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Abstract: In this paper, we discuss the possibility to adopt SuperResolution (SR) methods as an important preparatory 
step to Pattern Recognition, so as to improve the accuracy of image content recognition and identification. 
Actually, SR mainly deals with the task of deriving a high-resolution image from one or multiple low 
resolution images of the same scene. The high-resolved image corresponds to a more precise image whose 
content is enriched with information hidden among the pixels of the original low resolution image(s), and 
corresponds to a more faithfully representation of the imaged scene. Such enriched content obviously 
represents a better sample of the scene which can be profitably used by Pattern Recognition algorithms. A 
real application scenario is discussed dealing with the recognition of cell skeletons in Scanning Probe 
Microscopy (SPM) single image SR. Results show that the SR allows us to detect and recognize important 
information barely visible in the original low-resolution image.  

1 INTRODUCTION 

Recent advances in SuperResolution (SR) methods 
are fostering an increasing interest in the possibility 
to apply SR processing to improve the accuracy of 
image content recognition. The most frequent 
applications in this direction are oriented to video 
surveillance and intelligent traffic control (Shih-
Ming et al., 2011; Suresh et al., 2007; Aliyan S., 
Broumandnia, 2012), though, obviously, any image 
based task can profitably benefit from such a 
technique. 

Actually, SR mainly deals with the task of 
deriving a high-resolution image from one or 
multiple low resolution images of the same scene 
(the multiple images have usually very slight 
difference from one another since corresponding to 
following frames of a video). High resolution is 
meant both as an improvement of content precision, 
thanks to denoising and content enhancement, and as 
spatial enlargement. 

The result in both cases is a more precise image 
whose content is enriched with information hidden 
among the pixels of the original low resolution 
image or multiple images, which correspond more 
faithfully to the imaged scene. Such enriched 

content obviously represents a better sample of the 
scene which can be profitably used by Pattern 
Recognition (PR) algorithms. 

Starting from this statement, we argue that SR 
and PR can be valuably combined in a 
computational framework to recognize and 
understand image content. 

In this paper, we briefly introduce this 
framework and then show an example of its 
application to the recognition of cytoskeleton in 
Scanning Probe Microscopy (SPM) images.  

Indeed, in recent years, the study of 
Mesenchimal Stem Cells (MSCs) has attracted a lot 
of attention in tissue engineering and regenerative 
medicine thanks to MSCs ability to be committed, 
along several lineages, through chemical and 
physical stimuli. MSCs are usually analyzed via 
Atomic Force Microscopy (AFM), one of the often 
preferred SPM imaging techniques used to obtain 
mechanical information on cell surfaces and 
deposited extra-cellular matrix molecules (Danti et 
al., 2006).  

The goal is to correlate morphological, 
functional, and mechanical aspects of human MSCs 
to obtain a deeper understanding of their effects on 
cells functions, metabolism and finally shape. These 
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aspects can be revealed, from a microscopy point of 
view, by identifying the cytoskeletal components 
and organs (see Figure 1).  

 

Figure 1: Cell cytoskeleton consists of microtubules 
(approximately, 25 nm in diameter), actin filaments (5–7 
nm in diameter), intermediate filaments (8–12 nm in 
diameter), and other binding proteins. 

With the support of biologists of the BioLab located 
at CNR in Pisa, the cytoskeleton was prepared 
according to a method (Hawkins et al., 2013) which 
allowed us to work with images containing 
stabilized microtubule filaments. 

However, the identification of such constituent 
microtubules is generally non trivial due to 
physiological variations in fiber surface properties 
and to AFM acquisition modality, which affect 
image visual appearance, such as tip-cell contact. In 
this frame, our solution, based on the use of SR to 
improve the image definition, can be a viable 
approach to semi-automatic identification and 
recognition of cytoskeleton components in AFM 
single image SR. The method improves spatial and 
photometric resolution, thus allowing the effective 
image recognition. In particular, the method 
highlights the hidden underlying biological 
structures.  

The paper is organized as follows: Section 2 
reports a brief overview of the computational 
framework for the combination of SR and PR 
techniques; hence, Section 3 focuses on the 
recognition of cytoskeleton in AFM images, and, 
finally, results and discussion are reported in Section 
4. 

 
 
 
 
 

2 SUPERRESOLUTION-AIDED 
PATTERN RECOGNITION – AN 
OVERVIEW OF THE 
METHODOLOGY 

Pattern Recognition (PR) applied to image content 
can be roughly defined as the “art” of detecting and 
identifying relevant structures and/or their 
relationships present in an image, usually with the 
final aim to (semi-)automatically perform an image-
based task.  

PR techniques heavily rely on the quality of the 
visual appearance of the image, i.e. on the definition 
and precision of the structures imaged in it. In this 
frame, PR can dramatically benefit from SR 
processing aimed at enhancing the visual quality of 
images as well as magnifying their spatial resolution 
so as to enlarge and highlight relevant structures 
barely visible and recognizable in the original low-
resolution images. 

Indeed, a pre-processing step, usually intended to 
image enhancement and restoration, is normally 
included in PR processing chain. In this frame, 
systematic SR is a viable solution, focused on image 
content enrichment based on the recovery of missing 
high-resolution details that are not explicitly found 
in low-resolution images. This is what we are going 
to illustrate in this paper. 

In particular, we here concentrate on single 
images; this means that both PR and SR techniques 
are applied to a still image (in literature, this case is 
also referred to as single-frame SR). Further work 
will deal with PR in images from video or multiple 
imagery data (i.e., multiple-frame SR). In this case, 
the SR processing can benefit from the presence of 
multiple images of the same scene and then exploit 
the information hidden in such a pack of data.  

In the following, we report an overview of the 
framework already introduced in (D’Acunto et al., 
2013). 

Formally, we assume the following image 
acquisition model (Liu et al, 2008). 

,ሺxܮ yሻ ൌ ܵሺxᇱ, y′ሻ ∗ ሺxᇱܪ െ x, yᇱ െ yሻ  ܰሺx, yሻ (1)

where 	Lሺx, yሻ is the acquired image, ܵሺx′, y′ሻ is the 
Point Spread Function (PSF), 	Hሺx'‐x, y'‐yሻ is the 
ideal image and 	Nሺx, yሻ is the noise. 

The PSF is strictly correlated to the image 
acquisition instrument and the degree of spreading 
(i.e., blurring) of a point object actually measures the 
quality of the imaging system. In many cases, PSF is 
a complex function depending on instruments 
characteristics and limits as well as possible artefacts 
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introduced during the acquisition. 
For instance, in SPM imaging, PSF results from 

all the artefacts introduced by the AFM tip-sample 
contact, the tip-ample convolution or finite tip 
radius, and sample changing stiffness under tip 
pressure. Another source of artefact during the scan 
of biological sample is the temperature change, 
which could introduce drifts due to piezo-tube with 
subsequent sample structure deformation (D’Acunto 
and Salvetti, 2011). 

In the general framework we propose, the main 
idea is to reconstruct the ideal image ܪሺxᇱ െ x, yᇱ െ
yሻ by firstly de-noising the acquired image L, so as 
to eliminate the noise component ܰሺx, yሻ; and then 
by reducing the SPF in two ways: by (i) eliminating 
the acquisition artefacts and (ii) super-resolving the 
artefact- and noise-free image.  

The latter step allows us to recover an image as 
close as possible to the ideal image, including 
scarcely visible details that are not explicitly found 
in the original acquired low-resolution image L. 

Once recovered such an image, PR techniques 
can be applied to understand image content, and 
hence solve the specific image-based task at hand. 

2.1 SuperResolution Method 

A SR method gets the original low-resolution still 
image as input and creates the high-resolution image 
by filling the new image grid with all the available 
low-resolution image pixels. During this filling 
process, the SR algorithm leaves some empty pixels, 
whose values are then estimated by a filling 
function. 

According to the approach followed to define 
this function, existing methods can be categorized in 
(a) interpolation-based, (b) reconstruction-based, 
and (c) example-based.  

Interpolation-based SR methods assume that 
images are spatially smooth and can be adequately 
approximated by polynomials such as bilinear, 
bicubic or level-set functions (Park et al., 2003; 
Morse and Schwartzwald, 2001; Fattal, 2007). This 
assumption is usually inaccurate for natural images 
and thus over-smoothed edges as well as visual 
artifacts often exist in the reconstructed high-
resolution images.  

The reconstruction-based approach faces SR as 
an inverse problem consisting in recovering the 
original high-resolution image by fusing multiple 
low-resolution images, based on certain assumed 
prior knowledge of an observation model that maps 
the high-resolution image to the low resolution 
images (Irani and Peleg, 1991; Lin and Shum, 2004). 

Each low-resolution image imposes a set of linear 
constraints on the unknown high-resolution pixel 
values. When a sufficient number of low-resolution 
images are available, the inverse problem becomes 
over-determined and can be solved to recover the 
high-resolution image. However, it has been shown 
that the reconstruction-based approaches are 
numerically limited to a scaling factor of two (Lin 
and Shum, 2004). 

Example-based methods learn the mapping 
between low-resolution and high-resolution image 
patches from a representative set of image pairs, and 
then the learned mapping is applied to super resolve 
the image at hand. The underlying assumption is that 
the missing high-resolution details can be learned 
and inferred from the low-resolution image and a 
representative training set. Numerous methods have 
been proposed for learning the mapping between 
low-resolution and high-resolution image pairs with 
promising results (Freeman et al., 2002; Sun et al., 
2003; Chang et al., 2004; Sun et al., 2008; Yang et 
al., 2008; Xiong et al., 2009). 

With the initial intent to verify that our idea has 
real potentialities, we have selected the most 
promising SR method among a set of single-frame 
state-of-the-art techniques. In particular, the SR 
method proposed in (Kim and Kwon, 2010) is an 
application-agnostic example-based SR method. It 
works in the spatial domain and consists in a multi-
step procedure that merges interpolation and 
learning. More precisely, after a first step of cubic 
spline interpolation to obtain the image at the 
desired scale, the method estimates the missing 
values by generating a set of candidate high-
resolution images according to a local patch-based 
regressive approach. This candidate images are then 
combined to form a final high-resolution image. 
More precisely, for each image location ሺݔ,  ሻ, theݕ
pixel value is obtained as the convex combination of 
the N candidates according to the following softmax 
scheme: 

,ݔሺܪ ሻݕ ൌ  ߱ሺݔ, ,ݔሺܮሻݕ ,ݕ ݅ሻ
ୀଵ,…,ே

 (2)

where 

ω୨ሺx, yሻ ൌ
e
ି
|ୢሺ୶,୷ሻ|

ి

∑ e
ି
หୢౠሺ୶,୷ሻห
ి୨ୀଵ,…,

 (3)

and {d୧ሺx, yሻ}i=1..N is the estimation of distances 
between the unknown considered pixel and each 
candidate. This estimate is calculated using a set of 
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linear regressors: 

݀ሺݔ, ሻݕ ൌ ,ݔሺܮܲ| ሻ்ݕ ܹ|			݅ ൌ 1,… ,ܰ (4)

where ܲܮሺݔ,  ሻ is a vector constructed using theݕ
concatenation of all columns of a spatial patch of ܮ 
centred at ሺݔ,  ሻ and the parameters ሼW୧} areݕ
optimized based on the patch-based regression 
results L for a subset of training images.  

A final post-processing step is included so as to 
improve edge appearance. 

3 CYTOSKELETON 
RECOGNITION IN SPM 
IMAGES  

The study of Mesenchimal Stem Cells (MSCs) relies 
on the identification of their skeletal components 
and organs. These have usually a microtubule shape 
with a particular distribution pattern, as shown in 
Figure 1. Indeed, it is well-known that living cells 
are in general very soft and mechanically 
inhomogeneous; hence the corresponding 
cytoskeleton forms a rigid network that controls and 
supports both the cell shape and the cell movement. 

AFM is usually the most used SPM technique to 
investigate cell skeletons. The AFM works using a 
probe to image the cell sample. Such tiny probe can 
be considered as a paraboloid with a final sphere 
(normally the radius of the sphere is 10-20nm) in 
permanent or intermittent contact with the sample 
generally considered flat (this corresponds to two 
different modes of acquisition).  

Based on the contact force between the probe 
and the cell sample, the image recorded with an 
AFM present a shot of the cell cytoskeleton. Being 
the cytoskeleton composed by a complex network of 
different cell components, such as actin filaments, 
microtubules, proteins etc, it can be a rather complex 
challenge to identify the different cyto-components 
(see Figure 2). 

Nevertheless, SR processing can significantly 
improve the identification of such components (as 
recently shown also by Chacko et al. 2013). 

In this sense, we applied our framework to semi-
automatically identify the microtubule structures of 
cytoskeletons depicted in AFM images. 

As evident in Figure 2, besides clearly visible 
filaments, many other structures are barely visible 
and distinguishable in the microscopy image. SR 
processing is a viable solution to face this issue. 

According to the general framework introduced 
above, a multi-step procedure is applied to identify 

the different microtubules and filaments: 
- image correction and denoising; 
- image contrast improvement; 
- image resolution improvement; 
- microtubule recognition. 

 
Figure 2: An AFM image depicting the microtubule 
structures of an MSC skeleton. 

More precisely, due to the characteristics of the 
microscope imaging device, a tilt correction is 
initially required. Then, contrast enhancement is 
carried out according to Zuiderveld’s method 
(Zuiderveld, K., 1994). As introduced above, SR 
processing relies on the application of the Kim-
Kwon method. 

Finally, the super-resolved image is processed 
using a patch-wise semi-automatic pattern 
recognition algorithm. 

The aim is to identify a specific area ܪሺxᇱ, yᇱሻ ⊆
,ሺxܪ yሻ of the super-resolved image H 
corresponding to a microtubule. 

Starting from a selected area of the image, the 
PR algorithm selects a central pixel p and applies a 
kind of region growing method based on the 
gradient value of pixel neighbourhood. More 
precisely, the algorithm constructs a connected 
region corresponding to a microtubule by adding, 
neighbour by neighbour, a pixel connected with the 
previous if the derivate between these two pixels is 
lower a certain value (relative derivate ∆ୖ) and if the 
distance between the analysed pixel and the start 
pixel is lower than a certain value (absolute delta 
∆). 

Formally, starting from the selected pixel 
p ∈  : if and only ifܪ , a new pixel is inserted inܪ

p୧ାଵ ∈ I ⟺ p୧ ∈ I, |p୧ െ p୧ାଵ| ൏ ∆ୖ,	
|p୭ െ p୧ାଵ| ൏ ∆ 

(5)
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4 RESULTS  

The proposed multi-step procedure has been 
implemented in Matlab and applied to AFM images 
of MSC cytoskeletons, as the one shown in Figure 2. 

Results show that, thanks to the SR methods, 
also filaments barely visible in the original low-
resolution image have been identified. 

Figure 3 shows an example of such result. A 
patch of the original low-resolution image has been 
selected, as shown in Figure 3.A and Figure 3.B 
shows its rough enlargement. The SR method 
allowed a 4X super-resolved image to be obtained, 
i.e., the one reported in Figure 3.C. This way, a 
“hidden” filament could be discovered and 
characterized. Indeed, the PR method was able to 
identify and delineate it as shown by the result in 
Figure 3.D. 

Figure 4 shows another example on a different 
sample. 

Measuring the dimension of the recognized 
patterns provided a quantitative confirmation of the 
results by consulting biologists of BioLab in Pisa. A 
pixel in super resolved images corresponded to 
about five nanometers. In the example of Figure 3, 
we   recognized   fourteen    microtubule   structures, 

 

Figure 3: Results of the SR-aided pattern recognition 
method for the detection of microtubule cell structures. A: 
The original image and the selected patch. B: roughly 
enlargement of the original content of the selected patch. 
C: the 4x super-resolved image of the selected patch. D: 
the results of the pattern recognition method applied to the 
super-resolved image. 

 

Figure 4: Another example of application of the SR-aided 
pattern recognition method. A and C are SR areas and B 
and D are the respective recognized patterns. 

considering different square sub-images. In all these 
cases, both length and width of the recognized 
pattern were in agreement with typical values 
(Schaap et al., 2006) of microtubules.  

These instances show how effectively SR 
processing can improve the original image and then 
facilitate the recognition of specific patterns. 

We also tested our method by applying it to 
synthetic images containing a set of cylindrical 
shapes. We found that these shapes could be 
recognized after both reduction of resolution and 
addition of noise. We found that the percentage error 
(number of pixels either wrongly assigned or non-
assigned to the pattern to identify) was 0.8% when 
the signal-to-noise ratio was 11.6 dB and was 7.4 % 
when the signal-to-noise ratio was 8.7 dB. 

Figure 5.A gives the 3D representation of the 
high-resolution area shown in Figure 4.C, while 
Figure 5.B gives the 3D representation of the 
original area corresponding to Figure 4.C. 

5 CONCLUSIONS 

The method proposed consisted in the application of 
PR methods to single images enhanced by SR 
algorithms. The application we carried out to the 
recognition of cytoskeleton microtubules led to 
biologically   significant  results  as  confirmed  by  a  
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Figure 5: On the left a 3D perspective of the SR image, on the right a 3D perspective of the original image. 

group of biologists. This confirmed the vast range of 
effectiveness of SR and allowed introducing a useful 
specific tool in the field of the recognition of 
biological structures. 

Futures research will concern the following 
points. Firstly, the method will be applied to a 
greater number of experimental images. This will 
allow improving it according to the properties of 
new data and to better assess its validity. 

Secondly, the stage of proper PR, following the 
stage of image enhancement, will be further tested 
and possibly improved. 

Thirdly, more precise criteria will be given for 
the selection of appropriate sub-images, with the aim 
of possibly making this stage automatic. 

Finally, other methods of image processing will 
be taken into account with the purpose of 
introducing modification and/or additions to our 
method. For instance, methods of filaments 
estimation should be considered (see, e.g., Genovese 
et al., 2012). 
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