into how metrics are used in different environments were obtained through the assessment of the context. The authors found that object-oriented metrics (49%) are used nearly twice as often as traditional source code metrics (27%), and the most popular OO metrics are the CK metrics. In addition, according to Subramanyam and Krishnan (Subramanyam and Krishnan, 2003), the relationship between software metrics and defects varies depending on different programming languages. Therefore, evaluation of software metrics is sensitive to the specific programming language.

In this context, the key contributions of this article are a review of experimental works based on the CK metrics and a suggestion of “software anomalies” based on empirical studies and statistic analysis and a study about which metrics are useful (or useless) in activities such as to predict proneness error, to analyze impact of refactoring on metrics or examine the facility of white-box reuse. Only papers where the CK metrics were used are considered. The choice was made because CK metrics are well-known and frequently applied. Metrics for both Java and C++, currently two of the most used object-oriented programming languages, are used. It is described, for each metric, an empirical database relating CK software metrics and the mean value. With these anomalies described, one can infer about the probabilities of failures for software.

2 METHODOLOGY

In order to establish what can be considered an anomaly in a software based on CK metrics, we started by searching among several conferences and journals for papers describing experimental results on software analyzed using CK metrics. Then, the experimental data were extract from these works, tabulated and further analyzed using statistical methods. Finally, a classification based on the metrics values is proposed followed by an analysis of the usefulness of CK metrics in detection of error proneness.

In the first step adopted in our methodology, we have searched through various conferences and journals, using scientific databases provided by ACM, ScienceDirect and IEEE. These journals and conferences were chosen because of their scopes, which includes maintenance, refactoring and software metrics.

The chosen journals were: JSS (Journal of System and Software), SCP (Science of Computer Programming), IST (Information and Software Technology), TOSEM (ACM Transactions on Software Engineering Methodology), TSE IEEE (IEEE Transactions on Software Engineering), EMSE (Empirical Software Engineering) and Information Sciences.

The chosen conferences were: CSMR (European Conference on Software Maintenance and Reengineering), WCRE (Working Conference on Reverse Engineering), OOPSLA (International Conference on Object Oriented Programming), ICSE (International Conference on Software Engineering), ICSM (International Conference on Software Maintenance), ECOOP (European Conference on Object-Oriented Programming) and ICPC (International Conference on Program Comprehension).

The range of the search was between 2003 and 2013. This criteria was chosen so that information provided by this article can be the most current. Queries used were: software AND metrics, CK AND metrics, design AND defects, proneness AND error and proneness AND faults.

The titles of the articles were the basis for selection of relevant studies. Then, abstract of the papers were analyzed and, based on their contents, the studies related to software metrics and anomalies were chosen for further investigation.

Papers that presented the mean and standard deviation of CK metrics of the software that they discussed were selected. The values obtained from these papers were gathered in a table, separating Java projects from C++ projects. Thereon, the mean and standard deviation of each metric was computed. In this computation, discrepant values (outliers) were discarded. The considered outlier values were those in the extremities (the 25% highest and the 25% lowest values). This type of mean is known as “Interquartile Mean” (IQM) (Huck, 2012).

A metric classification, based on the work proposed by (Lanza and Marinescu, 2006) is defined. The model proposed by this work is often used in software visualization models. Works as CodeCrawler (Lanza, 2003) and CodeCity (Wettel and Lanza, 2007)
uses this method to guide the visualization model. In this work, a classification modified from the original proposition with regard to the “High values” is proposed.

For each metric, we define three classes of values: low value, high value, and anomaly. The low values were estimated by computing, for each metric, the IQM of the mean values of the metric subtracted by the IQM of the respective SD values. In a similar manner, high values were estimated by adding the IQM of the mean values of the metric with the IQM of the respective SD values. Finally, the anomaly value is defined as 30% of the high value of the metric. The illustration presented in Fig.1 summarized these limits.

The purpose of this work is to suggest anomaly values according to the following hypothesis H1: Increase thirty percent (30%) in sum of AVG and SD. These values would indicate higher possibilities for software errors (proneness error). The increase of 30% of the value from “High values” to “Anomaly values” was chosen based on previous analysis and on the values obtained in other studies. Although (Lanza and Marinescu, 2006) used 50%, we analyzed the hypotheses H1, 30%, in an attempt to be the most similar as possible with other studies about software

Figure 1: Classification methodology.
anomalies. For example, the work by (Kakarontzas et al., 2012) uses the method proposed by (Lanza and Marinescu, 2006) to define thresholds in reusability of classes.

Thereafter, we compared the result of metrics values for different softwares (both for Java and C++) in order to find possible discrepant values in anomalies classification and the reasons of their occurrence.

A second study performed in this work is an analysis of the literature CK metrics referring activities in software engineering as predicting error prone and analyze the impact of refactoring on metrics. Articles found in conferences and journals cited earlier were selected and analyzed.

3 RESULTS

The results of the analysis of the reviewed articles are summarized in Tables 1 and 2. These tables show the mean and standard deviation of the CK metrics values obtained from the softwares described in the analyzed articles. The mean and the interquartile mean from these values are also shown. It is important to note that the analyzed softwares are originated from industrial or academic projects, open source or proprietary softwares, making this research the widest possible.

For Table 1, eight articles describing Java softwares were considered: (Stroggylos and Spinellis, 2007); (Benestad et al., 2006); (Subramanyam and Krishnan, 2003); (Stroggylos and Spinellis, 2007); (Johari and Kaur, 2012); (Abuasad and Alsmadi, 2012); (Kakarontzas et al., 2012); (Nair and Selvarani, 2011).

In total, these articles describe 20 softwares developed in Java. The article (Stroggylos and Spinellis, 2007) did not use all metrics, however it was still considered due to its importance. In (Kakarontzas et al., 2012), there are 29 open source softwares summarized as one.

For Table 2, six articles describing C++ softwares were considered: (Zhou and Leung, 2006); (Singh and Kahlon, 2011); (Singh and Kahlon, 2012); (Olague et al., 2007); (Janes et al., 2006); (Gymothy et al., 2005).

In addition, two other tables (Tables 3 and 4) were created, classifying the metric values in Low, High, and Anomaly with reference to hypothesis H_1. Table 1 contains the values obtained from articles that analyzed Java projects and Table 4 shows the values obtained for softwares written in C++. The Low, High and Anomaly (H_1) values were computed using the formulas presented in the previous section. The negative values were changed to zero, since it is not possible to have negative values on CK metrics.

Table 3: Metrics values of softwares developed in Java.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Low</th>
<th>High</th>
<th>H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIT</td>
<td>2.5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>NOC</td>
<td>6.4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>CBO</td>
<td>13.6</td>
<td>15.2</td>
<td>20</td>
</tr>
<tr>
<td>RFC</td>
<td>35.5</td>
<td>85.8</td>
<td>112</td>
</tr>
<tr>
<td>LCOM</td>
<td>92.7</td>
<td>170.3</td>
<td>1521</td>
</tr>
<tr>
<td>WMC</td>
<td>230</td>
<td>253.1</td>
<td>329</td>
</tr>
</tbody>
</table>

Table 4: Metrics values of softwares developed in C++.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Low</th>
<th>High</th>
<th>H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIT</td>
<td>3.2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>NOC</td>
<td>3.8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>CBO</td>
<td>15.2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>RFC</td>
<td>85.8</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>LCOM</td>
<td>170.3</td>
<td>1521</td>
<td>1521</td>
</tr>
<tr>
<td>WMC</td>
<td>253.1</td>
<td>329</td>
<td>329</td>
</tr>
</tbody>
</table>

4 DISCUSSION

In order to facilitate the understanding of Tables 1 and 2, a brief summary of the papers used to create the tables is presented. All these papers used CK metrics applied to software developed in Java and C++, respectively.

(Stroggylos and Spinellis, 2007) analyzed the impact of refactoring activities for quality improvement in four open source softwares developed in Java: Hibernate, Log4J, MySQL, and Connector/J. They concluded that, over the years, the values of metrics worsened and some metrics such as RFC and LCOM lost cohesion, and therefore, became more important to the software.

Software metrics and proneness errors in Eclipse projects were related in (Shatnawi and Li, 2008). One advantage of this paper is that the analysis is realized during the software development phase. The authors also mentioned that, as soon as possible, the metrics values must be used to guide the development and increase time and costs of the project. Although some metrics have significant association with error proneness, efficiency is questionable, since other problems can also increase proneness errors such as team experience and time to conclusion of the project.

The article (Nair and Selvarani, 2011) discussed about the proneness errors in software projects and the impact in quality. To realize this activity, five commercial projects using the six CK metrics were analyzed. According to this work, some conclusions are substantial to this paper. For instance, when NOC is greater than five, there is 95% probability of the class to present defects. In addition, when DIT is greater than five, there is 81% probability of the class to have defects, and when CBO has a value between 20 and 24, there is 78% - 98% probability of the class to present defects. These numbers are compared with the results presented in tables of this paper.
(Benestad et al., 2006) investigated the impact of structural metrics on assessing the maintainability and proposed some strategies to analyze the level of maintainability. One of the strategies showed “very high” values for some CK metrics, such as WMC (>23), DIT (>3) and NOC (>3).

(Subramanyam and Krishman, 2003) analyzed CK metrics in industrial softwares and how it can be associated with defects. This association is different according to each programming language. This conclusion comes to reinforce the results we obtained.

(Johari and Kaur, 2012) discussed about the impact caused by modifications during open source software life cycle. They found a high significance in WMC, RFC and CBO to predicting the fault proneness and number of revisions made in class. The metrics LCOM and DIT show least significance. Furthermore, NOC showed no significance in identifying fault proneness.

(Abuasad and Alsmadi, 2012) created a tool to analyze various software metrics and how these metrics can be useful as indicators of software quality and what is the correlation between design and code coupling metrics. The tool is based on empirical knowledge of historical data.

(Zhou and Leung, 2006) discussed about the severity impact of the fault, based on object-oriented metrics values. They concluded that low metrics values could be more predictable than high metrics values. Another conclusion is that CBO, WMC, RFC and LCOM are statistically significant and DIT is not significant.

(Singh and Kahlon, 2012) analyzed values of metrics and how they can predict faulty classes identified as bad smells in open source software. They concluded that some metrics can be predicted with high accuracy, helping to increase software maintainability, testability and refactoring. They created a metric model to detect “bad smells” in softwares and validated the model by investigating Mozilla Firefox (Versions 2.0 and 3.0) (Singh and Kahlon, 2011).

(Ologue et al., 2007) compared and validated three object-oriented metrics suits. They concluded that CK metrics are better and more reliable to predict fault-proneness, in special WMC and RFC, than the others proposed in the article. Another conclusion is that metrics are not effective in early phases of software development. Therefore, when development is agile or high iterative, metrics may not be effective.

(Janes et al., 2006) analyzed the relation between object-oriented metrics and systems faults, focused on real-time systems in the telecommunication domain. They concluded that the communication between classes (i.e, RFC) increases the probability of defects to appear. The more the classes are coupled, higher will be the chance of defects to appear.

(Gymothy et al., 2005) analyzed fault prediction in Open Source Software, among seven versions of Mozilla (1.0 to 1.6). They conclude that some metrics, as NOC, can not be used for some fault-proneness predictions. This conclusion is similar to (Zhou and Leung, 2006; Moser et al., 2006; Shatnaw, 2010) and others but different from (Benestad et al., 2006; Nair and Selvarani, 2011). This variation of results indicates that the NOC metric needs additional studies to show if it can predict fault-proneness or it can vary according to projects.

(Karakontzas et al., 2012) propose a new metric to facilitate white-box reuse. This new metric is based on CK metrics. They concluded that coupling metrics are very significant to limiting white-box reuse of classes. LCOM is the least influential factor and NOC has not a good use. In normal-scale projects, DIT has a good influential too but in large projects DIT is replaced by RFC.

Thus, analyzing the anomalies suggested by hypotheses H_1, some values matched, others did not. The values of each metric is discussed in the following. In addition to the suggested values for anomaly, an additional analysis of the usefulness of each metric is presented. Table 5 summarizes this analysis. The result of this analysis can guide future activities in software engineering.

DIT – DIT has the value 3 for softwares developed using Java and 4 for softwares developed using C++. This value is very close to (Nair and Selvarani, 2011) (greater than 5) and (Benestad et al., 2006) (greater than 3). However, high values of DIT may not be significant in some cases as described in Table 5. Only 20% of articles discussed ((Gymothy et al., 2005; Benestad et al., 2006; Nair and Selvarani, 2011)) in this paper uses DIT with success to predict proneness error. This conclusion need to be improved to check if this metric can be useful. However, the DIT metric is an important way to analyze the degree of specialization of a class, at least in theory.

NOC – NOC has value 8. It does not match with any other works, such as (Nair and Selvarani, 2011) (greater than 5), and (Benestad et al., 2006) (greater than 3). Within the C++ metrics values, the value is 5, being very close to the studies. One important issue that could be checked is that as C++ provides multiple inheritance, the NOC value should be higher than Java, which does not natively support multiple inheritance. This issue can be explained given the number of softwares analyzed during the research. We found that 33% of studies concluded that NOC can be useful. In (Zhou and Leung, 2006), it was observed that...
NOC is inversely proportional to error proneness. In most of the cases, the metric NOC is not useful. This conclusion is similar to the one related on DIT. Hierarchical metrics can support some tasks such as program comprehension but in some activities as predict proneness error they are useless.

CBO – The CBO has value 18 for softwares developed using Java and 18 for softwares developed using C++. These values are very close to the ones in (Nair and Selvarani, 2011), in which classes that have 20-24 CBO have 78%- 98% probability of containing defects. In (Shatnawi, 2010), CBO has value 9. Independently of programming language and their specific features, as multiply inheritance, CBO has similar values. The CBO is considered the most relevant metric to perform activities as proneness error, analyze impact of refactoring on metrics or facility of white-box reuse. In 100% of the studies, CBO is useful. It is a valuable information that shows the importance of coupling metrics in software.

RFC – The RFC has the value 46 for softwares developed in Java and 112 for C++. (Shatnawi, 2010) found the value 40 as outlier to RFC and it has a similar value to our work. (Nair and Selvarani, 2011) found a defect proneness of (82%) when RFC is greater than 160. This value is very different from our hypothesis. However, even as CBO, softwares developed in Java and C++ have similar values. About the usefulness of this metric, RFC is useful as well as CBO. All of the studies that use RFC obtained good results to realize their activities.

WMC – The WMC has the value 329 to softwares developed in Java and 106 to softwares developed in C++. These values are higher than the ones presented in (Benestad et al., 2006) (greater than 23) and (Shatnawi, 2010) (greater than 29). One reason for this could be the type selected to measure WMC. According to (Chidamber and Kemerer, 1994), the WMC can be measured in different forms. As well as RFC and CBO, WMC is considered useful in all studies.

LCOM – The LCOM has the value 120 for softwares developed in Java and 1521 in C++. There were no works to compare the result of this metrics with any other works that used similar statistics method. (Gyimothy et al., 2005) conclude that LCOM has good correctness, but its completeness value is low. Some works as (Kakarontzas et al., 2012; Moser et al., 2006; Johari and Kaur, 2012; Janes et al., 2006) concluded that LCOM is not effective to realize some activities as proneness error, impact on refactoring or facilitate white-box reuse.

Analyzing the Effectiveness of Metrics

Table 5 depicts the articles studied and representation of metrics towards the aim of discovering the error-prone classes, analyze impact of refactoring on metrics and facility of white-box reuse. The following caption exemplifies table items:

- + Denotes that metric is significant according to the objective of the article;
- - Denotes that metric is significant but inversely proportional to the objective of the article;
- o Denotes that metric is not significant to the objective of the article;
- blank Denotes that metric was not studied.

It is worth mentioning that the use of data from other software metrics is a nontrivial task. According to (Kocaguneli et al., 2010), there are many factors that hampers the analysis of softwares based on metrics of another softwares. Features as team development experience, available time and cost affects the metric values (Subramanyam and Krishnan, 2003). Even the geographic localization of develop team have an affect on analysis (Kocaguneli et al., 2010).

(Menzies et al., 2011) found that the use of global data for effort estimation and prediction defect may
be ineffective in most cases. Often, the use of local data on software is more efficient to perform such activities.

Thus, finding thresholds for metrics software is a complex and difficult task. On the other hand, it should be noted that even with all the features (team experience, location, development methodology, programming language, architecture, time and cost) that affect the construction of software, some studies indicate values very close to detect faults or error proneness.

5 CONCLUSIONS AND FURTHER WORKS

Proposing values to software anomalies is an arduous task; especially when results are trying to be the most comprehensive possible. As described in this article, some proposed values for anomalies differ from other publications. This is understandable, since one of the goals of this article is to be broad, helping any kind of projects. Moreover, the results of this paper can be used to guide software development, helping to manage the development and preventing future problems.

The relationship between software metrics and probability of software errors has been the subject of study of many authors. This article contributes by suggesting values for software metrics that, according to the literature, can present high probabilities of failures. For this, the CK metrics were considered.

The coupling metrics values (CBO and RFC) are greater in C++ than in Java. In this case, multiple inheritance of C++ and single inheritance of Java has impact in coupling metrics. Other interesting conclusion is coupling metrics are used with success in others studies to detect error proneness.

Another contribution of this paper is to show that mean and standard deviations can be used to set up values of metrics that represent anomalies in software development. These anomalies can be monitored among the releases of software and identify some problems.

Furthermore, coupling (CBO, RFC) and complexity (WMC) metrics have been successfully used to predict error proneness. In studies that used CBO and RFC metrics as a measure for analysis, all have succeeded. In other words, the coupling between classes of a system can indicate various features of software such as proneness error or in analyzing the impact of refactoring. Hierarchical metrics were not very efficient and, therefore, need more studies to verify in which environments they are effective. Although CK metrics are widely used to measure software, choosing the right metrics in certain situations is essential.

Future works will focus on verifying if the values obtained in this article may indicate classes with high probabilities of defects. Another activity is to separate, according to the type of software (libraries, interfaces, domain) and check the different values of metrics that could be called "anomalies". Further research is needed in order to validate this research and check if values suggested in this paper are applicable in different environment of softwares as commercial, industrial or academical, and how these results can be useful to improve software development.

REFERENCES

