
The AXIOM Model Framework
Transforming Requirements to Native Code for Cross-platform Mobile Applications

Chris Jones and Xiaoping Jia
School of Computing, DePaul University, 243 S. Wabash Ave., 60604, Chicago, IL, U.S.A.

Keywords: Model-driven Development, Code Generation, Mobile Application Development.

Abstract: The development and maintenance of cross-platform mobile applications is expensive. One approach for
reducing this cost is model-driven development. AXIOM is a model-driven approach for developing cross-
platform mobile applications that uses a domain specific language (DSL) to define platform-independent mod-
els for mobile applications. AXIOM uses a consistent model representation, called an Abstract Model Tree, as
the basis for all model transformations and code generation. AXIOM could significantly reduce development
time and cost while increasing the quality of mobile applications. In this paper we examine the AXIOM mod-
els, their underlying abstract model trees, and the structures of its different transformation rules to show how
platform-specific concerns can be introduced in ways that preserve the model’s platform-independence while
still providing fine-grained control over the results of the transformation process.

1 INTRODUCTION

Mobile applications are increasingly sophisticated but
must still address platform-specific challenges, con-
straints, and requirements, such as responsiveness,
limited memory, and low energy consumption. The
most common mobile platforms, Google’s Android
and Apple’s iOS, are similar in capability, but differ
in their programming languages and APIs, making it
expensive to port applications from one to the other.
From the perspective of mobile application develop-
ers, it is highly desirable that their software run on
all major mobile platforms without hand writing the
code each one, an approach that would be error prone
and lead to difficulties in maintenance. Model-driven
development (MDD) is an approach that aligns well
with this desire.

MDD is a general term that refers to any approach
that emphasizes software models as the primary ve-
hicle by which applications are built. The nature of
these models can vary widely, from UML in the case
of MDA, to domain-specific languages in the case of
proprietary products such as Canappi (Convergence
Modelling LLC., 2011). The ultimate goal of MDD
is to shift the development focus away from writing
code (Selic, 2003) and toward the use of models as
the primary representation of the target application.

One of the most comprehensive approaches to
MDD is MDA (Object Management Group, 2003).

Using MDA, software systems are built by first defin-
ing platform-independent models (PIMs) that cap-
ture the compositions and core functionalities of the
system in a way that is independent of implementa-
tion concerns. The PIMs are then transformed into
platform-specific models (PSMs), from which the na-
tive application code for each platform can be gen-
erated. Despite some early successes (Object Man-
agement Group, 2011), MDA, with its foundation
of UML and OCL, has not seen significant industry
adoption and the experiences of that adoption have
been varied (Hutchinson et al., 2011; Aranda et al.,
2012). Some common challenges include: limita-
tions of UML (France et al., 2006; Henderson-Sellers,
2005); inadequate tool support; and model transfor-
mation complexity. More generally it has been ar-
gued that differences between modeling languages
and implementation languages can result in complex-
ities that make MDD adoption challenging (Volter,
2011). Moreover, UML-based approaches can use
their models to generate native code implementations
for different platforms, but often rely on the use of
MOF metamodels to drive the transformation process,
which forces an even greater distinction between the
model and its implementation.

A second approach to MDD, and one that seems to
be specific to the mobile application domain, attempts
to avoid this model-implementation dichotomy by
executing common industry frameworks such as

26 Jones C. and Jia X..
The AXIOM Model Framework - Transforming Requirements to Native Code for Cross-platform Mobile Applications.
DOI: 10.5220/0004882100260037
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 26-37
ISBN: 978-989-758-030-7
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

HTML5, CSS3 and JavaScript in wrappers that act
as adapters between the application and the underly-
ing mobile OS and hardware. PhoneGap (Adobe Sys-
tems, Inc., 2011) is an example of such an implemen-
tation. However, these wrapper-based approaches
rely on existing implementations using cross-platform
technologies in order to achieve their goals. While
they are thus platform-independent, they are not
model-driven in any meaningful sense.

A third approach to MDD uses domain-specific
languages (DSL). The virtues of DSLs are the mir-
ror image of their limitations. While DSLs can con-
cisely represent a set of concepts from a particular do-
main, they cannot be used to represent applications
from other domains. And so a question arises: can we
apply the principles of MDA to mobile applications
by using a DSL to model applications in a platform-
independent way and then transform those models
into working implementations on different mobile de-
vices while not being limited to a “least common de-
nominator” subset of the platforms’ capabilities?

In this paper we present the details of a practical
and scalable approach to model-driven development –
AXIOM (Agile eXecutable and Incremental Object-
oriented Modeling) – which is suitable for developing
cross-platform mobile applications. In this approach,
platform-independent requirements models are rep-
resented in a DSL. The models are passed through
a series of rule-based transformations followed by
template-based code generation resulting in complete
native implementations. By changing the transforma-
tion rules and templates we achieve the desired goal
of using a single model to generate native implemen-
tations for multiple platforms.

AXIOM’s major features include:

a) An entirely generative process that produces com-
plete implementations for each native platform us-
ing a single requirements model without any man-
ual coding in the native platform and SDK.

b) A practical and scalable solution capable of build-
ing real world mobile applications that are similar
in scale and complexity to mobile applications de-
veloped manually.

c) An emphasis on platform independence that still
allows full access to all of the features and capa-
bilities for each native platform.

d) Highly reusable and customizable transformation
rules for architecture, design, and refinement de-
cisions, as well as templates for code generation
that can be reused across different applications,
while also being easily modifiable and customiz-
able on a per-application and per-platform basis.

The AXIOM approach is validated by a proto-
type tool that implements all of the key components
including model construction, model transformation,
and code generation. The prototype currently gen-
erates complete native implementations for both the
iOS and Android platforms. The generated code can
be directly built and deployed using the native SDKs
and without any additional libraries or virtual ma-
chines. While only a subset of the native iOS and
Android APIs are currently supported, the prototype
tool adequately demonstrates the feasibility and the
potential benefits of the AXIOM approach.

The remainder of this paper examines AXIOM in
more detail. Section 2 provides an overview of AX-
IOM’s models and key architectural approaches. Sec-
tions 3–6 examine AXIOM’s models and explore its
transformation process in greater detail. Section 7
provides the initial results of our evaluation of AX-
IOM. Finally, Sections 8–10 offer some final thoughts
about AXIOM, how it relates to other MDD ap-
proaches and its potential.

2 THE AXIOM APPROACH

AXIOM (Jia and Jones, 2011; Jia and Jones, 2012)
retains the key elements of MDD such as model-
centricity and the transformation of models into ex-
ecutable code. While UML-based approaches often
use MOF (Object Management Group, 2006) meta-
models to facilitate model transformation, AXIOM
instead provides a DSL written in a dynamic lan-
guage. AXIOM supports a subset of UML in the form
of state charts and thus maintains some of the most

Figure 1: Model Evolution During the AXIOM Process.

The�AXIOM�Model�Framework�-�Transforming�Requirements�to�Native�Code�for�Cross-platform�Mobile�Applications

27

powerful aspects of UML-based MDD such as model
visualization, and accessibility to designers and de-
velopers who are familiar with UML and its notation.

The AXIOM approach itself is divided into three
stages: Construction, Transformation, and Transla-
tion. Each stage emphasizes different high-level ac-
tivities that serve to gradually transform the model
from requirements into native source code. At each
stage AXIOM emphasizes a different model. During
the Construction stage the emphasis is on the require-
ments model. This model is canonicalized into the
application model for the start of the Transformation
stage. Finally, the implementation model is used dur-
ing the Translation stage to produce native code for
the target platform. Figure 1 illustrates the relation-
ship between these models in the overall approach.

2.1 Abstract Model Trees

The Abstract Model Tree (AMT) is a common repre-
sentation that unifies all of AXIOM’s models. AMTs
capture the logical structure and other essential ele-
ments of the models. For example, each UI screen
and logical UI control of the requirements model is
represented as a node in the AMT. A key feature of
the AXIOM approach is that models are represented
as trees rather than graphs, as in MOF. This simpli-
fies model transformation and code generation, and
makes for a versatile means of customizing transfor-
mation rule definitions.

Each node in an AMT contains a set of attributes
defined as key-value pairs. In this sense the AMT is
similar to an attribute syntax tree used in an attribute
grammar (Knuth, 1968). However, AMTs differ from
attribute syntax trees in two important aspects. First,
AMTs allow for cross-node relationships and refer-
ences. Such relationships are not represented as edges
in the AMT, but as attributes of the nodes. Second,
AMTs not only support the simple data types of tra-
ditional attribute grammars, but also support complex
types such as collections and closures.

Definition 1: Abstract Model Tree
An abstract model tree, AMT , is formally defined as
a 3-tuple:

AMT = (N;E;A)

where N is the set of nodes within the model, E is the
set of edges connecting those nodes to form a tree,
and A is a set of mappings from the nodes in N to a
set of attributes in the form of key-value pairs.

2.2 Transformation Rules

AXIOM defines two types of transformations: struc-
tural and styling. We elaborate on these two kinds of
transformations in Sections 5.1 and 5.2 respectively.
The transformations are free of code fragments and
references to the APIs of the target platform.

AXIOM’s transformation rules were designed
with platform-specificity in mind. Our intent was to
follow a bottom-up approach to the abstraction of the
different platform APIs, preserving them so that they
may be used when appropriate, while abstracting the
common features into the core DSL to simplify the
development of cross-platform mobile applications.
The transformation rules can be reused across mul-
tiple applications or customized on a per-application
or even per-screen basis.

Definition 2: Transformation Rules
A transformation rule has one of the following forms:

LHS ! LHS0 (1)
LHS ! N1; :::;Nk (2)
LHS ! e (3)

where LHS represents a node to which the various
transformation rules will be applied. The LHS can
be matched based on node types and attribute values.

Rule (1) is concerned with the modification of the
node’s attributes. Rule (2) allows for a node to be
replaced by a sequence of nodes N1; :::;Nk, each of
which can be the root of a subtree. Rule (3) allows for
a node to be removed. All model transformations are
accomplished by sets of rules in the above forms.

The model transformation process, Trans f orm,
accepts an AMT, M, and a rule set, R, and produces a
new AMT, M0. Thus, Trans f orm(M;R) = M0.

Trans f orm(M;R)
1 Traverse M in depth-first order
2 for each node n 2 N in M
3 if n matches the LHS of any rule r 2 R
4 if a single match is found
5 apply r to n
6 else
7 apply r with the highest

precedence to n

Model transformation is effected by a series of
successive calls to Trans f orm with different rule sets,
each call resulting a new model:

M0;M1; :::;MI

For k = 1;2; :::; I, Trans f orm(Mk�1;Rk) = Mk, where
Rk is the rule set used at the k-th phase of the trans-
formation. M0 is the initial source model, called the

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

28

application model. M1::n�1 are intermediate models
that represent partial transformations. MI is the final
result of the transformation process and is called the
implementation model.

AXIOM first executes Trans f orm against the ini-
tial requirements model using a set of platform-
independent rules. It then executes Trans f orm again,
and applies all of the rules that relate to the target
platform. While it is possible that an ill-defined rule
could result in non-termination because of infinite re-
cursion, thus far the rules defined for the prototype
(see Section 7.1) have been simple enough to avoid
deep nesting or recursion. Future enhancements to
the prototype tool could be made to address this pos-
sibility in order to support more complex rule sets.

3 REQUIREMENTS MODEL

During the Construction stage, business require-
ments, application logic, and logical user interfaces
and interactions are captured as platform-independent
requirements models. These models are represented
using a DSL based on the dynamic language, Groovy.
The DSL attempts to maximize the ease of modeling
by allowing the requirements model to be represented
in a simple, abbreviated form whenever possible.

The use of a DSL to represent functionality and
requirements is not new. However, approaches such
as xUML that rely on fUML and ALF (Object Man-
agement Group, 2013a) use a general-purpose lan-
guage. While this provides almost limitless flexibility,
it remains a least-common denominator approach; the
language makes no assumptions about what it is mod-
eling and thus must strive to be as general as possible.
AXIOM fixes the target domain, mobile applications
in our case, and uses that knowledge to provide a DSL
that makes it simple to model behavior from that do-
main. Because the AXIOM DSL is written in a gen-
eral purpose programming language, it has access to

Figure 2: Partial State Diagram and Requirements Model.

a rich set of libraries and frameworks that traditional
MDD notations like UML do not provide.

3.1 Interaction Perspective

The requirements model consists of the interaction
perspective, which describes how a user interacts with
the final application. It captures the user interface
and the application’s behavior in response to user and
system events. A simple example is provided in Fig-
ure 2 showing a partial state diagram and correspond-
ing AXIOM DSL.

The interaction perspective defines the composi-
tion of the application’s screens. Each screen is a
view containing several types of logical UI controls.
These logical controls only define their intended func-
tions and not the actual widgets in the native plat-
form. The names View, Label, and Button in the
model refer to the UI elements (see A , B , C ,
and D in Figure 2). Other logical controls such
as ListView, Item, Panel are also available and
can represent both platform-independent as well as
platform-specific widgets. AXIOM supports several
different kinds of views, which makes it possible to
quickly define common types of screens.

More complex applications are described as a set
of related views. Each view is represented as a state
in the interaction model. Transitions are defined as at-
tributes on UI controls that trigger the transition. Op-
tional guard conditions and actions can also be de-
fined on the transitions.

3.2 Model Annotations

The requirements model can be decorated with anno-
tations that are consumed by and advise the transfor-
mation process. One example is the choice of persis-
tence framework. While that choice doesn’t impact
the requirements model, it can have a significant im-
pact on the generated code. Other model annotations
can be used to define alternative UI widgets to be used
on platforms for which the primary widgets are un-
available. These annotations are extensible, allowing
AXIOM to grow and change as new platforms and
platform capabilities manifest.

4 APPLICATION MODEL

Once the requirements model has been defined AX-
IOM passes it through an intelligent model builder,
which performs a series of intermediate simplifica-
tions and canonicalizations to produce an application
model. It is this model that is processed during the

The�AXIOM�Model�Framework�-�Transforming�Requirements�to�Native�Code�for�Cross-platform�Mobile�Applications

29

subsequent Transformation stage. An abbreviated ap-
plication model AMT for the simple example of Fig-
ure 2 is shown in Listing 1.

The model builder uses a preprocessed represen-
tation of the iOS and Android APIs to expose a
platform-neutral version of many of their common
widgets. This allows the requirements model to spec-
ify a platform-specific widget if desired even though
this constrains the target platform. The model builder
also accepts optional annotations from the model that
further advise the rest of the transformation process.

5 IMPLMENTATION MODEL

The Transformation stage carries out a series of trans-
formations. The aim is to transform the AMT of the
application model into a new AMT, the implemen-
tation model, which includes all the details needed
to generate high quality, efficient code. The mecha-
nism by which this transformation occurs is driven by
the application of two kinds of transformation rules,
structural and styling, during AXIOM’s multi-pass
transformation process. Each pass through the trans-
formation process may apply one or more of either
kind of transformation rule.

5.1 Structural Transformations

Structural transformations define the macro-
organization of the application as the result of a
series of architecture and design decisions. Some
of the transformations address platform-independent
issues, while others address platform-specific issues.
This narrows the range of possible implementations

app1 [type:Application]
name [type:String ,value:’Modal View ’]
mainview [value:v1]
v1 [type:View]
title [type:String ,value:’First ’]
name [type:String ,value:’View ’]
label1 [type:Label]
text [type:String ,value:’First ’]

button1 [type:Button]
text [type:String ,value:’Press ’]
next [type:String ,value:’v2’]

v2 [type:View]
title [type:String ,value:’Second ’]
name [type:String ,value:’View ’]
label1 [type:Label]
text [type:String ,value:’Second ’]

button1 [type:Button]
text [type:String ,value:’Dismiss ’]
next [type:String ,value:previous]

Listing 1: Partial Application Model AMT.

that meet the functional, non-functional and platform
needs of the application and also determine the
macro-organization and interactions of the applica-
tion components. This is particularly important when
a multi-tier architecture is desired or when specific
non-functional requirements must be satisfied. Thus
structural transformations serve to define the cross-
cutting concerns of the application, but do so in a
way that the various intermediate models retain their
platform-independent nature.

Structural transformations change the AMT by ap-
plying one or more of the following operations:

� Add a node along with its corresponding edges.

� Split a single node into multiple nodes and adjust
the edges accordingly.

� Merge multiple nodes into a single node and ad-
just the edges accordingly.

� Add an attribute.

� Remove an attribute.

Definition 3: Structural Transformation
A structural transformation AMT results in AMT 0,
such that:

AMT 0 = (N0;E 0;A0) (4)

where N0, E 0 and A0 result from the application of the
transformation rules from R on the original AMT’s N,
E and A respectively.

Structural transformations are rule-based and gen-
erally reusable. They may alter both the structure of
the AMT as well as the attributes of its nodes yield-
ing a new AMT that is functionally isomorphic to
the application model, but that defines the macro-
organization of the application.

Common examples of structural decisions include
target platform and language, the use of architecture
and design patterns, and code distribution. For ex-
ample, these decisions can determine whether or not
we use file-based or database-based persistence. Sim-
ilarly, we might opt to generate DAOs as a means of
enforcing a separation of concerns. These choices
will obviously yield very different designs when the
model is ultimately translated into native code.

5.2 Styling Transformations

In contrast to structural transformations, styling trans-
formations preserve the underlying structure of the
AMT, but add more information to its nodes. This
results in a new AMT that is functionally and struc-
turally isomorphic to the original application model.
Styling transformations often decorate the AMT with

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

30

additional platform-specific elements to address intra-
class, micro-organizational decisions.

Styling transformations change the AMT by ap-
plying one or more of the following operations:

� Add an attribute.

� Remove an attribute.

Definition 4: Styling Transformation
A styling transformation on AMT results in AMT 0

such that:

AMT 0 = (N;E;A0) (5)

where N and E are the same sets that were defined
for the original AMT, and A0 results from the applica-
tion of transformation rules from R on A.

In this case the transformations are permitted to
modify the attributes of any node, but are not permit-
ted to alter the set of nodes or their edges. Exam-
ples of styling transformations include: implemen-
tation idioms and related techniques; visual layout;
and theme. Styling transformations are usually not
application-specific and are thus highly reusable.

One common use for this kind of transformation is
platform-specific widgets. We consider three cases:

Case 1. The same basic widget exists in both plat-
forms. Examples include text fields, labels,
and buttons.

Case 2. The same widget does not exist on both
platforms, but can be simulated with dif-
fering levels of effort. One example is a ra-
dio button group, which exists natively on
Android, but which must be simulated or
replaced on iOS.

Case 3. The widget does not exist in both plat-
forms and cannot be effectively simu-
lated. Examples include the ImageBut-
ton on Android and the PageView on iOS.
Even though the widget could be encoded
within the DSL, the application cannot be
made cross-platform without changes to
the transformation rules and templates to
use, for example, a new widget library.

By using the annotations that were defined on
the requirements model and propagated through the
subsequent transformations, the styling transforma-
tions can modify the approach to widget generation
and embed those decisions within the implementation
model. Deferring these lower-level decisions until
model transformation enables us to make selections
that are appropriate for the desired characteristics of
the target runtime environment. For example, while

it may be a functional requirement that a list of items
be sortable within the UI, we can further refine the
approach to emphasize the properties of one sort al-
gorithm over another depending on the target runtime
environment and its particular constraints. Such dis-
crimination is critical given that we must make differ-
ent time-space trade-offs based on the target platform.

5.3 Organization

The implementation model can be thought of as a de-
sign of the application with the modules, classes, and
their relations determined. It defines three major as-
pects of the overall application’s organization:

� Modules. The macro-organizational aspects of the
application and its resources.

� Resources. The component files that will com-
prise the completed application. This includes
source files, but also includes whatever descriptor
files are required by the target platform.

� Fragments. The fragments of content that are used
to construct the final resources.

Conceptually these elements are composited, that
is, modules are comprised of resources, which are in
turn comprised of fragments. While the implementa-
tion model doesn’t directly contain these elements, it
contains the information required to generate them in
the form of injection descriptors.

5.4 Injection Descriptors

Each element in the implementation model is asso-
ciated with one or more injection descriptors, D =
fd1;d2; :::;dkg. It is the combination of the implemen-
tation model’s organization, combined with the injec-
tion descriptors that enables AXIOM to successfully
generate native code for the target platform.

Definition 5: Injection Descriptor
An injection descriptor, di, is a 3-tuple:

di = (target, template-ref, binding) (6)

where target refers to an implementation model ele-
ment, template-ref is a reference to a code template
that will ultimately be used to generate the code for
this element, and binding is a map of key-value pairs
that are referenced within the code templates.

6 NATIVE CODE GENERATION

During the Translation stage, the implementation
model, MI , is converted into native source code for

The�AXIOM�Model�Framework�-�Transforming�Requirements�to�Native�Code�for�Cross-platform�Mobile�Applications

31

the target platform. The implementation model con-
tains nodes that will be mapped to specific items to be
included in the implementation, such as project files,
class files, resource files, etc. It also includes all of the
information needed to populate each item to be gener-
ated. The task is to serialize the information stored in
the AMT into linear text files in the implementation.

AXIOM’s code generation algorithm, Generate,
accepts an AMT, M, and produces native code.
Generate is template-based (Czarnecki and Helsen,
2003) and its code templates capture knowledge and
information about both the programming language
used in the target platform and the API of the native
SDK. Each code template contains a parametric code
fragment and an injection point, the location where
the code fragment can be inserted. This information,
along with the injection descriptors from the imple-
mentation model, drives the code generation process.

Generate(M)

1 Traverse M in depth-first order
2 for each node n 2 N in M
3 for each injection descriptor di of n
4 Retrieve the template di[template-ref]
5 for each parameter, p, in the template
6 Substitute di[binding][p] for p
7 Inject the instantiated code to di[target]

at the injection point specified by the
code template.

8 for each item in the native implementation
9 Aggregate the code fragments into a linear

source code file

Listing 2 shows a partial code template used to
generate the Java source for the views in the re-
quirements model. This template’s placeholders such
as PACKAGE correspond to keys within the in-
jection descriptor being applied to the node in the
AMT. Javadoc-like placeholders such as /**IMPORT
INJECTION POINT**/ indicate additional injection
points that are associated with their own code tem-
plates. These injection points are associated with their
own injection descriptors and will be processed dur-
ing the execution of the Generate function

AXIOM has a knowledge of many of the core
widgets of both the iOS and Android platforms.
This knowledge was derived through a separate pro-
cess whereby the API was consumed and a map
built defining the widgets, their classes, their avail-
able properties and the associated getters and setters.
When AXIOM generates native code, the map for the
target platform is consulted. Any property not located
in the map is ignored. A modeler could thus provide
both Android and iOS properties on the model but
only the properties of the target platform would be

incorporated. This is in keeping with AXIOM’s goal
of preserving a modeler’s ability to be as platform-
specific or platform-neutral as desired.

Each platform has its own default configuration,
which include aspects of UI design including font
size, style, and color. These defaults act as a kind
of CSS style when they are applied during the code
generation process. They can be easily modified to
meet new and changing needs, making them poten-
tially application-independent and reusable.

7 PRELIMINARY EVALUATION

7.1 Approach

A proof-of-concept prototype tool has been developed
to demonstrate the feasibility of AXIOM. The proto-
type targets two popular mobile platforms: Android
and iOS. The prototype can transform AXIOM mod-
els into native implementations in Java for Android
and Objective-C for iOS. The generated application
source code is then compiled using the native SDKs
on the target platform to produce executable applica-
tions. The design of the generated code follows the
common MVC architecture.

Using the prototype tool, we assessed more than
100 test cases, each of which models a working mo-
bile application that can be successfully built and de-
ployed on iOS and Android devices. The test cases
demonstrate functionality that is common to many
mobile applications including screen navigation and
the use of appropriate widgets – some cross-platform,
others not. Figure 3 shows the comparative frequen-
cies of the source lines of code by platform and pro-
vides some basic descriptive statistics. The strip plot
uses almost-transparent data points, so the darker the
area, the more points are concentrated there.

The sample applications were developed by Mas-
ters students from DePaul’s Software Engineering
program. These individuals were all experienced soft-

package ___PACKAGE___;
/**IMPORT INJECTION POINT**/
public class ___VIEWNAME___
extends ___SUPERCLASS___ {

/**DECLARATION INJECTION POINT**/
@Override
public void onCreate(Bundle state) {

super.onCreate(state);
/**ONCREATE INJECTION POINT**/

}
/**METHOD INJECTION POINT**/

}

Listing 2: Partial Template for Java View Implementation.

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

32

ware developers, although there were significant dif-
ferences in their expertise in developing mobile appli-
cations. None of them had used AXIOM before and
were provided training on the DSL.

Our assessment of AXIOM focused on two kinds
of metrics: representational power, including relative
power; and information density, including compres-
sion ratio.

7.2 Representational Power

Representational power is concerned with how much
code in one language is required to produce the same
application in another language. This provides a
coarse-grained indication of the relative effort ex-
pended by a developer to produce an application us-
ing different languages. For our evaluation, this in-
volved comparing the source lines of code (SLOC)
of the AXIOM requirements models to the generated
source lines of code for both iOS and Android.

For the comparative evaluation of the SLOC, we
used CLOC (Danial, 2013) with Groovy as the source
language for AXIOM. The Android and iOS plat-
forms were accounted for using Java and Objective-
C respectively. We eliminated from consideration all
generated code that served to automate the building of
the generated applications, such as Ant scripts for the
Android applications. The SLOC counts do not in-
clude “non-essential” lines of code such as comments,
opening or closing block delimiters such as braces, or
closing element tags.

While source lines of code are not ideal in terms
of representing application complexity because of
the potential size differences introduced by developer
ability, in this case we felt the metric to be appro-

Statistics AXIOM iOS Android
(n = 104)

Minimum 3.00 103.00 35.00
Median 15.00 171.50 106.00
Mean 21.65 184.19 140.65
Maximum 118.00 382.00 441.00

Figure 3: Strip Plot and Statistics of SLOC by Platform.

priate. First, the applications were straightforward
enough that developer ability was likely not a sig-
nificant factor. Second, we had a limited number of
developers perform the actual coding, which helped
to control for some of the inherent variation in abil-
ity. Third, had we chosen to analyze story or function
points, we would likely have seen significant cluster-
ing of the data owing to the comparative simplicity of
the applications. By focusing on SLOC we were able
to automate some parts of the analysis as well as see
relative differences in the sizes of the different repre-
sentations of the applications. As we begin to analyze
larger scale applications, story or function points can
provide additional input into the analysis.

Our analysis of SLOC makes two assumptions:

Assumption 1
Developer productivity measured in source lines-of-
code per person-hour (SLOC/PH) is roughly con-
stant regardless of languages used. Research by
Jaing (Jiang et al., 2007) suggests that while language
generation significantly affects developer productiv-
ity, the differences between languages in the same
generation are less pronounced. Since we focus on
platforms using Objective-C and Java, both of which
are 3GL, we believe this assumption to be reasonable.

Assumption 2
The native applications produced by the prototype
tool are comparable in size and complexity to the
same applications developed manually. An admit-
tedly subjective review of the code generated by AX-
IOM within the context of our working test cases sug-
gests that it is consistent with industry best-practices
such as separation of concerns and the corresponding
creation of appropriate abstraction layers.

As described by Jiang (Jiang et al., 2007),
the language used to implement the final soft-
ware can have a significant impact on productiv-
ity. Kennedy (Kennedy et al., 2004) also identifies
language as a significant component of productivity.
Kennedy’s relative power metric, rL, compares the
relative expressiveness of two languages using SLOC.

Definition 6: Kennedy’s Relative Power Metric
Kennedy’s relative power metric is given by:

rL=L0 =
I(ML0)

I(ML)
(7)

where I(ML0) is the number of lines of source code
required to implement model M in native code and
I(ML) is the number of lines of code required to im-
plement M in AXIOM.

The�AXIOM�Model�Framework�-�Transforming�Requirements�to�Native�Code�for�Cross-platform�Mobile�Applications

33

7.3 Information Density

Information density is a measure of a language’s ex-
pressiveness. Languages with high information den-
sities require less space for their particular represen-
tation and thus have higher “signal-to-noise” ratios.

To evaluate comparative information densities, we
created compressed ZIP files using gzip, which is
based on the DEFLATE algorithm (Deutsch, 1996).
As with the SLOC analysis, we excluded all files
that were not actually generated by AXIOM. We then
compared the compression ratios, CRL, derived using:

Definition 7: Compression Ratio

CRL =
Uncompressed Source Size of L
Compressed Source Size of L

(8)

where L is the language in question. While compres-
sion ratios will vary from model to model, a large
number of samples can serve to provide a typical
value for CRL in the aggregate.

Definition 8: Language Density
As part of our analysis, we introduce the concept of
language density, d, which we defined as:

dL=L0 =
CRL0

CRL
(9)

Although language density is similar to Kennedy’s
relative power metric, it instead describes the rela-
tive density of one language to another based on their
respective compression ratios. This is different than
measuring how many lines of code are required in dif-
ferent languages for similar representations since one
language might use a verbose syntax and the other a
very concise one.

7.4 Results

The results of the analyses of representational power
and information density that were carried out against
the trial code samples are summarized in Table 1.

To simplify the analysis, we treat all generated
code for each platform as a single “language” even
though the generated code may comprise several dif-
ferent languages. For example the Android language
includes XML and Java whereas the iOS language in-
cludes XML and Objective-C.

Each of the previously discussed metrics requires
one or two languages depending on whether or not it
is nominal or ratio. Nominal metrics, such as com-
pression ratio, refer to language L0 which can be any
of iOS, Android or AXIOM. Ratio metrics, such as

relative power or language density, compare two lan-
guages, L0 and L. L0 is the base language and is either
Android or iOS. L is the target language, which is al-
ways AXIOM for our purposes.

Under assumptions 1 and 2, the reduction in the
size of the AXIOM requirement models compared to
the size of the generated applications represents a sig-
nificant reduction in development time, and hence an
increase in developer productivity. The median size
of the AXIOM requirements model is about 14% of
the size of the generated applications for Android and
about 9% of the size of the generated applications for
iOS. Since one line of AXIOM is equivalent to about
11 lines of iOS code and about 7 lines of Android
code, we conclude that AXIOM is more representa-
tionally powerful than either iOS or Android.

In evaluating the information density we see that
the median compression ratio for AXIOM’s models
is 1.88, 15% the size of the median compressed iOS
model and 11% the size of the median compressed
Android model, suggesting that AXIOM’s DSL has
a much higher “signal-to-noise” ratio than either of
the other two languages. Similarly, the median iOS
and Android language densities are 6.39 and 8.89 re-
spectively, suggesting that while both languages may
involve greater complexity, redundancy or wordiness
to represent the same model, the Android model can
be compressed further than the iOS model.

It is possible that these results only apply to these
comparatively simple trials and that larger-scale ap-
plications may yield significantly different results. It
is also possible that these results are due in part to
natural variability in developer ability. The AXIOM
code was not reviewed for optimality so there might
have been more efficient implementations than those
provided. Although there was variability in terms of
mobile application development experience, AXIOM
embeds much of that domain knowledge in its DSL,
reducing its overall impact.

Table 1: Comparison of Median Test Case Metrics.

Test Cases of language L0 of
(n = 104) iOS Android AXIOM

Representational Power
Source LOC 171.50 106.00 15.00
AXIOM as a % 8.70 14.15 100.00

Relative Power 11.43 7.07 1.00

Information Density
Compression Ratio 12.01 16.71 1.88
AXIOM as a % 15.65 11.25 100.00

Language Density 6.39 8.89 1.00

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

34

8 DISCUSSION

AXIOM is completely generative. Developers need
not edit the generated code to incorporate addi-
tional logic because all such logic is specified within
the model. While partially generative solutions are
feasible, the deviation of the final code from the
source model because of the hand-written developer-
contributed code makes such an approach less at-
tractive than its fully generative counterpart. Addi-
tionally, since AXIOM models are source code, they
can be managed using existing software development
tools and techniques such as IDEs and source code
management systems and do not require specialized
software to support concurrent model development.

AXIOM’s transformation rules and templates can
be used across multiple applications by externalizing
the various transformation rules and templates so that
they can be reused during the transformation of other
application models. From a practical perspective, this
means that it will likely take longer to develop the
rules and templates for new technologies than it might
to simply use their APIs directly, but once they have
been created, they are usable by any other applica-
tion that requires them. For one-offs or proofs-of-
concept this up-front cost may be significant enough
that other, more common approaches, such as incre-
mental prototypes built with hand-written code, may
prove to be more economical.

Because AXIOM’s transformation process divides
the transformations into two discrete types, structural
and styling, and because those transformations can
be applied at either the application or view scope,
it is possible for us to overcome the “least common
denominator” problem that arises with some cross-
platform development efforts. AXIOM was designed
with platform-specificity in mind, even as it attempts
to provide platform-independent abstractions that can
help simplify the modeling process. Thus, AXIOM
is not constrained to work with only the small subset
of features that are common across all platforms. Be-
cause the application model defers low-level imple-
mentation decisions until structural and styling trans-
formations have produced the implementation model,
it is possible, through the use of the transformation
rules and appropriate code templates, to generate vir-
tually any kind of code output.

AXIOM can scale to mobile applications that are
similar in size and complexity to those that are devel-
oped manually. This is because the process of model
transformation and code generation is one of com-
position from smaller, simpler elements and can thus
work at different scales with equal facility. At present
the AXIOM prototype is constrained to the amount of

memory available to the JVM during the transforma-
tion process, but that is a limitation on the implemen-
tation of the prototype and not on the approach itself.

Like most code generators, AXIOM can improve
developer productivity. Because it emphasizes up-
front modeling and because the transformation rules
and templates can be changed and reused, developers
can quickly see the impact of any given change. For
these productivity gains to be realized, the templates
and transformation rules must be designed and imple-
mented up front. These rules and templates need not
provided by the development team itself, any more
than they currently build all of their own frameworks.
For example, the third-party provider of a persistence
framework could provide the templates and transfor-
mation rules that they believe best reflect the use of
their framework. If application-specific changes are
required, they can be made as the application is mod-
eled without starting ex nihilo.

While AXIOM’s DSL-based approach could cer-
tainly be used to model other styles of applications,
its DSL has been constructed specifically for the mo-
bile application domain. Similarly, the rules and tem-
plates that generate the native source code could be
re-written to generate other styles of applications and
even source code in other languages. In addition, the
AXIOM prototype currently uses only a subset of the
iOS and Android APIs. All of these are limitations of
the prototype and not of the approach in general.

Our preliminary results with respect to AXIOM’s
representational power and conciseness are promis-
ing. While the results have been measured on a small
subset of all possible mobile applications, those ap-
plications reflect common requirements such as navi-
gation across multiple screens as well as the use of a
variety of user interface widgets. Some of the capabil-
ities are easy to model in a platform-independent way,
while others are not. Thus far we have not found any
inherent limitations in the approach, but it is possi-
ble that further testing on more complex applications
might reveal unexpected properties of the DSL or our
algorithms that reduce AXIOM’s effectiveness.

9 RELATED WORK

Various frameworks and tools have been devel-
oped to support MDA-style MDD including An-
droMDA (Bohlen et al., 2003) and the Eclipse Foun-
dation’s Generative Modeling Technologies (The
GMT Team, 2005) and ATL Transformation Lan-
guage (The ATL Team, 2005). AXIOM is based on
MDA as well, although it is not based on MOF.

Executable UML (xUML) uses UML models as

The�AXIOM�Model�Framework�-�Transforming�Requirements�to�Native�Code�for�Cross-platform�Mobile�Applications

35

the primary mechanism by which applications are
built (Mellor and Balcer, 2002). However, the pro-
cess of writing a model compiler can require sig-
nificant effort. There are publicly available xUML
compilers such as xUmlCompiler (xUML Compiler,
2009), but each compiler targets specific technologies
for its code generation processes. More recent ap-
proaches such as fUML (Object Management Group,
2013b) have improved on this approach by incorpo-
rating ALF (Object Management Group, 2013a), a
platform-independent imperative language. Despite
using only a subset of the full UML, fUML still suf-
fers from many of the same limitations.

Mayerhofer (Mayerhofer et al., 2013) describes
xMOF as a means of specifying the behavioral se-
mantics of models so that they can be incorporated
into MOF-based transformation processes. AXIOM
avoids MOF in favor of developer-driven semantics
in the code templates and transformation rules.

Cuadrado (Cuadrado et al., 2012) describes a pro-
cess whereby a meta-model is used to generate an
intermediate language that ultimately produces Java
bytecode that directly references the native platform
API. AXIOM relies instead on pre-defined mappings
of objects and their properties.

Cross-platform mobile applications can use
languages and virtual machines that are com-
mon across different platforms, such as HTML
and JavaScript (Appcelerator, Inc., 2011; The
JQuery Project, 2011; Adobe Systems, Inc., 2011).
Canappi (Convergence Modelling LLC., 2011) uses a
DSL to define and generate cross-platform mobile ap-
plications as front-ends to web services. Unlike AX-
IOM, many of these approaches do not allow access
to native APIs or customizable code generation.

Mobl (Hammel et al., 2010) is a DSL that targets
mobile applications. However, it does not address the
model-driven aspects of MDD. Thus while the DSL
code may indeed be transformed into executable code,
the models themselves are not major artifacts of the
software development process.

md2 (Heitkötter et al., 2013) is similar to AXIOM
in principle, but differs in its orientation. AXIOM
takes a developer-centric, bottom-up approach to its
DSL design, while md2 was developed top-down and
with a business-centric focus. Both approaches gener-
ate native code though with differences in the role of
the developer in advising the transformation process.

Bi-directional transformations such as those re-
searched by Anjorin (Anjorin et al., 2013) allow
changes to the implementation to be incorporated into
the model to support round-trip engineering. AXIOM
emphasizes one-way transformation from model-to-
platform in an attempt to eliminate the need for man-

ual changes to the generated code.
AXIOM is partly based on the ZOOM (Liu and

Jia, 2010; Jia et al., 2007; Jia et al., 2008) project.

10 CONCLUSION

AXIOM is a model-driven approach for developing
high quality, cross-platform applications. AXIOM
uses a DSL to represent a platform-independent re-
quirements model. That model is canonicalized to
become an application model represented as an ab-
stract syntax tree. The application model is changed
into an implementation model through the application
of structural and stylistic transformation rules. This
model, along with reusable code templates, is used to
produce native code for the target platform.

AXIOM provides a practical solution to MDD. It
separates the complexity of the transformation pro-
cess from the definition of the rules and templates that
drive that process. This allows new rules and tem-
plates to be defined without changes to complex trans-
formation frameworks or model compilers. It also al-
lows the rules and templates to be modified in accor-
dance with changing technologies, best practices, and
organizational standards.

Our initial results are promising. In small-scale
tests we have seen significant benefits in terms of
representational power and information density when
compared to hand-written native iOS and Android
code. This reflects the AXIOM DSL’s concise and
mobile-centric syntax.

AXIOM has the potential to scale to large mobile
applications, which, when combined with its com-
pletely generative nature, enables cost-effective cross-
platform mobile development. Its models begin en-
tirely platform-independent and through a series of
successive transformations acquire platform-specific
elements. This approach allows the platform-specific
models full access to any and all native APIs for the
target platform. The transformation process itself is
fixed, but the rules and code templates that are used
by the process can be changed at will, making AX-
IOM an extremely flexible approach to MDD.

REFERENCES

Adobe Systems, Inc. (2011). Phonegap. http://
www.phonegap.com/.

Anjorin, A., Saller, K., Rose, S., and Schrr, A. (2013). A
framework for bidirectional model-to-platform trans-
formations. In Czarnecki, K. and Hedin, G., edi-
tors, Software Language Engineering, volume 7745 of

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

36

Lecture Notes in Computer Science, pages 124–143.
Springer Berlin Heidelberg.

Appcelerator, Inc. (2011). Appcelerator. http://
www.appcelerator.com/.

Aranda, J., Damian, D., and Borici, A. (2012). Transi-
tion to model-driven engineering: What is revolution-
ary, what remains the same? In Proceedings of the
15th International Conference on Model Driven Engi-
neering Languages and Systems, MODELS’12, pages
692–708, Berlin, Heidelberg. Springer-Verlag.

Bohlen, M., Brandon, C., et al. (2003). AndroMDA.
http://www.andromda.org/docs/index.html.

Convergence Modelling LLC. (2011). Canappi. http://
www.canappi.com/.

Cuadrado, J. S., Guerra, E., and de Lara, J. (2012).
The Program Is the Model: Enabling transforma-
tions@run.time. In Czarnecki, K. and Hedin, G., edi-
tors, SLE, volume 7745 of Lecture Notes in Computer
Science, pages 104–123. Springer.

Czarnecki, K. and Helsen, S. (2003). Classification of
model transformation approaches. In 2nd OOPSLA’03
Workshop on Generative Techniques in the Context of
MDA, pages 1–17, Anaheim, CA, USA.

Danial, A. (2013). CLOC. http://cloc.sourceforge.net/.
Deutsch, P. (1996). DEFLATE Compressed Data Format

Specification version 1.3. RFC 1951 (Informational).
France, R. B., Ghosh, S., Dinh-Trong, T., and Solberg, A.

(2006). Model-driven development using UML 2.0:
Promises and pitfalls. Computer, 39(2):59–66.

Hammel, Z., Visser, E., et al. (2010). mobl: the new lan-
guage of the mobile web. http://www.mobl-lang.org/.

Heitkötter, H., Majchrzak, T. A., and Kuchen, H. (2013).
Cross-platform model-driven development of mobile
applications with md2. In Proceedings of the 28th An-
nual ACM Symposium on Applied Computing, SAC
’13, pages 526–533, New York, NY, USA. ACM.

Henderson-Sellers, B. (2005). UML - the good, the bad or
the ugly? perspectives from a panel of experts. Soft-
ware and System Modeling, 4(1):4–13.

Hutchinson, J., Rouncefield, M., and Whittle, J. (2011).
Model-driven engineering practices in industry. In
Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, pages 633–642,
New York, NY, USA. ACM.

Jia, X. et al. (2007). Executable visual software model-
ing:the ZOOM approach. Software Quality Journal,
15(1).

Jia, X. and Jones, C. (2011). Dynamic languages as model-
ing notations in model driven engineering. In ICSOFT
2011, pages 220–225, Seville, Spain.

Jia, X. and Jones, C. (2012). AXIOM: A model-driven ap-
proach to cross-platform application development. In
ICSOFT 2012, pages 24–33, Rome, Italy.

Jia, X., Liu, H., et al. (2008). A model transforma-
tion framework for model driven engineering. In
MSVVEIS-2008, Barcelona, Spain.

Jiang, Z., Naud, P., and Comstock, C. (2007). An investi-
gation on the variation of software development pro-
ductivity. International Journal of Computer and In-
formation Science and Engineering, pages 461–470.

Kennedy, K., Koelbel, C., et al. (2004). Defining and mea-
suring the productivity of programming languages.
The International Journal of High Performance Com-
puting Applications, (18)4, Winter, 2004:441–448.

Knuth, D. E. (1968). Semantics of context-free languages.
Mathematical Systems Theory, 2(2):127–145.

Liu, H. and Jia, X. (2010). Model transformation using a
simplified metamodel. In Journal of Software Engi-
neering and Applications, volume 3, pages 653–660.

Mayerhofer, T., Langer, P., Wimmer, M., and Kappel, G.
(2013). xMOF: Executable DSMLs Based on fUML.
In Proceedings of the 6th International Conference on
Software Language Engineering, volume 8225, pages
56–75.

Mellor, S. J. and Balcer, M. J. (2002). Executable UML: A
Foundation for Model-Driven Architectures. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA. Foreword By-Ivar Jacoboson.

Object Management Group (2003). MDA guide. http://
www.omg.org/mda.

Object Management Group (2006). OMG’s MetaObject Fa-
cility. http://www.omg.org/spec/MOF/2.0/PDF/.

Object Management Group (2011). Success stories. http://
www.omg.org/mda/products success.htm/.

Object Management Group (2013a). Concrete syntax for
a UML action language: Action language for foun-
dational UML (ALF), version 1.0.1. Specification.
http:// www.omg.org/spec/ALF/1.0.1/PDF.

Object Management Group (2013b). Semantics of
a foundational subset for executable UML mod-
els (FUML), version 1.1. Specification. http://
www.omg.org/spec/FUML/1.1/PDF.

Selic, B. (2003). The pragmatics of model-driven develop-
ment. IEEE Software, 20(5):19–25.

The ATL Team (2005). ATL Transformation Language.
http://eclipse.org/atl/.

The GMT Team (2005). GMT Project. http://
www.eclipse.org/gmt/.

The JQuery Project (2011). JQuery mobile framework.
http://www.jquerymobile.com/.

Volter, M. (2011). From programming to modeling - and
back again. IEEE Software, 28(6):20–25.

xUML Compiler (2009). xUML Compiler- Java Model
compiler Based on “Executable UML” profile.
http://code.google.com/p/xuml-compiler/.

The�AXIOM�Model�Framework�-�Transforming�Requirements�to�Native�Code�for�Cross-platform�Mobile�Applications

37

